Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 356
Filter
1.
Sci Rep ; 14(1): 13389, 2024 06 11.
Article in English | MEDLINE | ID: mdl-38862595

ABSTRACT

While EZH2 enzymatic activity is well-known, emerging evidence suggests that EZH2 can exert functions in a methyltransferase-independent manner. In this study, we have uncovered a novel mechanism by which EZH2 positively regulates the expression of SKP2, a critical protein involved in cell cycle progression. We demonstrate that depletion of EZH2 significantly reduces SKP2 protein levels in several cell types, while treatment with EPZ-6438, an EZH2 enzymatic inhibitor, has no effect on SKP2 protein levels. Consistently, EZH2 depletion leads to cell cycle arrest, accompanied by elevated expression of CIP/KIP family proteins, including p21, p27, and p57, whereas EPZ-6438 treatment does not modulate their levels. We also provide evidence that EZH2 knockdown, but not enzymatic inhibition, suppresses SKP2 mRNA expression, underscoring the transcriptional regulation of SKP2 by EZH2 in a methyltransferase-independent manner. Supporting this, analysis of the Cancer Genome Atlas database reveals a close association between EZH2 and SKP2 expression in human malignancies. Moreover, EZH2 depletion but not enzymatic inhibition positively regulates the expression of major epithelial-mesenchymal transition (EMT) regulators, such as ZEB1 and SNAIL1, in transformed cells. Our findings shed light on a novel mechanism by which EZH2 exerts regulatory effects on cell proliferation and differentiation through its methyltransferase-independent function, specifically by modulating SKP2 expression.


Subject(s)
Enhancer of Zeste Homolog 2 Protein , S-Phase Kinase-Associated Proteins , Enhancer of Zeste Homolog 2 Protein/metabolism , Enhancer of Zeste Homolog 2 Protein/genetics , S-Phase Kinase-Associated Proteins/metabolism , S-Phase Kinase-Associated Proteins/genetics , Humans , Signal Transduction , Cell Cycle/genetics , Epithelial-Mesenchymal Transition/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p57/metabolism , Cyclin-Dependent Kinase Inhibitor p57/genetics , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Cyclin-Dependent Kinase Inhibitor p27/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Cell Proliferation
2.
Gene ; 923: 148590, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-38772516

ABSTRACT

Long noncoding RNAs (lncRNAs) are implicated in a number of regulatory functions in eukaryotic genomes. In humans, KCNQ1OT1 is a 91 kb imprinted lncRNA that inhibits multiple surrounding genes in cis. Among them, CDKN1C is closely related to KCNQ1OT1 and is involved in multiple epigenetic disorders. Here, we found that pigs also had a relatively conserved paternal allele expressing KCNQ1OT1 and had a shorter 5' end (∼27 kb) compared to human KCNQ1OT1. Knockdown of KCNQ1OT1 using antisense oligonucleotides (ASO) showed that upregulation of CDKN1C expression in pigs. However, porcine KCNQ1OT1 did not affect the DNA methylation status of the CpG islands in the promoters of KCNQ1OT1 and CDKN1C. Inhibition of DNA methyltransferase using Decitabine treatment resulted in a significant increase in both KCNQ1OT1 and CDKN1C expression, suggesting that the regulation between KCNQ1OT1 and CDKN1C may not be dependent on RNA interference. Further use of chromosome conformation capture and reverse transcription-associated trap detection in the region where CDKN1C was located revealed that KCNQ1OT1 bound to the CDKN1C promoter and affected chromosome folding. Phenotypically, inhibition of KCNQ1OT1 at the cumulus-oocyte complex promoted cumulus cell transformation, and to upregulated the expression of ALPL at the early stage of osteogenic differentiation of porcine bone marrow mesenchymal stem cells. Our results confirm that the expression of KCNQ1OT1 imprinting in pigs as well as porcine KCNQ1OT1 regulates the expression of CDKN1C through direct promoter binding and chromatin folding alteration. And this regulatory mechanism played an important role in cell differentiation.


Subject(s)
Chromatin , Cyclin-Dependent Kinase Inhibitor p57 , DNA Methylation , Genomic Imprinting , Promoter Regions, Genetic , RNA, Long Noncoding , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Swine , Cyclin-Dependent Kinase Inhibitor p57/genetics , Cyclin-Dependent Kinase Inhibitor p57/metabolism , Chromatin/genetics , Chromatin/metabolism , Potassium Channels, Voltage-Gated/genetics , Potassium Channels, Voltage-Gated/metabolism , CpG Islands , Gene Expression Regulation
3.
Nat Commun ; 15(1): 3953, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38729967

ABSTRACT

Efficient milk production in mammals confers evolutionary advantages by facilitating the transmission of energy from mother to offspring. However, the regulatory mechanism responsible for the gradual establishment of milk production efficiency in mammals, from marsupials to eutherians, remains elusive. Here, we find that mammary gland of the marsupial sugar glider contained milk components during adolescence, and that mammary gland development is less dynamically cyclic compared to that in placental mammals. Furthermore, fused in sarcoma (FUS) is found to be partially responsible for this establishment of low efficiency. In mouse model, FUS inhibit mammary epithelial cell differentiation through the cyclin-dependent kinase inhibitor p57Kip2, leading to lactation failure and pup starvation. Clinically, FUS levels are negatively correlated with milk production in lactating women. Overall, our results shed light on FUS as a negative regulator of milk production, providing a potential mechanism for the establishment of milk production from marsupial to eutherian mammals.


