Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 608
Filter
1.
J Control Release ; 370: 367-378, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692439

ABSTRACT

Non-alcoholic steatohepatitis (NASH), now known as metabolic dysfunction-associated steatohepatitis (MASH), involves oxidative stress caused by the overproduction of reactive oxygen species (ROS). Small-molecule antioxidants have not been approved for antioxidant chemotherapy because of severe adverse effects that collapse redox homeostasis, even in healthy tissues. To overcome these disadvantages, we have been developing poly(ethylene glycol)-block-poly(cysteine) (PEG-block-PCys)-based self-assembling polymer nanoparticles (NanoCyses), releasing Cys after in vivo degradation by endogenous enzymes, to obtain antioxidant effects without adverse effects. However, a comprehensive investigation of the effects of polymer design on therapeutic outcomes has not yet been conducted to develop our NanoCys system for antioxidant chemotherapy. In this study, we synthesized different poly(L-cysteine) (PCys) chains whose sulfanyl groups were protected by tert-butyl thiol (StBu) and butyryl (Bu) groups to change the reactivity of the side chains, affording NanoCys(SS) and NanoCys(Bu), respectively. To elucidate the importance of the polymer design, these NanoCyses were orally administered to MASH model mice as a model of oxidative stress-related diseases. Consequently, the acyl-protective NanoCys(Bu) significantly suppressed hepatic lipid accumulation and oxidative stress compared to NanoCys(SS). Furthermore, we substantiated that shorter PCys were much better than longer PCys for therapeutic outcomes and the effects related to the liberation properties of Cys from these nanoparticles. Owing to its antioxidant functions, NanoCyses also significantly attenuated hepatic inflammation and fibrosis in the MASH mouse model.


Subject(s)
Antioxidants , Liver , Mice, Inbred C57BL , Nanoparticles , Non-alcoholic Fatty Liver Disease , Polyethylene Glycols , Animals , Polyethylene Glycols/chemistry , Polyethylene Glycols/administration & dosage , Antioxidants/administration & dosage , Antioxidants/pharmacology , Antioxidants/chemistry , Male , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Liver/metabolism , Liver/drug effects , Oxidative Stress/drug effects , Cysteine/chemistry , Cysteine/administration & dosage , Mice , Reactive Oxygen Species/metabolism , Humans , Peptides/administration & dosage , Peptides/chemistry
2.
Poult Sci ; 103(5): 103580, 2024 May.
Article in English | MEDLINE | ID: mdl-38428354

ABSTRACT

Despite the acknowledged significance of nutrition in bone development, effects of methionine (Met) and cysteine (Cys) on bone quality remain under-researched, particularly during Eimeria challenge. We investigated the effects of different supplemental Met to Cys ratios (MCR) on bone quality of broilers under Eimeria challenge. A total of 720 fourteen-day old Cobb500 broilers were allocated into a 5 × 2 factorial arrangement. Five diets with Met and Cys supplemented at MCR of 100:0, 75:25, 50:50, 25:75, and 0:100 were fed to the birds with or without Eimeria challenge. Body composition was measured by dual energy x-ray absorptiometry, and the femur bone characteristics were assessed by microtomography. Data were analyzed by two-way ANOVA and orthogonal polynomial contrast. The results reaffirmed the detrimental effects of Eimeria challenge on bone quality. On 9 d post inoculation (DPI), significant interaction effects were found for whole body bone mineral content (BMC), lean tissue weight, and body weight (P < 0.05); in the nonchallenged group (NCG), these parameters linearly decreased as MCR decreased (P < 0.05). In the challenged group (CG), body weight and lean tissue weight were unaffected by MCR, and BMC linearly increased as MCR decreased (P < 0.05). For the cortical bone of femoral metaphysis on 6 DPI, bone mineral density (BMD) linearly increased as MCR decreased (P < 0.05). Bone volume to tissue volume ratio (BV/TV) in the CG linearly increased as MCR decreased (P < 0.05). On 9 DPI, BMC and TV linearly increased as MCR decreased (P < 0.05) in the NCG. BMD and BV/TV changed quadratically as MCR decreased (P < 0.05). For the trabecular bone of femoral metaphysis on 9 DPI, BV/TV, and trabecular number linearly increased as MCR decreased (P < 0.05) in the NCG. For the femoral diaphysis, BV, TV, BMC on 6 DPI, and BMD on 9 DPI linearly increased as MCR decreased (P < 0.05). In conclusion, this study showed that both Eimeria challenge and varying supplemental MCR could influence bone quality of broilers.


