Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.138
Filter
1.
Mol Cancer ; 23(1): 135, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951876

ABSTRACT

In cells, signal transduction heavily relies on the intricate regulation of protein kinases, which provide the fundamental framework for modulating most signaling pathways. Dysregulation of kinase activity has been implicated in numerous pathological conditions, particularly in cancer. The druggable nature of most kinases positions them into a focal point during the process of drug development. However, a significant challenge persists, as the role and biological function of nearly one third of human kinases remains largely unknown.Within this diverse landscape, cyclin-dependent kinases (CDKs) emerge as an intriguing molecular subgroup. In human, this kinase family encompasses 21 members, involved in several key biological processes. Remarkably, 13 of these CDKs belong to the category of understudied kinases, and only 5 having undergone broad investigation to date. This knowledge gap underscores the pressing need to delve into the study of these kinases, starting with a comprehensive review of the less-explored ones.Here, we will focus on the PCTAIRE subfamily of CDKs, which includes CDK16, CDK17, and CDK18, arguably among the most understudied CDKs members. To contextualize PCTAIREs within the spectrum of human pathophysiology, we conducted an exhaustive review of the existing literature and examined available databases. This approach resulted in an articulate depiction of these PCTAIREs, encompassing their expression patterns, 3D configurations, mechanisms of activation, and potential functions in normal tissues and in cancer.We propose that this effort offers the possibility of identifying promising areas of future research that extend from basic research to potential clinical and therapeutic applications.


Subject(s)
Cyclin-Dependent Kinases , Humans , Cyclin-Dependent Kinases/metabolism , Animals , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/genetics , Signal Transduction , Structure-Activity Relationship , Protein Conformation
2.
Molecules ; 29(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38998978

ABSTRACT

The regulation of the cancer cell cycle heavily relies on cyclin-dependent kinases (CDKs). Targeting CDKs has been identified as a promising approach for effective cancer therapy. In recent years, there has been significant attention paid towards developing small-molecule CDK inhibitors in the field of drug discovery. Notably, five such inhibitors have already received regulatory approval for the treatment of different cancers, including breast tumors, lung malignancies, and hematological malignancies. This review provides an overview of the synthetic routes used to produce 17 representative small-molecule CDK inhibitors that have obtained regulatory approval or are currently being evaluated through clinical trials. It also discusses their clinical applications for treating CDK-related diseases and explores the challenges and limitations associated with their use in a clinical setting, which will stimulate the further development of novel CDK inhibitors. By integrating therapeutic applications, synthetic methodologies, and mechanisms of action observed in various clinical trials involving these CDK inhibitors, this review facilitates a comprehensive understanding of the versatile roles and therapeutic potential offered by interventions targeting CDKs.


Subject(s)
Antineoplastic Agents , Cyclin-Dependent Kinases , Neoplasms , Protein Kinase Inhibitors , Small Molecule Libraries , Humans , Cyclin-Dependent Kinases/antagonists & inhibitors , Cyclin-Dependent Kinases/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Neoplasms/drug therapy , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemistry , Small Molecule Libraries/therapeutic use , Small Molecule Libraries/chemical synthesis , Animals , Drug Discovery , Clinical Trials as Topic
3.
Exp Biol Med (Maywood) ; 249: 10106, 2024.
Article in English | MEDLINE | ID: mdl-38993199

ABSTRACT

Cyclin-dependent kinase-like 3 (CDKL3) has been identified as an oncogene in certain types of tumors. Nonetheless, its function in hepatocellular carcinoma (HCC) is poorly understood. In this study, we conducted a comprehensive analysis of CDKL3 based on data from the HCC cohort of The Cancer Genome Atlas (TCGA). Our analysis included gene expression, diagnosis, prognosis, functional enrichment, tumor microenvironment and metabolic characteristics, tumor burden, mRNA expression-based stemness, alternative splicing, and prediction of therapy response. Additionally, we performed a cell counting kit-8 assay, TdT-mediated dUTP nick-end Labeling staining, migration assay, wound healing assay, colony formation assay, and nude mouse experiments to confirm the functional relevance of CDKL3 in HCC. Our findings showed that CDKL3 was significantly upregulated in HCC patients compared to controls. Various bioinformatic analyses suggested that CDKL3 could serve as a potential marker for HCC diagnosis and prognosis. Furthermore, CDKL3 was found to be involved in various mechanisms linked to the development of HCC, including copy number variation, tumor burden, genomic heterogeneity, cancer stemness, and alternative splicing of CDKL3. Notably, CDKL3 was also closely correlated with tumor immune cell infiltration and the expression of immune checkpoint markers. Additionally, CDKL3 was shown to independently function as a risk predictor for overall survival in HCC patients by multivariate Cox regression analysis. Furthermore, the knockdown of CDKL3 significantly inhibited cell proliferation in vitro and in vivo, indicating its role as an oncogene in HCC. Taken together, our findings suggest that CDKL3 shows promise as a biomarker for the detection and treatment outcome prediction of HCC patients.