Subject(s)
Lactation , Mammary Glands, Animal , Milk , Animals , Female , Mammary Glands, Animal/metabolism , Humans , Mice , Milk/metabolism , Cell Differentiation , Cyclin-Dependent Kinase Inhibitor p57/metabolism , Cyclin-Dependent Kinase Inhibitor p57/genetics , Epithelial Cells/metabolism , Macropodidae/metabolism , Mammals , Marsupialia
4.
PLoS Biol ; 22(2): e3002517, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38422172

ABSTRACT

A subpopulation of deeply quiescent, so-called dormant hematopoietic stem cells (dHSCs) resides at the top of the hematopoietic hierarchy and serves as a reserve pool for HSCs. The state of dormancy protects the HSC pool from exhaustion throughout life; however, excessive dormancy may prevent an efficient response to hematological stresses. Despite the significance of dHSCs, the mechanisms maintaining their dormancy remain elusive. Here, we identify CD38 as a novel and broadly applicable surface marker for the enrichment of murine dHSCs. We demonstrate that cyclic adenosine diphosphate ribose (cADPR), the product of CD38 cyclase activity, regulates the expression of the transcription factor c-Fos by increasing the release of Ca2+ from the endoplasmic reticulum (ER). Subsequently, we uncover that c-Fos induces the expression of the cell cycle inhibitor p57Kip2 to drive HSC dormancy. Moreover, we found that CD38 ecto-enzymatic activity at the neighboring CD38-positive cells can promote human HSC quiescence. Together, CD38/cADPR/Ca2+/c-Fos/p57Kip2 axis maintains HSC dormancy. Pharmacological manipulations of this pathway can provide new strategies to improve the success of stem cell transplantation and blood regeneration after injury or disease.


Subject(s)
ADP-ribosyl Cyclase 1 , Cyclic ADP-Ribose , Animals , Humans , Mice , Calcium/metabolism , Cyclic ADP-Ribose/metabolism , Hematopoietic Stem Cells , ADP-ribosyl Cyclase 1/metabolism , Cyclin-Dependent Kinase Inhibitor p57/metabolism
5.
Int J Gynecol Pathol ; 43(5): 474-486, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38291567

ABSTRACT

Immunostaining with p57KIP2 is a widely used diagnostic technique to differentiate complete hydatidiform moles (CHMs) from partial hydatidiform moles (PHM) and non-molar hydropic abortion. However, distinguishing between PHMs and non-molar hydropic abortions using histopathology alone is often challenging. This study aimed to evaluate the technical validity and additional benefits of using fluorescence in situ hybridization (FISH) in combination with p57KIP2 immunostaining to diagnose molar and non-molar conceptuses. The study involved 80 specimens, which underwent genetic diagnosis using short tandem repeat analysis, including 44 androgenetic CHMs, 20 diandric monogynic PHMs, 14 biparental non-molar hydropic abortions, 1 monoandric digynic triploid abortion, and 1 vaginal specimen of gestational trophoblastic neoplasia. Two pathologists independently diagnosed the cases based on morphology and p57KIP2 immunostaining while the clinical information was masked. FISH analysis was performed using 3 probes (CEP17, CEPX, and CEPY), which revealed that all androgenetic CHM and biparental diploid non-molar hydropic abortion specimens were diploid. Among the 20 diandric monogynic PHM cases examined by analyzing short tandem repeat polymorphisms, 18 were triploid, and the remaining 2 were diploid. These two specimens were possibly androgenetic/biparental mosaics based on FISH analysis, where the three-signal ratios counting 50 cells were clearly within the diploid ranges. Eight of the 20 genetic PHMs and 2 of the 14 genetically confirmed non-molar hydropic abortions that were falsely diagnosed based on morphology and immunohistochemistry by at least 1 pathologist were correctly diagnosed as PHM and non-molar hydropic abortion, respectively, by FISH analysis. However, 1 monoandric digynic villus was classified as triploid by FISH analysis, leading to a false PHM diagnosis. In conclusion, the combination of FISH analysis with p57KIP2 immunostaining helps in diagnosing molar and non-molar conceptuses in numerous cases; nevertheless, exceptional cases should be considered.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p57 , Hydatidiform Mole , Immunohistochemistry , In Situ Hybridization, Fluorescence , Uterine Neoplasms , Humans , Hydatidiform Mole/diagnosis , Hydatidiform Mole/genetics , Hydatidiform Mole/pathology , Hydatidiform Mole/metabolism , Female , Cyclin-Dependent Kinase Inhibitor p57/genetics , Cyclin-Dependent Kinase Inhibitor p57/metabolism , Pregnancy , Uterine Neoplasms/diagnosis , Uterine Neoplasms/genetics , Uterine Neoplasms/pathology , Uterine Neoplasms/metabolism , Abortion, Spontaneous/genetics , Abortion, Spontaneous/diagnosis , Abortion, Spontaneous/pathology , Adult , Genotype
6.
Epigenetics ; 19(1): 2294516, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38126131

