ABSTRACT
The neurovascular unit (NVU) is responsible for synchronizing the energetic demand, vasodynamic changes, and neurochemical and electrical function of the brain through a closed and interdependent interaction of cell components conforming to brain tissue. In this review, we will focus on cyclin-dependent kinase 5 (CDK5) as a molecular pivot, which plays a crucial role in the healthy function of neurons, astrocytes, and the endothelium and is implicated in the cross-talk of cellular adhesion signaling, ion transmission, and cytoskeletal remodeling, thus allowing the individual and interconnected homeostasis of cerebral parenchyma. Then, we discuss how CDK5 overactivation affects the integrity of the NVU in Alzheimer's disease (AD) and cognitive impairment; we emphasize how CDK5 is involved in the excitotoxicity spreading of glutamate and Ca2+ imbalance under acute and chronic injury. Additionally, we present pharmacological and gene therapy strategies for producing partial depletion of CDK5 activity on neurons, astrocytes, or endothelium to recover neuroplasticity and neurotransmission, suggesting that the NVU should be the targeted tissue unit in protective strategies. Finally, we conclude that CDK5 could be effective due to its intervention on astrocytes by its end feet on the endothelium and neurons, acting as an intermediary cell between systemic and central communication in the brain. This review provides integrated guidance regarding the pathogenesis of and potential repair strategies for AD.
Subject(s)
Astrocytes/metabolism , Cyclin-Dependent Kinase 5/antagonists & inhibitors , Cyclin-Dependent Kinase 5/metabolism , Drug Delivery Systems/methods , Gene Silencing/physiology , Neurovascular Coupling/physiology , Animals , Astrocytes/drug effects , Astrocytes/pathology , Clinical Trials as Topic/methods , Gene Silencing/drug effects , Humans , Neurovascular Coupling/drug effects , Protein Kinase Inhibitors/administration & dosageABSTRACT
BACKGROUND: Synaptic plasticity is the neuronal capacity to modify the function and structure of dendritic spines (DS) in response to neuromodulators. Sex steroids, particularly 17ß-estradiol (E2) and progesterone (P4), are key regulators in the control of DS formation through multiprotein complexes including WAVE1 protein, and are thus fundamental for the development of learning and memory. OBJECTIVES: The aim of this work was to evaluate the molecular switch Cdk5 kinase/protein phosphatase 2A (PP2A) in the control of WAVE1 protein (phosphorylation/dephosphorylation) and the regulation of WAVE1 and cortactin to the Arp2/3 complex, in response to rapid treatments with E2 and P4 in cortical neuronal cells. RESULTS: Rapid treatment with E2 and P4 modified neuronal morphology and significantly increased the number of DS. This effect was reduced by the use of a Cdk5 inhibitor (Roscovitine). In contrast, inhibition of PP2A with PP2A dominant negative construct significantly increased DS formation, evidencing the participation of kinase/phosphatase in the regulation of WAVE1 in DS formation induced by E2 and P4. Cortactin regulates DS formation via Src and PAK1 kinase induced by E2 and P4. Both cortactin and WAVE1 signal to Arp2/3 complex to synergistically promote actin nucleation. CONCLUSION: These results suggest that E2 and P4 dynamically regulate neuron morphology through nongenomic signaling via cortactin/WAVE1-Arp2/3 complex. The control of these proteins is tightly orchestrated by phosphorylation, where kinases and phosphatases are essential for actin nucleation and, finally, DS formation. This work provides a deeper understanding of the biological actions of sex steroids in the regulation of DS turnover and neuronal plasticity processes.