Subject(s)
Biomarkers, Tumor , Carcinoma, Hepatocellular , Liver Neoplasms , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/diagnosis , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Humans , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Prognosis , Animals , Mice , Mice, Nude , Cyclin-Dependent Kinases/genetics , Cyclin-Dependent Kinases/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Male , Female , Cell Proliferation/genetics
4.
Cancer Imaging ; 24(1): 90, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982546

ABSTRACT

BACKGROUND: Exploring the value of baseline and early 18F-FDG PET/CT evaluations in prediction PFS in ER+/HER2- metastatic breast cancer patients treated with a cyclin-dependent kinase inhibitor in combination with an endocrine therapy. METHODS: Sixty-six consecutive breast cancer patients who underwent a pre-therapeutic 18F-FDG PET/CT and a second PET/CT within the first 6 months of treatment were retrospectively included. Metabolic tumour volume (MTV) and total lesion glycolysis (TLG) and Dmax, which represents tumour dissemination and is defined as the distance between the two most distant lesions, were computed. The variation in these parameters between baseline and early evaluation PET as well as therapeutic evaluation using PERCIST were assessed as prognosticators of PFS at 18 months. RESULTS: The median follow-up was equal to 22.5 months. Thirty progressions occurred (45.4%). The average time to event was 17.8 ± 10.4 months. At baseline, Dmax was the only predictive metabolic parameter. Patients with a baseline Dmax ≤ 18.10 cm had a significantly better 18 m-PFS survival than the others: 69.2% (7.7%) versus 36.7% (8.8%), p = 0.017. There was no association between PERCIST evaluation and 18 m-PFS status (p = 0.149) and there was no difference in 18 m-PFS status between patients classified as complete, partial metabolic responders or having stable metabolic disease. CONCLUSION: Disease spread at baseline PET, as assessed by Dmax, is predictive of an event occurring within 18 months. In the absence of early metabolic progression, which occurs in 15% of patients, treatment should be continued regardless of the quality of the initial response to treatment.


Subject(s)
Breast Neoplasms , Fluorodeoxyglucose F18 , Positron Emission Tomography Computed Tomography , Radiopharmaceuticals , Humans , Female , Breast Neoplasms/pathology , Breast Neoplasms/mortality , Breast Neoplasms/drug therapy , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/therapy , Positron Emission Tomography Computed Tomography/methods , Middle Aged , Retrospective Studies , Aged , Adult , Progression-Free Survival , Protein Kinase Inhibitors/therapeutic use , Cyclin-Dependent Kinases/antagonists & inhibitors , Neoplasm Metastasis , Prognosis
5.
Sci Rep ; 14(1): 15315, 2024 07 03.
Article in English | MEDLINE | ID: mdl-38961127

ABSTRACT

Cyclin-dependent kinases (CDKs) play essential roles in regulating the cell cycle and are among the most critical targets for cancer therapy and drug discovery. The primary objective of this research is to derive general structure-activity relationship (SAR) patterns for modeling the selectivity and activity levels of CDK inhibitors using machine learning methods. To accomplish this, 8592 small molecules with different binding affinities to CDK1, CDK2, CDK4, CDK5, and CDK9 were collected from Binding DB, and a diverse set of descriptors was calculated for each molecule. The supervised Kohonen networks (SKN) and counter propagation artificial neural networks (CPANN) models were trained to predict the activity levels and therapeutic targets of the molecules. The validity of models was confirmed through tenfold cross-validation and external test sets. Using selected sets of molecular descriptors (e.g. hydrophilicity and total polar surface area) we derived activity and selectivity maps to elucidate local regions in chemical space for active and selective CDK inhibitors. The SKN models exhibited prediction accuracies ranging from 0.75 to 0.94 for the external test sets. The developed multivariate classifiers were used for ligand-based virtual screening of 2 million random molecules of the PubChem database, yielding areas under the receiver operating characteristic curves ranging from 0.72 to 1.00 for the SKN model. Considering the persistent challenge of achieving CDK selectivity, this research significantly contributes to addressing the issue and underscores the paramount importance of developing drugs with minimized side effects.