ABSTRACT

Altered epigenetic mechanisms have been previously reported in growth restricted offspring whose mothers experienced environmental insults during pregnancy in both human and rodent studies. We previously reported changes in the expression of the DNA methyltransferase Dnmt3a and the imprinted genes Cdkn1c (Cyclin-dependent kinase inhibitor 1C) and Kcnq1 (Potassium voltage-gated channel subfamily Q member 1) in the kidney tissue of growth restricted rats whose mothers had uteroplacental insufficiency induced on day 18 of gestation, at both embryonic day 20 (E20) and postnatal day 1 (PN1). To determine the mechanisms responsible for changes in the expression of these imprinted genes, we investigated DNA methylation of KvDMR1, an imprinting control region (ICR) that includes the promoter of the antisense long non-coding RNA Kcnq1ot1 (Kcnq1 opposite strand/antisense transcript 1). Kcnq1ot1 expression decreased by 51% in growth restricted offspring compared to sham at PN1. Interestingly, there was a negative correlation between Kcnq1ot1 and Kcnq1 in the E20 growth restricted group (Spearman's ρ = 0.014). No correlation was observed between Kcnq1ot1 and Cdkn1c expression in either group at any time point. Additionally, there was a 11.25% decrease in the methylation level at one CpG site within KvDMR1 ICR. This study, together with others in the literature, supports that long non-coding RNAs may mediate changes seen in tissues of growth restricted offspring.


Subject(s)
DNA Methylation , RNA, Long Noncoding , Pregnancy , Female , Humans , Animals , Rats , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Genomic Imprinting , KCNQ1 Potassium Channel/genetics , KCNQ1 Potassium Channel/metabolism , Kidney/metabolism , Cyclin-Dependent Kinase Inhibitor p57/genetics , Cyclin-Dependent Kinase Inhibitor p57/metabolism
7.
Virchows Arch ; 483(5): 709-715, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37695410

ABSTRACT

Hydatidiform moles (HMs) are divided into two types: partial hydatidiform mole (PHM) which is most often diandric monogynic triploid and complete hydatidiform mole (CHM) which is most often diploid androgenetic. Morphological features and p57 immunostaining are routinely used to distinguish both entities. Genetic analyses are required in challenging cases to determine the parental origin of the genome and ploidy. Some gestations cannot be accurately classified however. We report a case with atypical pathologic and genetic findings that correspond neither to CHM nor to PHM. Two populations of villi with divergent and discordant p57 expression were observed: morphologically normal p57 + villi and molar-like p57 discordant villi with p57 + stromal cells and p57 - cytotrophoblasts. Genotyping of DNA extracted from microdissected villi demonstrated that the conceptus was an androgenetic/biparental mosaic, originating from a zygote with triple paternal contribution, and that only the p57 - cytotrophoblasts were purely androgenetic, increasing the risk of neoplastic transformation.


Subject(s)
Hydatidiform Mole , Uterine Neoplasms , Pregnancy , Female , Humans , Uterine Neoplasms/pathology , Mosaicism , Diploidy , Genotype , Cyclin-Dependent Kinase Inhibitor p57/genetics , Cyclin-Dependent Kinase Inhibitor p57/metabolism , Immunohistochemistry , Hydatidiform Mole/genetics , Hydatidiform Mole/metabolism
8.
Leukemia ; 37(10): 2094-2106, 2023 10.
Article in English | MEDLINE | ID: mdl-37598282

ABSTRACT

Mantle cell lymphoma (MCL) is a lethal hematological malignancy with a median survival of 4 years. Its lethality is mainly attributed to a limited understanding of clinical tumor progression and resistance to current therapeutic regimes. Intrinsic, prolonged drug treatment and tumor-microenvironment (TME) facilitated factors impart pro-tumorigenic and drug-insensitivity properties to MCL cells. Hence, elucidating neoteric pharmacotherapeutic molecular targets involved in MCL progression utilizing a global "unified" analysis for improved disease prevention is an earnest need. Using integrated transcriptomic analyses in MCL patients, we identified a Fibroblast Growth Factor Receptor-1 (FGFR1), and analyses of MCL patient samples showed that high FGFR1 expression was associated with shorter overall survival in MCL patient cohorts. Functional studies using pharmacological intervention and loss of function identify a novel MYC-EZH2-CDKN1C axis-driven proliferation in MCL. Further, pharmacological targeting with erdafitinib, a selective small molecule targeting FGFRs, induced cell-cycle arrest and cell death in-vitro, inhibited tumor progression, and improved overall survival in-vivo. We performed extensive pre-clinical assessments in multiple in-vivo model systems to confirm the therapeutic potential of erdafitinib in MCL and demonstrated FGFR1 as a viable therapeutic target in MCL.