Subject(s)
Absorptiometry, Photon , Animal Feed , Bone Density , Chickens , Coccidiosis , Cysteine , Diet , Dietary Supplements , Eimeria , Methionine , Poultry Diseases , Animals , Chickens/physiology , Eimeria/physiology , Animal Feed/analysis , Methionine/administration & dosage , Methionine/pharmacology , Methionine/analogs & derivatives , Coccidiosis/veterinary , Coccidiosis/parasitology , Absorptiometry, Photon/veterinary , Dietary Supplements/analysis , Diet/veterinary , Bone Density/drug effects , Poultry Diseases/parasitology , Cysteine/pharmacology , Cysteine/administration & dosage , Cysteine/analogs & derivatives , X-Ray Microtomography/veterinary , Male , Dose-Response Relationship, Drug , Femur/drug effects , Random Allocation
5.
Sci Rep ; 11(1): 22469, 2021 11 17.
Article in English | MEDLINE | ID: mdl-34789834

ABSTRACT

Atherosclerosis is a chronic inflammatory disease that may lead to the development of serious cardiovascular diseases. Aged garlic extract (AGE) has been reported to ameliorate atherosclerosis, although its mode of action remains unclear. We found that AGE increased the mRNA or protein levels of arginase1 (Arg1), interleukin-10 (IL-10), CD206 and hypoxia-inducible factor 2α (HIF2α) and decreased that of CD68, HIF1α and inducible nitric oxide synthase in the aorta and spleen of apolipoprotein E knockout mice. We also found that S-1-propenylcysteine (S1PC), a characteristic sulfur compound in AGE, increased the level of IL-10-induced Arg1 mRNA and the extent of M2c-like macrophage polarization in vitro. In addition, S1PC increased the population of M2c-like macrophages, resulting in suppressed the population of M1-like macrophages and decreased lipopolysaccharide-induced production of pro-inflammatory cytokines. These effects were accompanied by prolonged phosphorylation of the IL-10 receptor α (IL-10Rα) and signal transducer and activator of transcription 3 (STAT3) that inhibited the interaction between IL-10Rα and Src homology-2-containing inositol 5'-phosphatase 1 (SHIP1). In addition, administration of S1PC elevated the M2c/M1 macrophage ratio in senescence-accelerated mice. These findings suggest that S1PC may help improve atherosclerosis due to its anti-inflammatory effect to promote IL-10-induced M2c macrophage polarization.


Subject(s)
Cell Polarity/drug effects , Cysteine/analogs & derivatives , Garlic/chemistry , Interleukin-10/pharmacology , Macrophages/metabolism , Plant Extracts/administration & dosage , Receptors, Interleukin-10/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effects , Animals , Atherosclerosis/prevention & control , Cells, Cultured , Cysteine/administration & dosage , Disease Models, Animal , Macrophage Activation/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Knockout, ApoE , Phosphorylation/drug effects , Phytotherapy/methods , Plaque, Atherosclerotic/prevention & control , Recombinant Proteins/pharmacology , Treatment Outcome
6.
Molecules ; 26(11)2021 May 27.
Article in English | MEDLINE | ID: mdl-34071846

ABSTRACT

This study was conducted to determine the potential interaction of aged garlic extract (AGE) with carvedilol (CAR), as well as to investigate the role of S-allyl-l-cysteine (SAC), an active constituent of AGE, in rats with isoproterenol (ISO)-induced myocardial dysfunction. At the end of three weeks of treatment with AGE (2 and 5 mL/kg) or SAC (13.1 and 32.76 mg/kg), either alone or along with CAR (10 mg/kg) in the respective groups of animals, ISO was administered subcutaneously to induce myocardial damage. Myocardial infarction (MI) diagnostic predictor enzymes, lactate dehydrogenase (LDH) and creatinine kinase (CK-MB), were measured in both serum and heart tissue homogenates (HTH). Superoxide dismutase (SOD), catalase, and thiobarbituric acid reactive species (TBARS) were estimated in HTH. When compared with other groups, the combined therapy of high doses of AGE and SAC given alone or together with CAR caused a significant decrease in serum LDH and CK-MB activities. Further, significant rise in the LDH and CK-MB activities in HTH was noticed in the combined groups of AGE and SAC with CAR. It was also observed that both doses of AGE and SAC significantly increased endogenous antioxidants in HTH. Furthermore, histopathological observations corroborated the biochemical findings. The cytoprotective potential of SAC and AGE were dose-dependent, and SAC was more potent than AGE. The protection offered by aged garlic may be attributed to SAC. Overall, the results indicated that a high dose of AGE and its constituent SAC, when combined with carvedilol, has a synergistic effect in preventing morphological and physiological changes in the myocardium during ISO-induced myocardial damage.