Subject(s)
Cyclin-Dependent Kinases , Machine Learning , Neural Networks, Computer , Protein Kinase Inhibitors , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Structure-Activity Relationship , Cyclin-Dependent Kinases/antagonists & inhibitors , Cyclin-Dependent Kinases/metabolism , Cyclin-Dependent Kinases/chemistry , Humans , Drug Discovery/methods
6.
ACS Sens ; 9(6): 2964-2978, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38863434

ABSTRACT

Detection of disease biomarkers constitutes a major challenge for the development of personalized and predictive diagnostics as well as companion assays. Protein kinases (PKs) involved in the coordination of cell cycle progression and proliferation that are hyperactivated in human cancers constitute attractive pharmacological targets and relevant biomarkers. Although it is relatively straightforward to assess the relative abundance of PKs in a biological sample, there is not always a direct correlation with enzymatic activity, which is regulated by several posttranslational mechanisms. Studies of relative abundance therefore convey limited information, and the lack of selective, sensitive, and standardized tools together with the inherent complexity of biological samples makes it difficult to quantify PK activities in physio-pathological tissues. To address this challenge, we have developed a toolbox of fluorescent biosensors that report on CDK activities in a sensitive, selective, dose-dependent, and quantitative fashion, which we have implemented to profile CDK activity signatures in cancer cell lines and biopsies from human tumors. In this study, we report on a standardized and calibrated biosensing approach to quantify CDK1,2,4, and 6 activities simultaneously through a combination of four different biosensors in a panel of 40 lung adenocarcinoma and 40 follicular lymphoma samples. CDK activity profiling highlighted two major patterns which were further correlated with age, sex of patients, tumor size, grade, and genetic and immunohistochemical features of the biopsies. Multiplex CDKACT biosensing technology provides new and complementary information relative to current genetic and immunohistochemical characterization of tumor biopsies, which will be useful for diagnostic purposes, potentially guiding therapeutic decision. These fluorescent peptide biosensors offer promise for personalized diagnostics based on kinase activity profiling.


Subject(s)
Biosensing Techniques , Cyclin-Dependent Kinases , Humans , Biosensing Techniques/methods , Cyclin-Dependent Kinases/metabolism , Peptides/chemistry , Biopsy , Fluorescent Dyes/chemistry , Cell Line, Tumor , Lung Neoplasms/pathology , Lung Neoplasms/diagnosis , Lung Neoplasms/enzymology
7.
BMC Biol ; 22(1): 132, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38835016

ABSTRACT

BACKGROUND: ARID1A, a subunit of the SWI/SNF chromatin remodeling complex, is thought to play a significant role both in tumor suppression and tumor initiation, which is highly dependent upon context. Previous studies have suggested that ARID1A deficiency may contribute to cancer development. The specific mechanisms of whether ARID1A loss affects tumorigenesis by RNA editing remain unclear. RESULTS: Our findings indicate that the deficiency of ARID1A leads to an increase in RNA editing levels and alterations in RNA editing categories mediated by adenosine deaminases acting on RNA 1 (ADAR1). ADAR1 edits the CDK13 gene at two previously unidentified sites, namely Q113R and K117R. Given the crucial role of CDK13 as a cyclin-dependent kinase, we further observed that ADAR1 deficiency results in changes in the cell cycle. Importantly, the sensitivity of ARID1A-deficient tumor cells to SR-4835, a CDK12/CDK13 inhibitor, suggests a promising therapeutic approach for individuals with ARID1A-mutant tumors. Knockdown of ADAR1 restored the sensitivity of ARID1A deficient cells to SR-4835 treatment. CONCLUSIONS: ARID1A deficiency promotes RNA editing of CDK13 by regulating ADAR1.


Subject(s)
Adenosine Deaminase , Cyclin-Dependent Kinases , DNA-Binding Proteins , RNA Editing , RNA-Binding Proteins , Transcription Factors , Adenosine Deaminase/metabolism , Adenosine Deaminase/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Humans , Transcription Factors/metabolism , Transcription Factors/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Cyclin-Dependent Kinases/metabolism , Cyclin-Dependent Kinases/genetics , Cell Line, Tumor , CDC2 Protein Kinase
8.
JCO Precis Oncol ; 8: e2300639, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38838276

ABSTRACT

PURPOSE: Genomic alterations have been identified in patients with breast cancer brain metastases (BCBMs), but large structural rearrangements have not been extensively studied. MATERIALS AND METHODS: We analyzed the genomic profiles of 822 BCBMs and compared them with 11,988 local, breast-biopsied breast cancers (BCs) and 15,516 non-CNS metastases (Non-CNS M) derived from formalin-fixed paraffin-embedded material using targeted capture sequencing. RESULTS: Nine genes with structural rearrangements were more prevalent within BCBMs as compared with local BCs and Non-CNS M (adjusted-P < .05) and displayed a prevalence of >0.5%. The most common rearrangements within BCBMs involves cyclin-dependent kinase 12 (CDK12; 3.53%) as compared with the local BC (0.86%; adjusted-P = 7.1 × 10-8) and Non-CNS M specimens (0.68%; adjusted-P = 3.7 × 10-10). CDK12 rearrangements had a significantly higher frequency within human epidermal growth factor receptor 2 (HER2)-positive BCBMs (14.59%) compared with HER2-positive BCs (7.80%; P = 4.6 × 10-3) and HER2-positive Non-CNS M (7.87%; P = 4.8 × 10-3). CONCLUSION: The most common structural rearrangements involve CDK12 with the higher prevalence in HER2-positive BCBMs. These data support more detailed investigation of the role and importance of CDK12 rearrangements in BCBMs.