Subject(s)
Actin-Related Protein 2-3 Complex/metabolism , Cerebral Cortex/physiology , Dendritic Spines/physiology , Estradiol/physiology , Progesterone/physiology , Protein Phosphatase 2/metabolism , Signal Transduction/physiology , Wiskott-Aldrich Syndrome Protein Family/metabolism , Actin-Related Protein 2-3 Complex/drug effects , Animals , Cerebral Cortex/drug effects , Cortactin , Cyclin-Dependent Kinase 5/antagonists & inhibitors , Dendritic Spines/drug effects , Embryo, Mammalian , Estradiol/pharmacology , Progesterone/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Phosphatase 2/drug effects , Rats , Roscovitine/pharmacology , Signal Transduction/drug effects , Wiskott-Aldrich Syndrome Protein Family/drug effectsABSTRACT
INTRODUCTION: Cerebral ischemia is the third cause of death risk in Colombia and the first cause of physical disability worldwide. Different studies on the silencing of the cyclin-dependent kinase 5 (CDK5) have shown that reducing its activity is beneficial in ischemic contexts. However, its effect on neural cell production after cerebral ischemia has not been well studied yet. OBJECTIVE: To evaluate CDK5 silencing on the production of neurons and astrocytes after a focal cerebral ischemia in rats. MATERIALS AND METHODS: We used 40 eight-week-old male Wistar rats. Both sham and ischemia groups were transduced at CA1 hippocampal region with an adeno-associated viral vector using a noninterfering (shSCRmiR) and an interfering sequence for CDK5 (shCDK5miR). We injected 50 mg/kg of bromodeoxyuridine intraperitoneally from hour 24 to day 7 post-ischemia. We assessed the neurological abilities during the next 15 days and we measured the immunoreactivity of bromodeoxyuridine (BrdU), doublecortin (DCX), NeuN, and glial fibrillary acid protein (GFAP) from day 15 to day 30 post-ischemia. RESULTS: Our findings showed that CDK5miR-treated ischemic animals improved their neurological score and presented increased BrdU+ cells 15 days after ischemia, which correlated with higher DCX and lower GFAP fluorescence intensities, and, although mature neurons populations did not change, GFAP immunoreactivity was still significantly reduced at 30 days post-ischemia in comparison with untreated ischemic groups. CONCLUSION: CDK5miR therapy generated the neurological recovery of ischemic rats associated with the induction of immature neurons proliferation and the reduction of GFAP reactivity at short and longterm post-ischemia.
Subject(s)
Brain Ischemia/therapy , Cyclin-Dependent Kinase 5/antagonists & inhibitors , Genetic Therapy , Genetic Vectors/therapeutic use , Molecular Targeted Therapy , Neurogenesis/genetics , Neuroglia/physiology , RNA Interference , RNA, Small Interfering/therapeutic use , Animals , Astrocytes/pathology , Biomarkers , Brain Ischemia/genetics , Brain Ischemia/pathology , Carotid Stenosis , Cyclin-Dependent Kinase 5/genetics , DNA Replication , Dependovirus/genetics , Doublecortin Protein , Drug Evaluation , Genetic Therapy/methods , Ligation , Male , Molecular Targeted Therapy/methods , Neurons/pathology , RNA, Small Interfering/administration & dosage , Rats , Rats, WistarABSTRACT
Abstract Introduction: Cerebral ischemia is the third cause of death risk in Colombia and the first cause of physical disability worldwide. Different studies on the silencing of the cyclin-dependent kinase 5 (CDK5) have shown that reducing its activity is beneficial in ischemic contexts. However, its effect on neural cell production after cerebral ischemia has not been well studied yet. Objective: To evaluate CDK5 silencing on the production of neurons and astrocytes after a focal cerebral ischemia in rats. Materials and methods: We used 40 eight-week-old male Wistar rats. Both sham and ischemia groups were transduced at CA1 hippocampal region with an adeno-associated viral vector using a noninterfering (shSCRmiR) and an interfering sequence for CDK5 (shCDK5miR). We injected 50 mg/kg of bromodeoxyuridine intraperitoneally from hour 24 to day 7 post-ischemia. We assessed the neurological abilities during the next 15 days and we measured the immunoreactivity of bromodeoxyuridine (BrdU), doublecortin (DCX), NeuN, and glial fibrillary acid protein (GFAP) from day 15 to day 30 post-ischemia. Results: Our findings showed that CDK5miR-treated ischemic animals improved their neurological score and presented increased BrdU+ cells 15 days after ischemia, which correlated with higher DCX and lower GFAP fluorescence intensities, and, although mature neurons populations did not change, GFAP immunoreactivity was still significantly reduced at 30 days post-ischemia in comparison with untreated ischemic groups. Conclusion: CDK5miR therapy generated the neurological recovery of ischemic rats associated with the induction of immature neurons proliferation and the reduction of GFAP reactivity at short and longterm post-ischemia.