Subject(s)
Carvedilol/administration & dosage , Cysteine/analogs & derivatives , Garlic/metabolism , Heart/drug effects , Myocardium/pathology , Plant Extracts/pharmacology , Animals , Antioxidants/chemistry , Catalase/metabolism , Creatine Kinase, MB Form/metabolism , Cysteine/administration & dosage , Female , Hemodynamics , Isoproterenol/chemistry , L-Lactate Dehydrogenase/metabolism , Necrosis , Rats , Rats, Sprague-Dawley , Superoxide Dismutase/metabolism , Thiobarbituric Acid Reactive Substances
7.
Drug Deliv ; 28(1): 1031-1042, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34060389

ABSTRACT

PURPOSE: S-propargyl-cysteine (SPRC), an excellent endogenous hydrogen sulfide (H2S) donor, could elevate H2S levels via the cystathionine γ-lyase (CSE)/H2S pathway both in vitro and in vivo. However, the immediate release of H2S in vivo and daily administration of SPRC potentially limited its clinical use. METHODS: To solve the fore-mentioned problem, in this study, the dendritic mesoporous silica nanoparticles (DMSN) was firstly prepared, and a sustained H2S delivery system consisted of SPRC and DMSN (SPRC@DMSN) was then constructed. Their release profiles, both in vitro and in vivo, were investigated, and their therapeutical effect toward adjuvant-induced arthritis (AIA) rats was also studied. RESULTS: The spherical morphology of DMSN could be observed under scanning Electron Microscope (SEM), and the transmission electron microscope (TEM) images showed a central-radiational pore channel structure of DMSN. DMSN showed excellent SPRC loading capacity and attaining a sustained releasing ability than SPRC both in vitro and in vivo, and the prolonged SPRC releasing could further promote the release of H2S in a sustained manner through CSE/H2S pathway both in vitro and in vivo. Importantly, the SPRC@DMSN showed promising anti-inflammation effect against AIA in rats was also observed. CONCLUSIONS: A sustained H2S releasing donor consisting of SPRC and DMSN was constructed in this study, and this sustained H2S releasing donor might be of good use for the treatment of AIA.


Subject(s)
Cysteine/analogs & derivatives , Hydrogen Sulfide/metabolism , Inflammation/drug therapy , Nanoparticles/chemistry , Silicon Dioxide/chemistry , Animals , Cell Survival , Chemistry, Pharmaceutical , Cystathionine gamma-Lyase/drug effects , Cysteine/administration & dosage , Cysteine/pharmacology , Delayed-Action Preparations , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Carriers/chemistry , Drug Liberation , Inflammation/chemically induced , Macrophages/drug effects , Mice , Particle Size , Random Allocation , Rats , Surface Properties
8.
Sci Rep ; 11(1): 10956, 2021 05 26.
Article in English | MEDLINE | ID: mdl-34040090

ABSTRACT

Triple-negative breast cancer (TNBC) is a highly malignant type of breast cancer and lacks effective therapy. Targeting cysteine-dependence is an emerging strategy to treat the mesenchymal TNBC. However, many TNBC cells are non-mesenchymal and unresponsive to cysteine deprivation. To overcome such resistance, three selective HDAC6 inhibitors (Tubacin, CAY10603, and Tubastatin A), identified by epigenetic compound library screening, can synergize with cysteine deprivation to induce cell death in the non-mesenchymal TNBC. Despite the efficacy of HDAC6 inhibitor, knockout of HDAC6 did not mimic the synthetic lethality induced by its inhibitors, indicating that HDAC6 is not the actual target of HDAC6 inhibitor in this context. Instead, transcriptomic profiling showed that tubacin triggers an extensive gene transcriptional program in combination with erastin, a cysteine transport blocker. Notably, the zinc-related gene response along with an increase of labile zinc was induced in cells by the combination treatment. The disturbance of zinc homeostasis was driven by PKCγ activation, which revealed that the PKCγ signaling pathway is required for HDAC6 inhibitor-mediated synthetic lethality. Overall, our study identifies a novel function of HDAC6 inhibitors that function as potent sensitizers of cysteine deprivation and are capable of abolishing cysteine-independence in non-mesenchymal TNBC.


Subject(s)
Anilides/pharmacology , Carbamates/pharmacology , Cysteine/physiology , Epithelial Cells/drug effects , Histone Deacetylase 6/physiology , Histone Deacetylase Inhibitors/pharmacology , Hydroxamic Acids/pharmacology , Indoles/pharmacology , Neoplasm Proteins/physiology , Oxazoles/pharmacology , Transcription, Genetic/drug effects , Triple Negative Breast Neoplasms/drug therapy , Cell Death/drug effects , Cell Line, Tumor , Cysteine/administration & dosage , Cysteine/deficiency , Enzyme Activation/drug effects , Female , Gene Knockout Techniques , HEK293 Cells , Histone Deacetylase 6/genetics , Homeostasis , Humans , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/genetics , Piperazines/pharmacology , Protein Kinase C/antagonists & inhibitors , Protein Kinase C/physiology , Small Molecule Libraries , Transcriptome , Triple Negative Breast Neoplasms/pathology , Zinc/metabolism
9.
Neurosci Lett ; 755: 135904, 2021 06 11.
Article in English | MEDLINE | ID: mdl-33894332

ABSTRACT

Cranial parasympathetic activation produces vasodilation in the head and neck region, but little is known about its central and peripheral mechanisms. This study was conducted to examine whether external and internal carotid-vasodilation origin sites triggered by chemical stimulation are distributed topographically in the parasympathetic brainstems of anesthetized rats, and to examine the effects of peripheral receptors on vasodilation. Microinjection of the neuromodulator candidate l-cysteine revealed that external and internal carotid vasodilation-triggering sites were distributed non-topographically along the full extent of the parasympathetic parvocellular reticular formation (PcRt). Intravenous injection of a muscarinic blocker and a nitric oxide synthase inhibitor abolished external carotid vasodilation, suggesting the peripheral involvement of muscarinic and nitric oxide receptors. Further work is needed to fully understand the PcRt mechanisms underlying timely and appropriate vasodilation to support various cranial functions.