Subject(s)
Brain Neoplasms , Breast Neoplasms , Cyclin-Dependent Kinases , Gene Rearrangement , Receptor, ErbB-2 , Humans , Female , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Brain Neoplasms/secondary , Brain Neoplasms/genetics , Receptor, ErbB-2/genetics , Cyclin-Dependent Kinases/genetics , Middle Aged , Adult , Aged
9.
Science ; 384(6700): eadk0850, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38843329

ABSTRACT

To delineate the mechanisms by which the ERK1 and ERK2 mitogen-activated protein kinases support mutant KRAS-driven cancer growth, we determined the ERK-dependent phosphoproteome in KRAS-mutant pancreatic cancer. We determined that ERK1 and ERK2 share near-identical signaling and transforming outputs and that the KRAS-regulated phosphoproteome is driven nearly completely by ERK. We identified 4666 ERK-dependent phosphosites on 2123 proteins, of which 79 and 66%, respectively, were not previously associated with ERK, substantially expanding the depth and breadth of ERK-dependent phosphorylation events and revealing a considerably more complex function for ERK in cancer. We established that ERK controls a highly dynamic and complex phosphoproteome that converges on cyclin-dependent kinase regulation and RAS homolog guanosine triphosphatase function (RHO GTPase). Our findings establish the most comprehensive molecular portrait and mechanisms by which ERK drives KRAS-dependent pancreatic cancer growth.


Subject(s)
Mitogen-Activated Protein Kinase 1 , Mitogen-Activated Protein Kinase 3 , Pancreatic Neoplasms , Phosphoproteins , Proteome , Proto-Oncogene Proteins p21(ras) , Animals , Humans , Mice , Cell Line, Tumor , Cyclin-Dependent Kinases/metabolism , Cyclin-Dependent Kinases/genetics , MAP Kinase Signaling System , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Mutation , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Phosphoproteins/metabolism , Phosphoproteins/genetics , Phosphorylation , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , HEK293 Cells
10.
Eur J Med Chem ; 275: 116539, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38878515

ABSTRACT

AML is an aggressive malignancy of immature myeloid progenitor cells. Discovering effective treatments for AML through cell differentiation and anti-proliferation remains a significant challenge. Building on previous studies on CDK2 PROTACs with differentiation-inducing properties, this research aims to enhance CDKs degradation through structural optimization to facilitate the differentiation and inhibit the proliferation of AML cells. Compound C3, featuring a 4-methylpiperidine ring linker, effectively degraded CDK2 with a DC50 value of 18.73 ± 10.78 nM, and stimulated 72.77 ± 3.51 % cell differentiation at 6.25 nM in HL-60 cells. Moreover, C3 exhibited potent anti-proliferative activity against various AML cell types. Degradation selectivity analysis indicated that C3 could be endowed with efficient degradation of CDK2/4/6/9 and FLT3, especially FLT3-ITD in MV4-11 cells. These findings propose that C3 combined targeting CDK2/4/6/9 and FLT3 with enhanced differentiation and proliferation inhibition, which holds promise as a potential treatment for AML.


Subject(s)
Antineoplastic Agents , Cyclin-Dependent Kinases , Drug Discovery , Leukemia, Myeloid, Acute , Protein Kinase Inhibitors , Proteolysis Targeting Chimera , Proteolysis , fms-Like Tyrosine Kinase 3 , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Cell Differentiation/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cyclin-Dependent Kinases/antagonists & inhibitors , Cyclin-Dependent Kinases/metabolism , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , fms-Like Tyrosine Kinase 3/metabolism , Leukemia, Myeloid, Acute/drug therapy , Molecular Structure , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Structure-Activity Relationship , Proteolysis Targeting Chimera/chemistry , Proteolysis Targeting Chimera/pharmacology , Proteolysis Targeting Chimera/therapeutic use
11.
Eur J Med Chem ; 275: 116547, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38852339

ABSTRACT

The development of selective modulators of cyclin-dependent kinases (CDKs), a kinase family with numerous members and functional variations, is a significant preclinical challenge. Recent advancements in crystallography have revealed subtle differences in the highly conserved CDK pockets. Exploiting these differences has proven to be an effective strategy for achieving excellent drug selectivity. While previous reports briefly discussed the structural features that lead to selectivity in individual CDK members, attaining inhibitor selectivity requires consideration of not only the specific structures of the target CDK but also the features of off-target members. In this review, we summarize the structure-activity relationships (SARs) that influence selectivity in CDK drug development and analyze the pocket features that lead to selectivity using molecular-protein binding models. In addition, in recent years, novel CDK modulators have been developed, providing more avenues for achieving selectivity. These cases were also included. We hope that these efforts will assist in the development of novel CDK drugs.