Subject(s)
Lymphoma, Mantle-Cell , Adult , Humans , Cell Death , Cell Line, Tumor , Cell Proliferation , Cyclin-Dependent Kinase Inhibitor p57/metabolism , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Lymphoma, Mantle-Cell/drug therapy , Lymphoma, Mantle-Cell/genetics , Lymphoma, Mantle-Cell/metabolism , Receptors, Fibroblast Growth Factor , Signal Transduction , Tumor Microenvironment/genetics
9.
Int J Mol Sci ; 24(11)2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37298606

ABSTRACT

The general notion of complete hydatidiform moles is that most of them consist entirely of paternal DNA; hence, they do not express p57, a paternally imprinted gene. This forms the basis for the diagnosis of hydatidiform moles. There are about 38 paternally imprinted genes. The aim of this study is to determine whether other paternally imprinted genes could also assist in the diagnostic approach of hydatidiform moles. This study comprised of 29 complete moles, 15 partial moles and 17 non-molar abortuses. Immunohistochemical study using the antibodies of paternal-imprinted (RB1, TSSC3 and DOG1) and maternal-imprinted (DNMT1 and GATA3) genes were performed. The antibodies' immunoreactivity was evaluated on various placental cell types, namely cytotrophoblasts, syncytiotrophoblasts, villous stromal cells, extravillous intermediate trophoblasts and decidual cells. TSSC3 and RB1 expression were observed in all cases of partial moles and non-molar abortuses. In contrast, their expression in complete moles was identified in 31% (TSSC3) and 10.3% (RB1), respectively (p < 0.0001). DOG1 was consistently negative in all cell types in all cases. The expressions of maternally imprinted genes were seen in all cases, except for one case of complete mole where GATA3 was negative. Both TSSC3 and RB1 could serve as a useful adjunct to p57 for the discrimination of complete moles from partial moles and non-molar abortuses, especially in laboratories that lack comprehensive molecular service and in cases where p57 staining is equivocal.


Subject(s)
Hydatidiform Mole , Moles , Animals , Female , Humans , Pregnancy , Antibodies/metabolism , Cyclin-Dependent Kinase Inhibitor p57/genetics , Cyclin-Dependent Kinase Inhibitor p57/metabolism , Hydatidiform Mole/diagnosis , Hydatidiform Mole/genetics , Immunohistochemistry , Moles/metabolism , Placenta/metabolism , Retinoblastoma Binding Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism
10.
Cancer Med ; 12(13): 14413-14425, 2023 07.
Article in English | MEDLINE | ID: mdl-37212524

ABSTRACT

BACKGROUND: Liver cancer is a highly malignant disease and the third leading cause of cancer death worldwide. Abnormal activation of PI3K/Akt signaling is common in cancer, but whether phosphoinositide-3-kinase regulatory subunit 3 (PIK3R3) plays a role in liver cancer is largely unexplored. METHODS: We determined the expression of PIK3R3 in liver cancer by using TCGA data and our clinical samples and knocked it down by siRNA or overexpressing it by the lentivirus vector system. We also investigated the function of PIK3R3 by colony formation, 5-Ethynyl-2-Deoxyuridine, flow cytometry assay, and subcutaneous xenograft model. The downstream of PIK3R3 was explored by RNA sequence and rescue assays. RESULTS: We found that PIK3R3 was significantly upregulated in liver cancer and correlated with prognosis. PIK3R3 promoted liver cancer growth in vitro and in vivo by controlling cell proliferation and cell cycle. RNA sequence revealed that hundreds of genes were dysregulated upon PIK3R3 knockdown in liver cancer cells. CDKN1C, a cyclin-dependent kinase inhibitor, was significantly upregulated by PIK3R3 knockdown, and CDKN1C siRNA rescued the impaired tumor cell growth. SMC1A was partially responsible for PIK3R3 regulated function, and SMC1A overexpression rescued the impaired tumor cell growth in liver cancer cells. Immunoprecipitation demonstrated there is indirect interaction between PIK3R3 and CNKN1C or SMC1A. Importantly, we verified that PIK3R3-activated Akt signaling determined the expression of CDKN1C and SMC1A, two downstream of PIK3R3 in liver cancer cells. CONCLUSION: PIK3R3 is upregulated in liver cancer and activates Akt signaling to control cancer growth by regulation of CDNK1C and SMC1A. Targeting PIK3R3 could be a promising treatment strategy for liver cancer that deserves further investigation.