Subject(s)
Brain Stem/physiology , Carotid Artery, External/physiology , Carotid Artery, Internal/physiology , Parasympathetic Nervous System/physiology , Regional Blood Flow/physiology , Vasodilation/physiology , Animals , Brain Stem/blood supply , Brain Stem/drug effects , Carotid Artery, External/drug effects , Carotid Artery, Internal/drug effects , Cysteine/administration & dosage , Male , Microinjections , Parasympathetic Nervous System/drug effects , Rats , Rats, Wistar , Regional Blood Flow/drug effects , Vasodilation/drug effects
10.
J Am Coll Nutr ; 40(4): 327-332, 2021.
Article in English | MEDLINE | ID: mdl-33596158

ABSTRACT

Objective: Vitamin D deficiency is common in the general population and diabetic patients, and supplementation with vitamin D is widely used to help lower oxidative stress and inflammation. The cytokine storm in SARS-CoV2 infection has been linked with both diabetes and Vitamin D deficiency. This study examined the hypothesis that supplementation with vitamin D, in combination with l-cysteine (LC), is better at reducing oxidative stress and thereby, more effective, at inhibiting the secretion of the pro-inflammatory cytokines, Interleukin-8 (IL-8) and monocyte chemoattractant protein-1 (MCP-1) in U937 monocytes exposed to high glucose concentrations. Methods: U937 monocytes were pretreated with 1,25 (OH)2 vitamin D (VD, 10 nM) or LC (250 µM) or VD + LC for 24 h and then exposed to control or high glucose (HG, 25 mM) for another 24 h. Results: There were significantly greater reactive oxygen species (ROS) levels in monocytes treated with HG than those in controls. Combined supplementation with VD and LC showed a more significant reduction in ROS (46%) in comparison with treatment with LC (19%) or VD (26%) alone in monocytes exposed to HG. Similarly, VD supplementation, together with LC, caused a more significant inhibition in the secretion of IL-8 (36% versus 16%) and MCP-1 (46% versus 26%) in comparison with that of VD (10 nM) alone in high-glucose treated monocytes. Conclusions: These results suggest that combined supplementation with vitamin D and LC has the potential to be more effective than either VD or LC alone in lowering the risk of oxidative stress and inflammation associated with type 2 diabetes or COVID-19 infection. Further, this combined vitamin D with LC/N-acetylcysteine may be a potent alternative therapy for SARS-CoV2 infected subjects. This approach can prevent cellular damage due to cytokine storm in comorbid systemic inflammatory conditions, such as diabetes, obesity, and hypertension.


Subject(s)
COVID-19 Drug Treatment , Cysteine/administration & dosage , Oxidative Stress/drug effects , SARS-CoV-2/immunology , Vitamin D/administration & dosage , COVID-19/immunology , Chemokine CCL2/metabolism , Diabetes Mellitus, Type 2/drug therapy , Dietary Supplements , Drug Therapy, Combination , Glucose/administration & dosage , Humans , Interleukin-8/metabolism , Monocytes/immunology , Monocytes/virology , U937 Cells , Vitamin D Deficiency/drug therapy , Vitamin D Deficiency/immunology , Vitamin D Deficiency/virology
11.
Mol Genet Metab ; 132(2): 146-153, 2021 02.
Article in English | MEDLINE | ID: mdl-33485800

ABSTRACT

TRMU is a nuclear gene crucial for mitochondrial DNA translation by encoding tRNA 5-methylaminomethyl-2-thiouridylate methyltransferase, which thiolates mitochondrial tRNA. Biallelic pathogenic variants in TRMU are associated with transient infantile liver failure. Other less common presentations such as Leigh syndrome, myopathy, and cardiomyopathy have been reported. Recent studies suggested that provision of exogenous L-cysteine or N-acetylcysteine may ameliorate the effects of disease-causing variants and improve the natural history of the disease. Here, we report six infants with biallelic TRMU variants, including four previously unpublished patients, all treated with exogenous cysteine. We highlight the first report of an affected patient undergoing orthotopic liver transplantation, the long-term effects of cysteine supplementation, and the ability of the initial presentation to mimic multiple inborn errors of metabolism. We propose that TRMU deficiency should be suspected in all children presenting with persistent lactic acidosis and hypoglycemia, and that combined N-acetylcysteine and L-cysteine supplementation should be considered prior to molecular diagnosis, as this is a low-risk approach that may increase survival and mitigate the severity of the disease course.