Resumen Introducción. La isquemia cerebral es la tercera causa de riesgo de muerte en Colombia y la primera causa de discapacidad física en el mundo. En diversos estudios en los que se silenció la cinasa 5 dependiente de la ciclina (CDK5) se ha demostrado que la reducción de su actividad es beneficiosa frente a la isquemia. Sin embargo, su efecto sobre la neurogénesis después de la isquemia no se ha dilucidado suficientemente. Objetivo. Evaluar el silenciamiento de la CDK5 en la neurogénesis y la gliogénesis después de la isquemia cerebral focal en ratas. Materiales y métodos. Se usaron 40 machos de rata Wistar de ocho semanas de edad. Los grupos de control y los isquémicos sometidos a transducción en la región del hipocampo CA1, se inyectaron intraperitonealmente por estereotaxia con 50 mg/kg de bromodesoxiuridina (BrdU) a partir de las 24 horas y hasta el día 7 después de la isquemia, con un vector viral asociado a adenovirus usando una secuencia no interferente (SCRmiR) y una interferente (CDK5miR). Se evaluó la capacidad neurológica durante los quince días siguientes y se detectó la capacidad de inmunorreacción para la BrdU, la proteína doblecortina (DCX), los núcleos neuronales (NeuN), y la proteína fibrilar acídica de la glía (Glial Fibrillary Acidic Protein, GFAP) a los 15 y 30 días de la isquemia. Resultados. Los animales isquémicos tratados con CDK5miR mejoraron su puntuación neurológica y presentaron un incremento de la BrdU+ a los 15 días de la isquemia, lo cual se correlacionó con una mayor intensidad de la DCX+ y una menor de la GFAP+. No hubo modificación de los NeuN+, pero sí una reducción significativa de la GFAP+ a los 30 días de la isquemia en los animales tratados comparados con los animales isquémicos no tratados. Conclusión. La terapia con CDK5miR generó la recuperación neurológica de ratas isquémicas asociada con la inducción de la neurogénesis y el control de la capacidad de reacción de la proteína GFAP a corto y largo plazo después de la isquemia.
Subject(s)
Animals , Male , Rats , Genetic Therapy , Brain Ischemia/therapy , Neuroglia/physiology , RNA, Small Interfering/therapeutic use , RNA Interference , Cyclin-Dependent Kinase 5/antagonists & inhibitors , Neurogenesis/genetics , Molecular Targeted Therapy , Genetic Vectors/therapeutic use , Biomarkers , Genetic Therapy/methods , Brain Ischemia/genetics , Brain Ischemia/pathology , Astrocytes/pathology , Carotid Stenosis , Rats, Wistar , Dependovirus/genetics , RNA, Small Interfering/administration & dosage , DNA Replication , Drug Evaluation , Cyclin-Dependent Kinase 5/genetics , Molecular Targeted Therapy/methods , Doublecortin Protein , Ligation , Neurons/pathologyABSTRACT
Post-stroke cognitive impairment is a major cause of long-term neurological disability. The prevalence of post-stroke cognitive deficits varies between 20% and 80% depending on brain region, country, and diagnostic criteria. The biochemical mechanisms underlying post-stroke cognitive impairment are not known in detail. Cyclin-dependent kinase 5 is involved in neurodegeneration, and its dysregulation contributes to cognitive disorders and dementia. Here, we administered cyclin-dependent kinase 5-targeting gene therapy to the right hippocampus of ischemic rats after transient right middle cerebral artery occlusion. Cyclin-dependent kinase 5 RNA interference prevented the impairment of reversal learning four months after ischemia as well as neuronal loss, tauopathy, and microglial hyperreactivity. Additionally, cyclin-dependent kinase 5 silencing increased the expression of brain-derived neurotrophic factor in the hippocampus. Furthermore, deficits in hippocampal long-term potentiation produced by excitotoxic stimulation were rescued by pharmacological blockade of cyclin-dependent kinase 5. This recovery was blocked by inhibition of the TRKB receptor. In summary, these findings demonstrate the beneficial impact of cyclin-dependent kinase 5 reduction in preventing long-term post-ischemic neurodegeneration and cognitive impairment as well as the role of brain-derived neurotrophic factor/TRKB in the maintenance of normal synaptic plasticity.