Subject(s)
Cyclin-Dependent Kinases , Protein Kinase Inhibitors , Cyclin-Dependent Kinases/antagonists & inhibitors , Cyclin-Dependent Kinases/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Humans , Structure-Activity Relationship , Molecular Structure , Animals , Models, Molecular
12.
Bioorg Chem ; 149: 107508, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38850781

ABSTRACT

Cyclin-dependent kinases (CDKs) constitute a vital family of protein-serine kinases, pivotal in regulating various cellular processes such as the cell cycle, metabolism, proteolysis, and neural functions. Dysregulation or overexpression of CDK kinases is directly linked to the development of cancer. However, the currently approved CDK inhibitors by the US FDA, such as palbociclib, ribociclib, Trilaciclib, Abemaciclib, etc., although effective, exhibit limited specificity and often lead to undesirable adverse effects. First and second-generation CDK inhibitors have not gained significant clinical interaction due to their high toxicity and lack of specificity. To address these challenges, a combined approach is being employed in the quest for newer CDK inhibitors aimed at mitigating toxicity and side effects associated with CDKIs. The discovery of therapeutic agents selectively targeting tumorous cells, such as CDK inhibitors, has demonstrated promise in treating various cancers, including breast cancer. Extensive literature reviews have facilitated the development of novel CDK inhibitors by combining medicinally preferred pyrimidine derivatives with other heterocyclic rings. Pyrimidine derivatives substituted with pyrazole, imidazole, benzamide, benzene sulfonamide, indole carbohydrazide, and other privileged heterocyclic rings have shown encouraging efficacy in inhibiting cyclin-dependent kinase activity. This review provides comprehensive data, including structure-activity relationship (SAR), anticancer activity, and kinetics studies of potent compounds. Additionally, molecular docking studies with compounds under clinical trial and patents filed on pyrimidine based CDK inhibitors in cancer treatment are included. This review serves as a valuable resource for further development of CDK kinase inhibitors for cancer treatment, offering insights into their efficacy, specificity, and potential clinical applications.


Subject(s)
Antineoplastic Agents , Cyclin-Dependent Kinases , Neoplasms , Protein Kinase Inhibitors , Pyrimidines , Humans , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Pyrimidines/chemistry , Pyrimidines/pharmacology , Pyrimidines/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy , Cyclin-Dependent Kinases/antagonists & inhibitors , Cyclin-Dependent Kinases/metabolism , Molecular Structure , Structure-Activity Relationship , Cell Proliferation/drug effects , Animals , Drug Screening Assays, Antitumor
13.
J Biomol Struct Dyn ; 42(10): 5053-5071, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38764131

ABSTRACT

The synthesis of two new hexahydroisoquinoline-4-carbonitrile derivatives (3a and 3b) is reported along with spectroscopic data and their crystal structures. In compound 3a, the intramolecular O-H···O hydrogen bond constraints the acetyl and hydroxyl groups to be syn. In the crystal, inversion dimers are generated by C-H···O hydrogen bonds and are connected into layers parallel to (10-1) by additional C-H···O hydrogen bonds. The layers are stacked with Cl···S contacts 0.17 Å less than the sum of the respective van der Waals radii. The conformation of the compound 3b is partially determined by the intramolecular O-H···O hydrogen bond. A puckering analysis of the tetrahydroisoquinoline unit was performed. In the crystal, O-H···O and C-H···O hydrogen bonds together with C-H···π(ring) interactions form layers parallel to (01-1) which pack with normal van der Waals interactions. To understand the binding efficiency and stability of the title molecules, molecular docking, and 100 ns dynamic simulation analyses were performed with CDK5A1. To rationalize their structure-activity relationship(s), a DFT study at the B3LYP/6-311++G** theoretical level was also done. The 3D Hirshfled surfaces were also taken to investigate the crystal packings of both compounds. In addition, their ADMET properties were explored.Communicated by Ramaswamy H. Sarma.