Subject(s)
Leigh Disease/therapy , Liver Failure/therapy , Mitochondrial Proteins/genetics , Protein Biosynthesis , tRNA Methyltransferases/genetics , Acetylcysteine/administration & dosage , Acetylcysteine/metabolism , Acidosis/genetics , Acidosis/metabolism , Cysteine/administration & dosage , Cysteine/metabolism , DNA, Mitochondrial/genetics , Female , Humans , Infant , Leigh Disease/genetics , Leigh Disease/metabolism , Leigh Disease/pathology , Liver Failure/genetics , Liver Failure/metabolism , Liver Failure/pathology , Liver Transplantation/methods , Male , Mitochondria/enzymology , Mitochondrial Proteins/deficiency , RNA, Transfer/genetics , tRNA Methyltransferases/deficiency
12.
Int J Sports Med ; 42(5): 441-447, 2021 May.
Article in English | MEDLINE | ID: mdl-33124012

ABSTRACT

Glutathione is the most abundant cellular antioxidant and regulates redox homeostasis. Healthy individuals with certain antioxidant inadequacies/deficiencies exhibit impairments in physiological functions. The aim was to investigate whether low levels of dietary cysteine intake are associated with a) lower erythrocyte glutathione, b) increased plasma F2-isoprostanes, and c) impaired muscle function. Towards this aim, we recorded the dietary intake of the three amino acids that synthesize glutathione (i. e., glutamic acid, cysteine, and glycine) in forty-one healthy individuals, and subsequently measured erythrocyte glutathione levels. Maximal isometric strength and fatigue index were also assessed using an electronic handgrip dynamometer. Our findings indicate that dietary cysteine intake was positively correlated with glutathione levels (r=0.765, p<0.001). In addition, glutathione levels were negatively correlated with F2-isoprostanes (r=- 0.311, p=0.048). An interesting finding was that glutathione levels and cysteine intake were positively correlated with maximal handgrip strength (r=0.416, p=0.007 and r=0.343, p=0.028, respectively). In conclusion, glutathione concentration is associated with cysteine intake, while adequate cysteine levels were important for optimal redox status and muscle function. This highlights the importance of proper nutritional intake and biochemical screening with the goal of personalized nutrition.


Subject(s)
Cysteine/administration & dosage , Glutathione/blood , Hand Strength , Muscle, Skeletal/physiology , Adult , Eating , Erythrocytes/metabolism , F2-Isoprostanes/blood , Female , Humans , Isometric Contraction , Male , Muscle Fatigue , Oxidative Stress , Young Adult
13.
Biol Pharm Bull ; 43(11): 1776-1784, 2020.
Article in English | MEDLINE | ID: mdl-33132323

ABSTRACT

Two-thirds partial hepatectomy (PHx) was performed in rats, and the differences in effects between S-allylcysteine (SAC) and other sulfur-containing compounds on regeneration of the remaining liver and restoration of the injury were examined. Three days after two-thirds PHx, rats treated with 300 mg/kg/d, per os (p.o.) SAC showed a 1.2-fold increase in liver weight per 100 g body weight compared with saline-treated controls. In contrast, S-methylcysteine (SMC) (300 mg/kg/d, p.o.) or cysteine (Cys) (300 mg/kg/d, p.o.) did not have a regeneration-promoting effect. In the comparison with control rats, the regenerating liver of SAC-treated rats showed a significantly higher 5-bromo-2'-deoxyuridine labeling index on day 1. In contrast, serum alanine aminotransferase activity, which increases following PHx, was significantly inhibited by SAC and SMC (but not Cys) on day 1 after two-thirds PHx. In addition, SAC induced increases in insulin-like growth factor (IGF)-1 and its receptor mRNA expressions at 1 h after two-thirds PHx, and it increased phosphorylation of extracellular signal-regulated kinase (ERK)2 and Akt at 3 h after two-thirds PHx without affecting serum growth hormone levels. These results demonstrate that SAC is a mitogenic effector of normal remnant liver and promotes recuperation of liver function after two-thirds PHx. Moreover, SAC-induced proliferative effects are mediated via increased mRNA expressions of IGF-1 and its receptor and subsequent phosphorylation of ERK2 and Akt.


Subject(s)
Cysteine/analogs & derivatives , Insulin-Like Growth Factor I/genetics , Liver Regeneration/drug effects , Liver/drug effects , Receptor, IGF Type 1/genetics , Animals , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cysteine/administration & dosage , Hepatectomy , Liver/surgery , Liver Regeneration/genetics , Male , Mitogen-Activated Protein Kinase 1/metabolism , Models, Animal , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , RNA, Messenger/metabolism , Rats , Rats, Wistar
14.
Drug Deliv ; 27(1): 1271-1282, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32885688