Subject(s)
Cognitive Dysfunction/prevention & control , Cyclin-Dependent Kinase 5/antagonists & inhibitors , Neuronal Plasticity/physiology , Stroke/metabolism , Animals , Brain/drug effects , Brain/physiopathology , Cognitive Dysfunction/etiology , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/pathology , Cyclin-Dependent Kinase 5/genetics , Disease Models, Animal , Electrophysiological Phenomena , Gene Knockdown Techniques , Male , Maze Learning/physiology , Mice, Inbred C57BL , RNA, Small Interfering/genetics , Rats, Wistar , Reversal Learning/physiology , Rotarod Performance Test , Stroke/complications , Stroke/pathologyABSTRACT
Inappropriate activation of cyclin-dependent kinase 5 (CDK5) resulting from proteolytic release of the activator fragment p25 from the membrane contributes to the formation of neurofibrillary tangles, ß-amyloid (ßA) aggregation, and chronic neurodegeneration. At 18 months of age, 3× Tg-AD mice were sacrificed after either 3 weeks (short term) or 1 year (long term) of CDK5 knockdown. In short-term-treated animals, CDK5 knockdown reversed ßA aggregation in the hippocampi via inhibitory phosphorylation of glycogen synthase kinase 3ß Ser9 and activation of phosphatase PP2A. In long-term-treated animals, CDK5 knockdown induced a persistent reduction in CDK5 and prevented ßA aggregation, but the effect on amyloid precursor protein processing was reduced, suggesting that yearly booster therapy would be required. These findings further validate CDK5 as a target for preventing or blocking amyloidosis in older transgenic mice.
Subject(s)
Amyloid beta-Peptides/antagonists & inhibitors , Cyclin-Dependent Kinase 5/antagonists & inhibitors , Gene Targeting/methods , Glycogen Synthase Kinase 3/antagonists & inhibitors , Phosphoric Monoester Hydrolases/antagonists & inhibitors , Protein Aggregation, Pathological/prevention & control , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Animals , Cyclin-Dependent Kinase 5/genetics , Cyclin-Dependent Kinase 5/metabolism , Glycogen Synthase Kinase 3/genetics , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta , Mice , Mice, Transgenic , Phosphoric Monoester Hydrolases/genetics , Phosphoric Monoester Hydrolases/metabolism , Protein Aggregation, Pathological/genetics , Protein Aggregation, Pathological/metabolismABSTRACT
Stress exposure induces long lasting neurobiological changes in selected brain areas, which could be associated with the emergence of negative emotional responses. In the present study, previously restrained animals exhibited excessive anxiety one day later in the elevated plus maze. We explore whether stress exposure affects the expression levels of cyclin-dependent kinase 5 (Cdk5) and of its activator protein p35, in diverse amygdaloid nuclei. Stress exposure enhanced p35 levels selectively in the basolateral amygdala (BLA). This up-regulation might be functionally associated with the occurrence of exaggerated anxiety since such emotional response was selectively reversed by an intra-BLA infusion of olomoucine, a Cdk5 inhibitor, 15 min prior to the restraint session. Moreover, pre-treatment with midazolam, a benzodiazepine ligand, not only prevented the excessive anxiety but also attenuated the p35 increase in the BLA of stressed rats. In conclusion, we suggest a pivotal role of the Cdk5/p35 complex, specifically in BLA in the excessive anxiety induced by a previous stressful experience.