Subject(s)
Hydrogen Bonding , Molecular Docking Simulation , Crystallography, X-Ray , Cyclin-Dependent Kinases/antagonists & inhibitors , Cyclin-Dependent Kinases/chemistry , Cyclin-Dependent Kinases/metabolism , Tetrahydroisoquinolines/chemistry , Tetrahydroisoquinolines/pharmacology , Molecular Conformation , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Models, Molecular , Nitriles/chemistry , Molecular Dynamics Simulation , Molecular Structure , Structure-Activity Relationship , Humans
14.
Sci Rep ; 14(1): 10582, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38719932

ABSTRACT

Thromboembolic events are complications in cancer patients and hypercoagulability has been linked to the tissue factor (TF) pathway, making this an attractive target. Here, we investigated the effects of chemotherapeutics and CDK inhibitors (CDKI) abemaciclib/palbociclib (CDK4/6), THZ-1 (CDK7/12/13), and dinaciclib (CDK1/2/5/9) alone and in combination regimens on TF abundance and coagulation. The human colorectal cancer (CRC) cell line HROC173 was treated with 5-FU or gemcitabine to stimulate TF expression. TF+ cells were sorted, recultured, and re-analyzed. The effect of treatment alone or in combination was assessed by functional assays. Low-dose chemotherapy induced a hypercoagulable state and significantly upregulated TF, even after reculture without treatment. Cells exhibited characteristics of epithelial-mesenchymal transition, including high expression of vimentin and mucin. Dinaciclib and THZ-1 also upregulated TF, while abemaciclib and palbociclib downregulated it. Similar results were observed in coagulation assays. The same anticoagulant activity of abemaciclib was seen after incubation with peripheral immune cells from healthy donors and CRC patients. Abemaciclib reversed 5-FU-induced TF upregulation and prolonged clotting times in second-line treatment. Effects were independent of cytotoxicity, senescence, and p27kip1 induction. TF-antibody blocking experiments confirmed the importance of TF in plasma coagulation, with Factor XII playing a minor role. Short-term abemaciclib counteracts 5-FU-induced hypercoagulation and eventually even prevents thromboembolic events.


Subject(s)
Colonic Neoplasms , Cyclin-Dependent Kinases , Fluorouracil , Thromboplastin , Up-Regulation , Humans , Thromboplastin/metabolism , Thromboplastin/genetics , Cell Line, Tumor , Fluorouracil/pharmacology , Colonic Neoplasms/metabolism , Colonic Neoplasms/drug therapy , Colonic Neoplasms/pathology , Up-Regulation/drug effects , Cyclin-Dependent Kinases/metabolism , Cyclin-Dependent Kinases/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Aminopyridines/pharmacology , Benzimidazoles/pharmacology , Pyridinium Compounds/pharmacology , Cyclic N-Oxides/pharmacology , Indolizines/pharmacology , Epithelial-Mesenchymal Transition/drug effects
15.
J Med Chem ; 67(10): 8161-8171, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38690856

ABSTRACT

The mediator kinases CDK8 and CDK19 control the dynamic transcription of selected genes in response to various signals and have been shown to be hijacked to sustain hyperproliferation by various solid and liquid tumors. CDK8/19 is emerging as a promising anticancer therapeutic target. Here, we report the discovery of compound 12, a novel small molecule CDK8/19 inhibitor. This molecule demonstrated not only decent enzymatic and cellular activities but also remarkable selectivity in CDK and kinome panels. Besides, compound 12 also displayed favorable ADME profiles including low CYP1A2 inhibition, acceptable clearance, and high oral bioavailability in multiple preclinical species. Robust in vivo PD and efficacy studies in mice models further demonstrated its potential use as mono- and combination therapy for the treatment of cancers.


Subject(s)
Antineoplastic Agents , Cyclin-Dependent Kinase 8 , Cyclin-Dependent Kinases , Protein Kinase Inhibitors , Cyclin-Dependent Kinase 8/antagonists & inhibitors , Cyclin-Dependent Kinase 8/metabolism , Humans , Animals , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/chemical synthesis , Cyclin-Dependent Kinases/antagonists & inhibitors , Cyclin-Dependent Kinases/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemical synthesis , Mice , Drug Discovery , Cell Line, Tumor , Structure-Activity Relationship , Cell Proliferation/drug effects , Neoplasms/drug therapy , Rats
16.
Pathol Res Pract ; 258: 155333, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723325

ABSTRACT

Long non-coding RNAs (lncRNAs) are a diverse class of RNA molecules that do not code for proteins but play critical roles in gene regulation. One such role involves the modulation of cell cycle progression and proliferation through interactions with cyclin-dependent kinases (CDKs), key regulators of cell division. Dysregulation of CDK activity is a hallmark of cancer, contributing to uncontrolled cell growth and tumor formation. These lncRNA-CDK interactions are part of a complex network of molecular mechanisms underlying cancer pathogenesis, involving various signaling pathways and regulatory circuits. Understanding the interplay between lncRNAs, CDKs, and cancer biology holds promise for developing novel therapeutic strategies targeting these molecular targets for more effective cancer treatment. Furthermore, targeting CDKs, key cell cycle progression and proliferation regulators, offers another avenue for disrupting cancer pathways and overcoming drug resistance. This can open new possibilities for individualized treatment plans and focused therapeutic interventions.