ABSTRACT

Antibiotic resistance amongst microbial pathogens is a mounting serious issue in researchers and physicians. Various alternatives to overcome the multidrug-resistant bacterial infections are under search, and biofilm growth inhibition is one of them. In this investigation, a polymeric drug delivery system loaded with multi-serratial drugs to improve the delivery of drugs against urinary tract infection causative Serratia marcescens. The chitosan grafted pyromellitic dianhydride - cysteine (CS-g-PMDA-CYS) was conjugated with AuNPs by using the -SH group of CYS and RF (rifampicin) and INH (isoniazid) were loaded in AuNPs-fused CS-g-PMDA-CYS system. Several physicochemical techniques characterized this fabricated AuNPs/RF/INH/CS-g-PMDA-CYS system. The successful encapsulation of RF and INH in AuNPs-fused CS-g-PMDA-CYS polymer had confirmed, and it observed the loading capacity for RF and INH was 9.02% and 13.12%, respectively. The in vitro drug discharge pattern was perceived high in pH 5.5 compared with pH 7.4. The AuNPs/RF/INH/CS-g-PMDA-CYS escalates 74% of Caenorhabditis elegans survival during Serratia marcescens infection by aiming biofilm development and virulence in S. marcescens. Author postulate that the fabricated system is a promising drug carrier and delivery system for inhibition of multidrug-resistant bacterias like S. marcescens.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Drug Delivery Systems/methods , Drug Resistance, Multiple, Bacterial/drug effects , Gold Compounds/administration & dosage , Metal Nanoparticles/administration & dosage , Serratia marcescens/drug effects , Animals , Anti-Bacterial Agents/chemistry , Benzoates/administration & dosage , Benzoates/chemical synthesis , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/microbiology , Caenorhabditis elegans/physiology , Chitosan/administration & dosage , Chitosan/chemical synthesis , Cysteine/administration & dosage , Cysteine/chemical synthesis , Drug Resistance, Multiple, Bacterial/physiology , Gold Compounds/chemical synthesis , Metal Nanoparticles/chemistry , Microbial Sensitivity Tests/methods , Serratia Infections/drug therapy , Serratia marcescens/physiology , Urinary Tract Infections/drug therapy , X-Ray Diffraction/methods
15.
Alcohol Alcohol ; 55(6): 660-666, 2020 Oct 20.
Article in English | MEDLINE | ID: mdl-32808029

ABSTRACT

AIMS: Alcohol-related hangover symptoms: nausea, headache, stress and anxiety cause globally considerable amount of health problems and economic losses. Many of these harmful effects are produced by alcohol and its metabolite, acetaldehyde, which also is a common ingredient in alcohol beverages. The aim of the present study is to investigate the effect of the amino acid L-cysteine on the alcohol/acetaldehyde related aftereffects. METHODS: Voluntary healthy participants were recruited through advertisements. Volunteers had to have experience of hangover and/or headache. The hangover study was randomized, double-blind and placebo-controlled. Nineteen males randomly swallowed placebo and L-cysteine tablets. The alcohol dose was 1.5 g/kg, which was consumed during 3 h. RESULTS: The primary results based on correlational analysis showed that L-cysteine prevents or alleviates hangover, nausea, headache, stress and anxiety. For hangover, nausea and headache the results were apparent with the L-cysteine dose of 1200 mg and for stress and anxiety already with the dose of 600 mg. CONCLUSIONS: L-cysteine would reduce the need of drinking the next day with no or less hangover symptoms: nausea, headache, stress and anxiety. Altogether, these effects of L-cysteine are unique and seem to have a future in preventing or alleviating these harmful symptoms as well as reducing the risk of alcohol addiction.


Subject(s)
Alcoholic Intoxication/drug therapy , Anxiety/drug therapy , Cysteine/administration & dosage , Headache/drug therapy , Nausea/drug therapy , Vitamins/administration & dosage , Adult , Alcoholic Intoxication/complications , Alcoholic Intoxication/diagnosis , Anxiety/diagnosis , Anxiety/etiology , Dietary Supplements , Double-Blind Method , Headache/diagnosis , Headache/etiology , Humans , Male , Middle Aged , Nausea/diagnosis , Nausea/etiology , Young Adult
16.
Nutrients ; 12(6)2020 Jun 21.
Article in English | MEDLINE | ID: mdl-32575864

ABSTRACT

The ESPGHAN/ESPEN/ESPR-Guidelines on pediatric parenteral nutrition (PPN) recommend the administration of the semiessential amino acid (AA) cysteine to preterm neonates due to their biochemical immaturity resulting in an inability to sufficiently synthetize endogenous cysteine. The soluble precursor N-acetylcysteine (NAC) is easily converted into bioavailable cysteine. Its dimer N,N-diacetylcystine (DAC) is almost unconvertable to cysteine when given intravenously resulting in a diminished bioavailability of cysteine. This study aims to understand the triggers and oxidation process of NAC to DAC to evaluate possibilities of reducing DAC formation in standardized PPN. Therefore, different air volumes (21% O2) were injected into the AA compartment of a standardized dual-chamber PPN. O2 concentrations were measured in the AA solution and the headspaces of the primary and secondary packaging. NAC and DAC concentrations were analyzed simultaneously. The analysis showed that O2 is principally delivered from the primary headspace. NAC oxidation exclusively delivers DAC, depending on the O2 amount in the solution and the headspaces. The reaction of NAC to DAC being containable by limiting the O2 concentration, the primary headspace must be minimized during manufacturing, and oxygen absorbers must be added into the secondary packaging for a long-term storage of semipermeable containers.