Subject(s)
Liver Neoplasms , Proto-Oncogene Proteins c-akt , Humans , Cell Line, Tumor , Cell Movement , Cell Proliferation , Cyclin-Dependent Kinase Inhibitor p57/genetics , Cyclin-Dependent Kinase Inhibitor p57/metabolism , Gene Expression Regulation, Neoplastic , Liver Neoplasms/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA, Small Interfering
11.
Cell Signal ; 109: 110735, 2023 09.
Article in English | MEDLINE | ID: mdl-37257769

ABSTRACT

PURPOSE: Cervical Squamous Cell Carcinoma (CSCC) is one of the significant causes of cancer deaths among women. Distinct genetic and epigenetic-altered loci, including chromosomal 11p15.5-15.4, have been identified. CDKN1C (Cyclin-Dependent Kinase Inhibitor 1C, p57KIP2), a member of the CIP/KIP family of cyclin-dependent kinase inhibitors (CDKIs), located at 11p15.4, is a putative tumor suppressor. Apart from transcriptional control, S-Phase Kinase Associated Protein 2 (SKP2), an oncogenic E3 ubiquitin ligase, regulates the protein turnover of CDKN1C. But the molecular status of CDKN1C in CSCC and the underlying mechanistic underpinnings have yet to be explored. METHODS: TCGA and other publicly available datasets were analyzed to evaluate the expression of CDKN1C and SKP2. The expression (transcript/protein) was validated in independent CSCC tumors (n = 155). Copy number alteration and promoter methylation were correlated with the expression. Finally, in vitro functional validation was performed. RESULTS: CDKN1C was down-regulated, and SKP2 was up-regulated at the transcript and protein levels in CSCC tumors and the SiHa cell line. Notably, promoter methylation (50%) was associated with the downregulation of the CDKN1C transcript. However, high expression of SKP2 was found to be associated with the decreased expression of CDKN1C protein. Independent treatments with 5-aza-dC, MG132, and SKP2i (SKPin C1) in SiHa cells led to an enhanced expression of CDKN1C protein, validating the mechanism of down-regulation in CSCC. CONCLUSION: Collectively, CDKN1C was down-regulated due to the synergistic effect of promoter hyper-methylation and SKP2 over-expression in CSCC tumors, paving the way for further studies of its role in the pathogenesis of the disease.


Subject(s)
Carcinoma, Squamous Cell , Uterine Cervical Neoplasms , Female , Humans , Carcinoma, Squamous Cell/genetics , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Cyclin-Dependent Kinase Inhibitor p57/metabolism , Down-Regulation/genetics , Methylation , S-Phase Kinase-Associated Proteins/genetics , S-Phase Kinase-Associated Proteins/metabolism , Uterine Cervical Neoplasms/genetics
12.
Sci Rep ; 13(1): 5626, 2023 04 06.
Article in English | MEDLINE | ID: mdl-37024615

ABSTRACT

Genomic imprinting is an epigenetically mediated mechanism that regulates allelic expression of genes based upon parent-of-origin and provides a paradigm for studying epigenetic silencing and release. Here, bioluminescent reporters for the maternally-expressed imprinted gene Cdkn1c are used to examine the capacity of chromatin-modifying drugs to reverse paternal Cdkn1c silencing. Exposure of reporter mouse embryonic stem cells (mESCs) to 5-Azacytidine, HDAC inhibitors, BET inhibitors or GSK-J4 (KDM6A/B inhibitor) relieved repression of paternal Cdkn1c, either selectively or by inducing biallelic effects. Treatment of reporter fibroblasts with HDAC inhibitors or GSK-J4 resulted in similar paternal Cdkn1c activation, whereas BET inhibitor-induced loss of imprinting was specific to mESCs. Changes in allelic expression were generally not sustained in dividing cultures upon drug removal, indicating that the underlying epigenetic memory of silencing was maintained. In contrast, Cdkn1c de-repression by GSK-J4 was retained in both mESCs and fibroblasts following inhibitor removal, although this impact may be linked to cellular stress and DNA damage. Taken together, these data introduce bioluminescent reporter cells as tools for studying epigenetic silencing and disruption, and demonstrate that Cdkn1c imprinting requires distinct and cell-type specific chromatin features and modifying enzymes to enact and propagate a memory of silencing.


Subject(s)
DNA Methylation , Histone Deacetylase Inhibitors , Animals , Mice , Genomic Imprinting , Epigenesis, Genetic , Chromatin , Cyclin-Dependent Kinase Inhibitor p57/genetics , Cyclin-Dependent Kinase Inhibitor p57/metabolism
13.
Diagn Pathol ; 18(1): 40, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36991485

ABSTRACT

BACKGROUND: Complete and partial moles (PM) are the most common gestational trophoblastic diseases. Due to some overlapping morphological findings, ancillary studies may be necessary. METHODS: In this cross-sectional study, 47 cases of complete mole (CM) and 40 cases of PM were randomly selected based on histopathological criteria. Only those cases that were agreed upon by two expert gynecological pathologists and confirmed by the P57 IHC study were included. The expression level of the Twist-1 marker in villi stromal cells, as well as syncytiotrophoblasts, was evaluated quantitatively (percentage of positive cells), qualitatively (staining intensity) and as a total comprehensive score. RESULTS: Expression of Twist-1 is higher and more intense in villous stromal cells of CMs (p < 0.001). Moderate to strong staining intensity in more than 50% of villous stromal cells, can differentiate CM and PM with 89.5% sensitivity and 75% specificity. In syncytiotrophoblasts of CM, Twist-1 expression was significantly lower than PM (p < 0.001). Negative or weak staining intensity in less than 10% of syncytiotrophoblasts, can distinguish CM and PM with 82.9% sensitivity and 60% specificity. CONCLUSION: A higher expression of Twist-1 in villous stromal cells of hydatidiform moles is a sensitive and specific marker for the diagnosis of CMs. An elevated expression of this marker in villous stromal cells suggests another pathogenic mechanism for more aggressiveness of CMs in addition to the characteristics of trophoblast cells. The opposite result was obtained in the expression of Twist-1 in the syncytiotrophoblasts, compatible with defects in the process of formation of these supportive cells in CMs.


Subject(s)
Hydatidiform Mole , Twist-Related Protein 1 , Uterine Neoplasms , Female , Humans , Pregnancy , Cross-Sectional Studies , Cyclin-Dependent Kinase Inhibitor p57/metabolism , Hydatidiform Mole/diagnosis , Hydatidiform Mole/metabolism , Hydatidiform Mole/pathology , Immunohistochemistry , Uterine Neoplasms/diagnosis , Uterine Neoplasms/pathology , Twist-Related Protein 1/metabolism
14.
PLoS One ; 18(2): e0276838, 2023.
Article in English | MEDLINE | ID: mdl-36791055

ABSTRACT

A cyclin-dependent kinase (CDK) inhibitor, p57Kip2, is an important molecule involved in bone development; p57Kip2-deficient (p57-/-) mice display neonatal lethality resulting from abnormal bone formation and cleft palate. The modulator 1α,25-dihydroxyvitamin D3 (l,25-(OH)2VD3) has shown the potential to suppress the proliferation and induce the differentiation of normal and tumor cells. The current study assessed the role of p57Kip2 in the 1,25-(OH)2VD3-regulated differentiation of osteoblasts because p57Kip2 is associated with the vitamin D receptor (VDR). Additionally, 1,25-(OH)2VD3 treatment increased p57KIP2 expression and induced the colocalization of p57KIP2 with VDR in the osteoblast nucleus. Primary p57-/- osteoblasts exhibited higher proliferation rates with Cdk activation than p57+/+ cells. A lower level of nodule mineralization was observed in p57-/- osteoblasts than in p57+/+ cells. In p57+/+ osteoblasts, 1,25-(OH)2VD3 upregulated the p57Kip2 and opn mRNA expression levels, while the opn expression levels were significantly decreased in p57-/- cells. The osteoclastogenesis assay performed using bone marrow cocultured with 1,25-(OH)2VD3-treated osteoblasts revealed a decreased efficiency of 1,25-(OH)2VD3-stimulated osteoclastogenesis in p57-/- cells. Based on these results, p57Kip2 might function as a mediator of 1,25-(OH)2VD3 signaling, thereby enabling sufficient VDR activation for osteoblast maturation.


Subject(s)
Receptors, Calcitriol , Vitamin D , Animals , Mice , Cell Differentiation , Cell Nucleus/metabolism , Cyclin-Dependent Kinase Inhibitor p57/genetics , Cyclin-Dependent Kinase Inhibitor p57/metabolism , Osteoblasts/metabolism , Receptors, Calcitriol/genetics , Receptors, Calcitriol/metabolism , Vitamin D/metabolism
15.
Epigenetics ; 18(1): 2088173, 2023 Dec.
Article in English | MEDLINE | ID: mdl-35770551

ABSTRACT

Cadmium (Cd) is a toxic metal ubiquitous in the environment. In utero, Cd is inefficiently transported to the foetus but causes foetal growth restriction (FGR), likely through impairment of the placenta where Cd accumulates. However, the underlying molecular mechanisms are poorly understood. Cd can modulate the expression of imprinted genes, defined by their transcription from one parental allele, which play critical roles in placental and foetal growth. The expression of imprinted genes is governed by DNA methylation at Imprinting Control Regions (ICRs), which are susceptible to environmental perturbation. The imprinted gene Cdkn1c/CDKN1C is a major regulator of placental development, is implicated in FGR, and shows increased expression in response to Cd exposure in mice. Here, we use a hybrid mouse model of in utero Cd exposure to determine if the increase in placental Cdkn1c expression is caused by changes to ICR DNA methylation and loss of imprinting (LOI). Consistent with prior studies, Cd causes FGR and impacts placental structure and Cdkn1c expression at late gestation. Using polymorphisms to distinguish parental alleles, we demonstrate that increased Cdkn1c expression is not driven by changes to DNA methylation or LOI. We show that Cdkn1c is expressed primarily in the placental labyrinth which is proportionally increased in size in response to Cd. We conclude that the Cd-associated increase in Cdkn1c expression can be fully explained by alterations to placental structure. These results have implications for understanding mechanisms of Cd-induced placental dysfunction and, more broadly, for the study of FGR associated with increased Cdkn1c/CDKN1C expression.


Subject(s)
DNA Methylation , Placenta , Pregnancy , Female , Animals , Mice , Placenta/metabolism , Cadmium/toxicity , Cadmium/metabolism , Genomic Imprinting , Placentation/genetics , Cyclin-Dependent Kinase Inhibitor p57/genetics , Cyclin-Dependent Kinase Inhibitor p57/metabolism
16.
Int J Hematol ; 117(1): 78-89, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36280659

ABSTRACT

Disease-risk stratification and development of intensified chemotherapy protocols have substantially improved the outcome of acute lymphoblastic leukemia (ALL). However, outcomes of relapsed or refractory cases remain poor. Previous studies have discussed the oncogenic role of enhancer of zeste homolog 1 and 2 (EZH1/2), and the efficacy of dual inhibition of EZH1/2 as a treatment for hematological malignancy. Here, we investigated whether an EZH1/2 dual inhibitor, DS-3201 (valemetostat), has antitumor effects on B cell ALL (B-ALL). DS-3201 inhibited growth of B-ALL cell lines more significantly and strongly than the EZH2-specific inhibitor EPZ-6438, and induced cell cycle arrest and apoptosis in vitro. RNA-seq analysis to determine the effect of DS-3201 on cell cycle arrest-related genes expressed by B-ALL cell lines showed that DS-3201 upregulated CDKN1C and TP53INP1. CRIPSR/Cas9 knockout confirmed that CDKN1C and TP53INP1 are direct targets of EZH1/2 and are responsible for the antitumor effects of DS-3201 against B-ALL. Furthermore, a patient-derived xenograft (PDX) mouse model showed that DS-3201 inhibited the growth of B-ALL harboring MLL-AF4 significantly. Thus, DS-3201 provides another option for treatment of B-ALL.


Subject(s)
Burkitt Lymphoma , Lymphoma, B-Cell , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Mice , Animals , Polycomb Repressive Complex 2 , Up-Regulation , Enhancer of Zeste Homolog 2 Protein , Enzyme Inhibitors/pharmacology , Cell Cycle Checkpoints/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Cyclin-Dependent Kinase Inhibitor p57/genetics , Cyclin-Dependent Kinase Inhibitor p57/metabolism , Carrier Proteins/genetics , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism
17.
Mol Oncol ; 16(20): 3587-3605, 2022 10.
Article in English | MEDLINE | ID: mdl-36037042

ABSTRACT

Rhabdomyosarcoma (RMS), a cancer characterized by features of skeletal muscle, is the most common soft-tissue sarcoma of childhood. With 5-year survival rates among high-risk groups at &lt; 30%, new therapeutics are desperately needed. Previously, using a myoblast-based model of fusion-negative RMS (FN-RMS), we found that expression of the Hippo pathway effector transcriptional coactivator YAP1 (YAP1) permitted senescence bypass and subsequent transformation to malignant cells, mimicking FN-RMS. We also found that YAP1 engages in a positive feedback loop with Notch signaling to promote FN-RMS tumorigenesis. However, we could not identify an immediate downstream impact of this Hippo-Notch relationship. Here, we identify a HES1-YAP1-CDKN1C functional interaction, and show that knockdown of the Notch effector HES1 (Hes family BHLH transcription factor 1) impairs growth of multiple FN-RMS cell lines, with knockdown resulting in decreased YAP1 and increased CDKN1C expression. In silico mining of published proteomic and transcriptomic profiles of human RMS patient-derived xenografts revealed the same pattern of HES1-YAP1-CDKN1C expression. Treatment of FN-RMS cells in vitro with the recently described HES1 small-molecule inhibitor, JI130, limited FN-RMS cell growth. Inhibition of HES1 in vivo via conditional expression of a HES1-directed shRNA or JI130 dosing impaired FN-RMS tumor xenograft growth. Lastly, targeted transcriptomic profiling of FN-RMS xenografts in the context of HES1 suppression identified associations between HES1 and RAS-MAPK signaling. In summary, these in vitro and in vivo preclinical studies support the further investigation of HES1 as a therapeutic target in FN-RMS.


Subject(s)
Proteomics , Rhabdomyosarcoma , Humans , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Cyclin-Dependent Kinase Inhibitor p57/genetics , Cyclin-Dependent Kinase Inhibitor p57/metabolism , Gene Expression Regulation, Neoplastic , Rhabdomyosarcoma/genetics , Rhabdomyosarcoma/pathology , RNA, Small Interfering , Transcription Factor HES-1/genetics , Transcription Factor HES-1/metabolism , Animals
18.
Expert Rev Mol Diagn ; 22(8): 783-796, 2022 08.
Article in English | MEDLINE | ID: mdl-36017690

ABSTRACT

INTRODUCTION: Hydatidiform moles (HMs) are pathologic conceptions with unique genetic bases and abnormal placental villous tissue. Overlapping ultrasonographical and histological manifestations of molar and non-molar (NM) gestations and HMs subtypes makes accurate diagnosis challenging. Currently, immunohistochemical analysis of p57 and molecular genotyping have greatly improved the diagnostic accuracy. AREAS COVERED: The differential expression of molecular biomarkers may be valuable for distinguishing among the subtypes of HMs and their mimics. Thus, biomarkers may be the key to refining HMs diagnosis. In this review, we summarize the current challenges in diagnosing HMs, and provide a critical overview of the recent literature about potential diagnostic biomarkers and their subclassifications. An online search on PubMed, Web of Science, and Google Scholar databases was conducted from the inception to 1 April 2022. EXPERT OPINION: The emerging biomarkers offer new possibilities to refine the diagnosis for HMs and pregnancy loss. Although the additional studies are required to be quantified and investigated in clinical trials to verify their diagnostic utility. It is important to explore, validate, and facilitate the wide adoption of newly developed biomarkers in the coming years.


Subject(s)
Hydatidiform Mole , Uterine Neoplasms , Biomarkers , Cyclin-Dependent Kinase Inhibitor p57/analysis , Cyclin-Dependent Kinase Inhibitor p57/genetics , Cyclin-Dependent Kinase Inhibitor p57/metabolism , Female , Genotype , Humans , Hydatidiform Mole/diagnosis , Hydatidiform Mole/genetics , Hydatidiform Mole/pathology , Placenta/pathology , Pregnancy , Uterine Neoplasms/diagnosis , Uterine Neoplasms/metabolism , Uterine Neoplasms/pathology
19.
Int J Hematol ; 116(2): 163-173, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35759181

ABSTRACT

Early erythroid progenitors known as CFU-e undergo multiple self-renewal cell cycles. The CFU-e developmental stage ends with the onset of erythroid terminal differentiation (ETD). The transition from CFU-e to ETD is a critical cell fate decision that determines erythropoietic rate. Here we review recent insights into the regulation of this transition, garnered from flow cytometric and single-cell RNA sequencing studies. We find that the CFU-e/ETD transition is a rapid S phase-dependent transcriptional switch. It takes place during an S phase that is much shorter than in preceding or subsequent cycles, as a result of globally faster replication forks. Furthermore, it is preceded by cycles in which G1 becomes gradually shorter. These dramatic cell cycle and S phase remodeling events are directly linked to regulation of the CFU-e/ETD switch. Moreover, regulators of erythropoietic rate exert their effects by modulating cell cycle duration and S phase speed. Glucocorticoids increase erythropoietic rate by inducing the CDK inhibitor p57KIP2, which slows replication forks, inhibiting the CFU-e/ETD switch. Conversely, erythropoietin promotes induction of ETD by shortening the cycle. S phase shortening was reported during cell fate decisions in non-erythroid lineages, suggesting a fundamentally new developmental role for cell cycle speed.


Subject(s)
Erythroid Precursor Cells , Erythropoietin , Cell Cycle/genetics , Cell Differentiation/genetics , Cyclin-Dependent Kinase Inhibitor p57/genetics , Cyclin-Dependent Kinase Inhibitor p57/metabolism , Cyclin-Dependent Kinase Inhibitor p57/pharmacology , Erythropoiesis/genetics , Erythropoietin/pharmacology , Humans , Sequence Analysis, RNA
20.
Cell Stem Cell ; 29(5): 826-839.e9, 2022 05 05.
Article in English | MEDLINE | ID: mdl-35523142

ABSTRACT

Adult stem cells constantly react to local changes to ensure tissue homeostasis. In the main body of the stomach, chief cells produce digestive enzymes; however, upon injury, they undergo rapid proliferation for prompt tissue regeneration. Here, we identified p57Kip2 (p57) as a molecular switch for the reserve stem cell state of chief cells in mice. During homeostasis, p57 is constantly expressed in chief cells but rapidly diminishes after injury, followed by robust proliferation. Both single-cell RNA sequencing and dox-induced lineage tracing confirmed the sequential loss of p57 and activation of proliferation within the chief cell lineage. In corpus organoids, p57 overexpression induced a long-term reserve stem cell state, accompanied by altered niche requirements and a mature chief cell/secretory phenotype. Following the constitutive expression of p57 in vivo, chief cells showed an impaired injury response. Thus, p57 is a gatekeeper that imposes the reserve stem cell state of chief cells in homeostasis.


Subject(s)
Chief Cells, Gastric , Cyclin-Dependent Kinase Inhibitor p57/metabolism , Animals , Cell Lineage , Chief Cells, Gastric/metabolism , Mice , Organoids , Stem Cells , Stomach
SELECTION OF CITATIONS
SEARCH DETAIL