Subject(s)
Cyclin-Dependent Kinases , Disease Progression , Neoplasms , RNA, Long Noncoding , Humans , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/enzymology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Cyclin-Dependent Kinases/genetics , Cyclin-Dependent Kinases/metabolism , Gene Expression Regulation, Neoplastic , Animals , Signal Transduction/genetics , Cell Proliferation/genetics , Cell Cycle/genetics , Cell Cycle/physiology
17.
Bioorg Chem ; 148: 107456, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38761706

ABSTRACT

The targeting of cyclin-dependent kinase 7 (CDK7) has become a highly desirable therapeutic approach in the field of oncology due to its dual role in regulating essential biological processes, encompassing cell cycle progression and transcriptional control. We have previously identified a highly selective thieno[3,2-d]pyrimidine-based CDK7 inhibitor with demonstrated efficacy and safety in animal model. In this study, we sought to optimize the thieno[3,2-d]pyrimidine core to discover a novel series of CDK7 inhibitors with improved potency and pharmacokinetic (PK) properties. Through extensive structure-activity relationship (SAR) studies, compound 20 has emerged as the lead candidate due to its potent inhibitory activity against CDK7 and remarkable efficacy on MDA-MB-453 cells, a representative triple negative breast cancer (TNBC) cell line. Furthermore, 20 has demonstrated favorable oral bioavailability and exhibited highly desirable pharmacokinetic (PK) properties, making it a promising lead candidate for further structural optimization.


Subject(s)
Antineoplastic Agents , Cyclin-Dependent Kinase-Activating Kinase , Cyclin-Dependent Kinases , Drug Design , Protein Kinase Inhibitors , Pyrimidines , Pyrimidines/chemistry , Pyrimidines/chemical synthesis , Pyrimidines/pharmacology , Pyrimidines/pharmacokinetics , Humans , Structure-Activity Relationship , Cyclin-Dependent Kinases/antagonists & inhibitors , Cyclin-Dependent Kinases/metabolism , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacokinetics , Molecular Structure , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Cell Line, Tumor , Rats
18.
Nature ; 630(8015): 214-221, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38811726

ABSTRACT

The canonical mitotic cell cycle coordinates DNA replication, centriole duplication and cytokinesis to generate two cells from one1. Some cells, such as mammalian trophoblast giant cells, use cell cycle variants like the endocycle to bypass mitosis2. Differentiating multiciliated cells, found in the mammalian airway, brain ventricles and reproductive tract, are post-mitotic but generate hundreds of centrioles, each of which matures into a basal body and nucleates a motile cilium3,4. Several cell cycle regulators have previously been implicated in specific steps of multiciliated cell differentiation5,6. Here we show that differentiating multiciliated cells integrate cell cycle regulators into a new alternative cell cycle, which we refer to as the multiciliation cycle. The multiciliation cycle redeploys many canonical cell cycle regulators, including cyclin-dependent kinases (CDKs) and their cognate cyclins. For example, cyclin D1, CDK4 and CDK6, which are regulators of mitotic G1-to-S progression, are required to initiate multiciliated cell differentiation. The multiciliation cycle amplifies some aspects of the canonical cell cycle, such as centriole synthesis, and blocks others, such as DNA replication. E2F7, a transcriptional regulator of canonical S-to-G2 progression, is expressed at high levels during the multiciliation cycle. In the multiciliation cycle, E2F7 directly dampens the expression of genes encoding DNA replication machinery and terminates the S phase-like gene expression program. Loss of E2F7 causes aberrant acquisition of DNA synthesis in multiciliated cells and dysregulation of multiciliation cycle progression, which disrupts centriole maturation and ciliogenesis. We conclude that multiciliated cells use an alternative cell cycle that orchestrates differentiation instead of controlling proliferation.


Subject(s)
Cell Cycle , Cell Differentiation , Cilia , Animals , Female , Male , Mice , Cell Cycle/genetics , Centrioles/metabolism , Cilia/metabolism , Cyclin-Dependent Kinases/metabolism , Cyclins/metabolism , DNA Replication/genetics , E2F7 Transcription Factor/metabolism , Mice, Inbred C57BL , Mitosis
19.
Poult Sci ; 103(7): 103833, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38810563

ABSTRACT

The family of cell cycle-dependent kinases (CDKs) serves as catalytic subunits within protein kinase complexes, playing a crucial role in cell cycle progression. While the function of CDK proteins in regulating mammalian innate immune responses and virus replication is well-documented, their role in chickens remains unclear. To address this, we cloned several chicken CDKs, specifically CDK6 through CDK10. We observed that CDK6 is widely expressed across various chicken tissues, with localization in the cytoplasm, nucleus, or both in DF-1 cells. In addition, we also found that multiple chicken CDKs negatively regulate IFN-ß signaling induced by chicken MAVS or chicken STING by targeting different steps. Moreover, during infection with infectious bursal disease virus (IBDV), various chicken CDKs, except CDK10, were recruited and co-localized with viral protein VP1. Interestingly, overexpression of CDK6 in chickens significantly enhanced IBDV replication. Conversely, knocking down CDK6 led to a marked increase in IFN-ß production, triggered by chMDA5. Furthermore, targeting endogenous CDK6 with RNA interference substantially reduced IBDV replication. These findings collectively suggest that chicken CDKs, particularly CDK6, act as suppressors of IFN-ß production and play a facilitative role in IBDV replication.


Subject(s)
Avian Proteins , Chickens , Cyclin-Dependent Kinases , Virus Replication , Animals , Chickens/genetics , Avian Proteins/metabolism , Avian Proteins/genetics , Cyclin-Dependent Kinases/metabolism , Cyclin-Dependent Kinases/genetics , Infectious bursal disease virus/physiology , Poultry Diseases/virology , Poultry Diseases/metabolism , Poultry Diseases/genetics , Birnaviridae Infections/veterinary , Birnaviridae Infections/virology , Immunity, Innate
20.
Clin Transl Med ; 14(5): e1678, 2024 May.
Article in English | MEDLINE | ID: mdl-38736108

ABSTRACT

BACKGROUND: Cyclin-dependent kinase 12 (CDK12)-deficient prostate cancer defines a subtype of castration-resistant prostate cancer (CRPC) with a poor prognosis. Current therapy, including PARP inhibitors, shows minimal treatment efficacy for this subtype of CRPC, and the underlying mechanism remains elusive. METHODS: Based on bioinformatics analysis, we evaluated the relationship between CDK12 deficiency and prostate cancer patient's prognosis and treatment resistance. Furthermore, we used CRISPR-Cas9 technology and mass spectrometry-based metabolomic profiling to reveal the metabolic characteristics of CDK12-deficient CRPC. To elucidate the specific mechanisms of CDK12 deficiency-mediated CRPC metabolic reprogramming, we utilized cell RNA-seq profiling and other molecular biology techniques, including cellular reactive oxygen species probes, mitochondrial function assays, ChIP-qPCR and RNA stability analyses, to clarify the role of CDK12 in regulating mitochondrial function and its contribution to ferroptosis. Finally, through in vitro drug sensitivity testing and in vivo experiments in mice, we identified the therapeutic effects of the electron transport chain (ETC) inhibitor IACS-010759 on CDK12-deficient CRPC. RESULTS: CDK12-deficient prostate cancers reprogramme cellular energy metabolism to support their aggressive progression. In particular, CDK12 deficiency enhanced the mitochondrial respiratory chain for electronic transfer and ATP synthesis to create a ferroptosis potential in CRPC cells. However, CDK12 deficiency downregulated ACSL4 expression, which counteracts the lipid oxidation stress, leading to the escape of CRPC cells from ferroptosis. Furthermore, targeting the ETC substantially inhibited the proliferation of CDK12-deficient CRPC cells in vitro and in vivo, suggesting a potential new target for the therapy of CDK12-deficient prostate cancer. CONCLUSIONS: Our findings show that energy and lipid metabolism in CDK12-deficient CRPC work together to drive CRPC progression and provide a metabolic insight into the worse prognosis of CDK12-deficient prostate cancer patients. KEY POINTS: CDK12 deficiency promotes castration-resistant prostate cancer (CRPC) progression by reprogramming cellular metabolism. CDK12 deficiency in CRPC leads to a more active mitochondrial electron transport chain (ETC), ensuring efficient cell energy supply. CDK12 phosphorylates RNA Pol II to ensure the transcription of ACSL4 to regulate ferroptosis. Mitochondrial ETC inhibitors exhibit better selectivity for CDK12-deficient CRPC cells, offering a promising new therapeutic approach for this subtype of CRPC patients.


Subject(s)
Cyclin-Dependent Kinases , Ferroptosis , Prostatic Neoplasms, Castration-Resistant , Animals , Humans , Male , Mice , Cell Line, Tumor , Cyclin-Dependent Kinases/metabolism , Cyclin-Dependent Kinases/genetics , Disease Progression , Ferroptosis/genetics , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Oxadiazoles/pharmacology , Piperidines/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...