Subject(s)
Acetylcysteine/administration & dosage , Amino Acids/administration & dosage , Cystine/analogs & derivatives , Drug Stability , Infant, Premature , Parenteral Nutrition Solutions/chemistry , Parenteral Nutrition , Acetylcysteine/metabolism , Amino Acids/metabolism , Biological Availability , Cysteine/administration & dosage , Cysteine/metabolism , Cystine/metabolism , Drug Industry , Drug Storage , Humans , Infant Nutritional Physiological Phenomena , Infant, Newborn , Nutritional Requirements , Oxidation-Reduction , Oxygen
17.
J Alzheimers Dis ; 75(4): 1219-1227, 2020.
Article in English | MEDLINE | ID: mdl-32390631

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is a multifactorial disease, that involves neuroinflammatory processes in which microglial cells respond to "damage signals". The latter includes oligomeric tau, iron, oxidative free radicals, and other molecules that promotes neuroinflammation in the brain, promoting neuronal death and cognitive impairment. Since AD is the first cause of dementia in the elderly, and its pharmacotherapy has limited efficacy, novel treatments are critical to improve the quality of life of AD patients. Multitarget therapy based on nutraceuticals has been proposed as a promising intervention based on evidence from clinical trials. Several studies have shown that epicatechin-derived polyphenols from tea improve cognitive performance; also, the polyphenol molecule N-acetylcysteine (NAC) promotes neuroprotection. OBJECTIVE: To develop an approach for a rational design of leading compounds against AD, based on specific semisynthetic epicatechin and catechin derivatives. METHODS: We evaluated tau aggregation in vitro and neuritogenesis by confocal microscopy in mouse neuroblastoma cells (N2a), after exposing cells to either epicatechin-pyrogallol (EPIC-PYR), catechin-pyrogallol (CAT-PYR), catechin-phloroglucinol (CAT-PhG), and NAC. RESULTS: We found that EPIC-PYR, CAT-PYR, and CAT-PhG inhibit human tau aggregation and significantly increase neuritogenesis in a dose-dependent manner. Interestingly, modification with a phloroglucinol group yielded the most potent molecule of those evaluated, suggesting that the phloroglucinol group may enhance neuroprotective activity of the catechin-derived compounds. Also, as observed with cathechins, NAC promotes neuritogenesis and inhibits tau self-aggregation, possibly through a different pathway. CONCLUSION: EPIC-PYR, CAT-PYR, CAT-PhG, and NAC increased the number of neurites in Na2 cell line and inhibits tau-self aggregation in vitro.


Subject(s)
Alzheimer Disease/drug therapy , Catechin/administration & dosage , Cysteine/administration & dosage , Neurons/drug effects , Neurons/metabolism , Polyphenols/administration & dosage , Alzheimer Disease/metabolism , Animals , Cell Line, Tumor , Drug Discovery , Mice , tau Proteins/metabolism
18.
Poult Sci ; 99(1): 374-384, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32416822

ABSTRACT

Research has shown that methionine+ cysteine (M+C) requirements may be higher when chickens are infected with Eimeria app. In a 4 × 2 factorial design, broilers (11 to 21 D) were fed one of 4 corn-soybean meal-based diets containing either 0.6, 0.8, 0.9, or 1.0% standardized ileal digestible (SID) M+C; on day 14, broilers from each diet were gavaged with either phosphate-buffered saline (PBS) or a commercial coccidiosis vaccine (at 100 × vaccine dose) which provide a mixture of live Eimeria acervulina, Eimeria maxima, and Eimeria tenella oocysts. Growth performance was recorded from day 11 to 21. Plasma and intestinal luminal samples were collected on days 14 and 21. Intestine lesion scores and fecal oocyst counts were conducted on day 21. Regardless of dietary SID M+C levels, compared to PBS gavaged broilers, the Eimeria-challenged broilers had (1) decreased (P < 0.05) body weight gain (BWG), feed intake (FI), and gain-to-feed ratio (G:F); (2) increased (P < 0.05) intestinal lesion scores and fecal oocyst counts; (3) increased (P < 0.05) plasma anti-Eimeria IgG, and intestinal luminal total IgA and anti-Eimeria IgA concentrations; and (4) increased (P < 0.05) levels of duodenum luminal gamma interferon (IFN-γ) and interleukin-10 (IL-10), as well as jejunum and cecum luminal IFN-γ concentrations. Regardless of Eimeria challenge, when compared to 0.6% SID M+C, broilers fed ≥0.8% SID M+C had (1) increased (P < 0.05) BWG, FI, and G:F and (2) increased (P < 0.05) levels of jejunum luminal total IgA. After Eimeria challenge, broilers fed 0.8% SID M+C had increased (P < 0.05) levels of jejunum luminal anti-Eimeria IgA compared to broilers fed diets containing 0.6 and 1.0% SID M+C. Collectively, in 11- to 21-D broilers, the growth suppression caused by Eimeria infection could not be mitigated by further increasing dietary M+C alone ≥0.8%. Further research should investigate interactions between dietary M+C and other nutrients for support of immune function and growth in pathogen-challenged broilers.


Subject(s)
Chickens/immunology , Cysteine/pharmacology , Methionine/pharmacology , Poultry Diseases/parasitology , Animal Feed/analysis , Animals , Antibodies, Protozoan/metabolism , Chickens/growth & development , Coccidiosis/prevention & control , Coccidiosis/veterinary , Cysteine/administration & dosage , Diet/veterinary , Eimeria/physiology , Intestines/immunology , Male , Methionine/administration & dosage , Oocysts , Poultry Diseases/immunology
19.
Int J Pharm ; 583: 119371, 2020 Jun 15.
Article in English | MEDLINE | ID: mdl-32339632

ABSTRACT

AIM: Development of a preactivated thiomer as sprayable excipient for mucoadhesive formulations. METHODS: CG4500 (acrylic acid/acrylamide-methyl propane sulfonic acid copolymer) was thiolated by conjugation with L-cysteine and preactivated by further modification with 2-mercaptonicotinic acid (MNA) in a two-step synthesis and characterized regarding degree of modification and cytotoxicity on Caco-2 cells. The mucoadhesive properties of this novel thiomer were evaluated via rheological synergism, tensile and mucosal residence time studies. Furthermore, the sprayability of the thiomer was evaluated. RESULTS: The newly synthesized derivatives CG4500-SH and CG4500-S-S-MNA showed mean coupling rates of 651 µmol thiol groups and 264 µmol MNA per gram polymer, respectively. Even for the unmodified polymer a rheological synergism was observed with isolated porcine intestinal mucus, which was 2.81-fold higher in case of the preactivated thiomer. Mucoadhesion studies on freshly excised porcine intestinal mucosa confirmed these results via a 2.43-fold higher total work of adhesion and a 2.31-fold higher mucosal residence time of the preactivated thiomer. In sprayability tests it was shown that solutions of the preactivated thiomer could be sprayed in concentrations up to 12% (m/V). CONCLUSION: The novel polymer CG4500-S-S-MNA is a promising sprayable excipient for mucoadhesive formulations.


Subject(s)
Acrylamide , Acrylates , Cysteine , Nicotinic Acids , Polymers , Sulfhydryl Compounds , Sulfonic Acids , Acrylamide/administration & dosage , Acrylamide/chemistry , Acrylates/administration & dosage , Acrylates/chemistry , Adhesiveness , Animals , Caco-2 Cells , Cell Survival/drug effects , Cysteine/administration & dosage , Cysteine/chemistry , Humans , Intestinal Mucosa/chemistry , Mucus/chemistry , Nicotinic Acids/administration & dosage , Nicotinic Acids/chemistry , Polymers/administration & dosage , Polymers/chemistry , Rheology , Sulfhydryl Compounds/administration & dosage , Sulfhydryl Compounds/chemistry , Sulfonic Acids/administration & dosage , Sulfonic Acids/chemistry , Swine
20.
Chem Commun (Camb) ; 56(27): 3919-3922, 2020 Apr 07.
Article in English | MEDLINE | ID: mdl-32149283

ABSTRACT

We design multifunctional CDDP-VPA@ZrMOF-Cys-PEG nanoparticles (CVZP NPs) based on the properties of valproic acid (VPA) that can downregulate the expression of vascular endothelial growth factor (VEGF) to reduce the drug resistance of tumor cells. In vivo experiments confirm that chemotherapy combined with microwave thermal therapy (MWTT) can significantly improve the therapeutic effect of cisplatin-resistant lung cancer.


Subject(s)
Antineoplastic Agents/administration & dosage , Cisplatin/administration & dosage , Cysteine/administration & dosage , Drug Delivery Systems , Lung Neoplasms/drug therapy , Metal-Organic Frameworks/administration & dosage , Nanoparticles/administration & dosage , Valproic Acid/administration & dosage , Zirconium/administration & dosage , Animals , Antineoplastic Agents/chemistry , Cell Line , Cell Survival/drug effects , Cisplatin/chemistry , Cysteine/chemistry , Drug Resistance, Neoplasm , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Male , Metal-Organic Frameworks/chemistry , Mice, Inbred BALB C , Mice, Inbred ICR , Mice, Nude , Nanoparticles/chemistry , Polyethylene Glycols/administration & dosage , Polyethylene Glycols/chemistry , Tumor Burden/drug effects , Valproic Acid/chemistry , Vascular Endothelial Growth Factor A/metabolism , Zirconium/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL