Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.745
Filter
1.
Mol Biol Rep ; 51(1): 841, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39042267

ABSTRACT

BACKGROUND: This study aimed to achieve a dual objective: to compare the frequencies of CYP1A2 rs762551 genotypes between team sport athletes and a control group, and to determine the association between the rs762551 polymorphism and changes in physical performance after a six-week training program among elite basketball players. METHODS: The study encompassed an analysis of 504 individuals, comprising 320 athletes and 184 controls. For the Turkish cohort, DNA was isolated using the buccal swab method, and genotyping was conducted using the KASP technique. Performance assessments included the Yo-Yo IR2 and 30 m sprint tests. For Russian participants, DNA samples were extracted from peripheral blood, a commercial kit was used for DNA extraction, and genotyping of the rs762551 polymorphism was conducted using DNA microarray. RESULT: Notably, a statistically significant linear decline in the prevalence of the CC genotype was observed with ascending levels of athletic achievement within team sports (sub-elite: 18.0%, elite: 8.2%, highly elite: 0%; p = 0.001). Additionally, the CA genotype was the most prevalent genotype in the highly elite group compared to controls (80.0% vs. 45.1%, p = 0.048). Furthermore, statistically significant improvements in Yo-Yo IR2 performance were noted exclusively among basketball players harboring the CA genotype (p = 0.048). CONCLUSIONS: The study's findings indicate that the rs762551 CC genotype is a disadvantage in elite team sports, whereas the CA genotype provides an advantage in basketball performance.


Subject(s)
Athletes , Athletic Performance , Caffeine , Cytochrome P-450 CYP1A2 , Genotype , Polymorphism, Single Nucleotide , Humans , Male , Cytochrome P-450 CYP1A2/genetics , Cytochrome P-450 CYP1A2/metabolism , Athletic Performance/physiology , Caffeine/metabolism , Polymorphism, Single Nucleotide/genetics , Young Adult , Female , Adult , Team Sports , Basketball , Adaptation, Physiological/genetics , Turkey
2.
Org Biomol Chem ; 22(32): 6561-6574, 2024 08 14.
Article in English | MEDLINE | ID: mdl-39082794

ABSTRACT

Vanillin, a key flavor compound found in vanilla beans, is widely used in the food and pharmaceutical industries for its aromatic properties and potential therapeutic benefits. This study presents a comprehensive quantum chemical analysis to elucidate the interaction mechanisms of vanillin with CYP450 enzymes, with a focus on mechanism-based inactivation. Three potential inactivation pathways were evaluated: aldehyde deformylation, methoxy dealkylation, and acetal formation. Aldehyde deformylation was identified as the most energy-efficient, involving the removal of the aldehyde group from vanillin and leading to the formation of benzyne intermediates that could react with the iron porphyrin moiety of CYP450, potentially resulting in enzyme inactivation. Further investigation into the interactions of vanillin with CYP2E1 and CYP1A2 was conducted using molecular docking and molecular dynamics (MD) simulation. The docking analyses supported the findings from DFT studies, wherein vanillin revealed high binding affinities with the studied isozymes. Moreover, vanillin occupied the main binding site in both isozymes, as evidenced by the inclusion of the heme moiety in their binding mechanisms. Employing a 100 ns molecular dynamics simulation, we scrutinized the interaction dynamics between vanillin and the two isozymes of CYP450. The assessment of various MD parameters along with interaction energies revealed that vanillin exhibited stable trajectories and substantial energy stabilization during its interaction with both CYP450 isozymes. These insights can guide future research and ensure the safe application of vanillin, especially in scenarios where it may interact with CYP450 enzymes.


Subject(s)
Benzaldehydes , Molecular Docking Simulation , Molecular Dynamics Simulation , Benzaldehydes/metabolism , Benzaldehydes/chemistry , Food Safety , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/chemistry , Humans , Cytochrome P-450 CYP2E1/metabolism , Cytochrome P-450 CYP2E1/chemistry , Cytochrome P-450 CYP1A2/metabolism , Cytochrome P-450 CYP1A2/chemistry , Metabolic Networks and Pathways , Density Functional Theory
3.
BMC Complement Med Ther ; 24(1): 219, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849824

ABSTRACT

Huanglian Jiedu Decoction (HJD) is a well-known Traditional Chinese Medicine formula that has been used for liver protection in thousands of years. However, the therapeutic effects and mechanisms of HJD in treating drug-induced liver injury (DILI) remain unknown. In this study, a total of 26 genes related to both HJD and DILI were identified, which are corresponding to a total of 41 potential active compounds in HJD. KEGG analysis revealed that Tryptophan metabolism pathway is particularly important. The overlapped genes from KEGG and GO analysis indicated the significance of CYP1A1, CYP1A2, and CYP1B1. Experimental results confirmed that HJD has a protective effect on DILI through Tryptophan metabolism pathway. In addition, the active ingredients Corymbosin, and Moslosooflavone were found to have relative strong intensity in UPLC-Q-TOF-MS/MS analysis, showing interactions with CYP1A1, CYP1A2, and CYP1B1 through molecule docking. These findings could provide insights into the treatment effects of HJD on DILI.


Subject(s)
Chemical and Drug Induced Liver Injury , Drugs, Chinese Herbal , Molecular Docking Simulation , Network Pharmacology , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Chemical and Drug Induced Liver Injury/drug therapy , Humans , Animals , Cytochrome P-450 CYP1A2/metabolism , Cytochrome P-450 CYP1A2/drug effects
4.
BMC Cancer ; 24(1): 728, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877514

ABSTRACT

BACKGROUND: Circular RNA (circRNAs) have been found to play major roles in the progression of colorectal cancer (CRC). However, the functions of circ_0008345 (transcribed by PTK2) in regulating CRC development remain undefined. In this study, we aimed to explore the roles and underlying mechanisms of circ_0008345 in CRC. METHODS: RNase R-treated total cellular RNA was used to verify the circular structure of circ_0008345, and a subcellular fractionation assay was performed to detect the subcellular localization of circ_0008345. RNA pull-down and dual-luciferase assays were used to verify the binding relation between microRNA (miR)-182-5p and circ_0008345 and/or CYP1A2. Colony formation assay, EdU, and Transwell assays were performed to detect the biological behavior of CRC cells in vitro, and CRC cells were injected into mice to observe the tumor formation. m6A immunoprecipitation was used to detect the m6A modification of circ_0008345 in CRC cells. RESULTS: Circ_0008345, upregulated in CRC tissues and cells, was mainly present in the cytoplasm. Circ_0008345 bound to miR-182-5p, and miR-182-5p targeted CYP1A2, an oncogene in CRC. The colony formation, mobility, EdU-positive cell rate in vitro, and tumor growth in mice were inhibited after the knockdown of circ_0008345. However, the suppressing effects of sh-circ_0008345 on CRC and CYP1A2 expression were significantly reversed after further knockdown of miR-182-5p. METTL3 was the m6A modifier mediating circ_0008345 expression, and the suppression of METTL3 reduced the expression of circ_0008345. CONCLUSIONS: METTL3-dependent m6A methylation upregulated circ_0008345, which blocked the inhibitory effect of miR-182-5p on CYP1A2, thereby exacerbating the malignant phenotype of CRC cells.


Subject(s)
Colorectal Neoplasms , Cytochrome P-450 CYP1A2 , Disease Progression , Methyltransferases , MicroRNAs , RNA, Circular , MicroRNAs/genetics , MicroRNAs/metabolism , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Humans , Animals , Mice , Methyltransferases/metabolism , Methyltransferases/genetics , Cytochrome P-450 CYP1A2/genetics , Cytochrome P-450 CYP1A2/metabolism , Gene Expression Regulation, Neoplastic , Cell Proliferation , Cell Line, Tumor , Male , Female , Signal Transduction , Mice, Nude
5.
J Hazard Mater ; 474: 134850, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38850947

ABSTRACT

Titanium dioxide nanoparticles (nTiO2) have been considered a possible carcinogen to humans, but most existing studies have overlooked the role of human enzymes in assessing the genotoxicity of nTiO2. Here, a toxicogenomics-based in vitro genotoxicity assay using a GFP-fused yeast reporter library was employed to elucidate the genotoxic potential and mechanisms of nTiO2. Moreover, two new GFP-fused yeast reporter libraries containing either human CYP1A1 or CYP1A2 genes were constructed by transformation to investigate the potential modulation of nTiO2 genotoxicity in the presence of human CYP enzymes. This study found a lack of appreciable nTiO2 genotoxicity as indicated by the yeast reporter library in the absence of CYP expression but a significantly elevated indication of genotoxicity in either CYP1A1- or CYP1A2-expressing yeast. The intracellular reactive oxygen species (ROS) measurement indicated significantly higher ROS in yeast expressing either enzyme. The detected mitochondrial DNA damage suggested mitochondria as one of the target sites for oxidative damage by nTiO2 in the presence of either one of the CYP enzymes. The results thus indicated that the genotoxicity of nTiO2 was enhanced by human CYP1A1 or CYP1A2 enzyme and was associated with elevated oxidative stress, which suggested that the similar mechanisms could occur in human cells.


Subject(s)
Cytochrome P-450 CYP1A1 , DNA Damage , Mutagenicity Tests , Reactive Oxygen Species , Saccharomyces cerevisiae , Titanium , Humans , Titanium/toxicity , Reactive Oxygen Species/metabolism , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/genetics , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1A1/metabolism , Cytochrome P-450 CYP1A2/genetics , Cytochrome P-450 CYP1A2/metabolism , Mutagens/toxicity , Oxidative Stress/drug effects , Genes, Reporter , Nanoparticles/toxicity , Metal Nanoparticles/toxicity , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism
6.
Toxins (Basel) ; 16(6)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38922153

ABSTRACT

Physiologically based pharmacokinetic (PBPK) models were utilized to investigate potential interactions between aflatoxin B1 (AFB1) and efavirenz (EFV), a non-nucleoside reverse transcriptase inhibitor drug and inducer of several CYP enzymes, including CYP3A4. PBPK simulations were conducted in a North European Caucasian and Black South African population, considering different dosing scenarios. The simulations predicted the impact of EFV on AFB1 metabolism via CYP3A4 and CYP1A2. In vitro experiments using human liver microsomes (HLM) were performed to verify the PBPK predictions for both single- and multiple-dose exposures to EFV. Results showed no significant difference in the formation of AFB1 metabolites when combined with EFV (0.15 µM) compared to AFB1 alone. However, exposure to 5 µM of EFV, mimicking chronic exposure, resulted in increased CYP3A4 activity, affecting metabolite formation. While co-incubation with EFV reduced the formation of certain AFB1 metabolites, other outcomes varied and could not be fully attributed to CYP3A4 induction. Overall, this study provides evidence that EFV, and potentially other CYP1A2/CYP3A4 perpetrators, can impact AFB1 metabolism, leading to altered exposure to toxic metabolites. The results emphasize the importance of considering drug interactions when assessing the risks associated with mycotoxin exposure in individuals undergoing HIV therapy in a European and African context.


Subject(s)
Aflatoxin B1 , Alkynes , Benzoxazines , Cyclopropanes , Drug Interactions , Microsomes, Liver , Models, Biological , Reverse Transcriptase Inhibitors , Aflatoxin B1/pharmacokinetics , Aflatoxin B1/toxicity , Humans , Benzoxazines/pharmacokinetics , Benzoxazines/metabolism , Microsomes, Liver/metabolism , Microsomes, Liver/drug effects , Reverse Transcriptase Inhibitors/pharmacokinetics , Male , Cytochrome P-450 CYP3A/metabolism , Adult , Female , Cytochrome P-450 CYP1A2/metabolism , Middle Aged , Young Adult , White People
7.
CNS Drugs ; 38(7): 571-581, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38836990

ABSTRACT

BACKGROUND AND OBJECTIVES: Clozapine is the medication of choice for treatment-resistant schizophrenia. However, it has a complex metabolism and unexplained interindividual variability. The current work aims to develop a pharmacokinetic model of clozapine and norclozapine in non-smokers and assess the impact of demographic and genetic predictors. METHODS: Healthy volunteers were recruited in a population pharmacokinetic study. Blood samples were collected at 30 min and 1, 2, 3, 5 and 8 h following a single flat dose of clozapine (12.5 mg). The clozapine and norclozapine concentrations were measured via high-performance liquid chromatography-ultraviolet method. A semi-physiological pharmacokinetic model of clozapine and norclozapine was developed using nonlinear mixed-effects modeling. Clinical and genetic predictors were evaluated, including CYP1A2 (rs762551) and ABCB1 (rs2032582), using restriction fragment length polymorphism. RESULTS: A total of 270 samples were collected from 33 participants. The data were best described using a two-compartment model for clozapine and a two-compartment model for norclozapine with first-order absorption and elimination and pre-systemic metabolism. The estimated (relative standard error) clearance of clozapine and norclozapine were 27 L h-1 (31.5 %) and 19.6 L h-1 (30%), respectively. Clozapine clearance was lower in sub-Saharan Africans (n = 4) and higher in Caucasians (n = 9) than Asians (n = 20). Participants with CYP1A2 (rs762551) (n = 18) and ABCB1 (rs2032582) (n = 12) mutant alleles had lower clozapine clearance in the univariate analysis. CONCLUSIONS: This is the first study to develop a semi-physiological pharmacokinetic model of clozapine and norclozapine accounting for the pre-systemic metabolism. Asians required lower doses of clozapine as compared with Caucasians, while clozapine pharmacokinetics in sub-Saharan Africans should be further investigated in larger trials.


Subject(s)
Antipsychotic Agents , Clozapine , Cytochrome P-450 CYP1A2 , Healthy Volunteers , Models, Biological , Clozapine/pharmacokinetics , Clozapine/analogs & derivatives , Clozapine/administration & dosage , Clozapine/blood , Humans , Adult , Male , Antipsychotic Agents/pharmacokinetics , Antipsychotic Agents/administration & dosage , Female , Cytochrome P-450 CYP1A2/genetics , Cytochrome P-450 CYP1A2/metabolism , Young Adult , ATP Binding Cassette Transporter, Subfamily B/genetics , Middle Aged
8.
Basic Clin Pharmacol Toxicol ; 135(2): 148-163, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38887973

ABSTRACT

Human pregnane X receptor (PXR) is critical for regulating the expression of key drug-metabolizing enzymes such as CYP3A and CYP2C. Our recent study revealed that treatment with rodent-specific PXR agonist pregnenolone-16α-carbonitrile (PCN) significantly induced hepatomegaly and promoted liver regeneration after two-thirds partial hepatectomy (PHx) in mice. However, it remains unclear whether PXR activation induces hepatomegaly and liver regeneration and simultaneously promotes metabolic function of the liver. Here, we investigated the metabolism activity of CYP1A2, CYP3A1/2 and CYP2C6/11 during PXR activation-induced liver enlargement and regeneration in rats after cocktail dosing of CYP probe drugs. For PCN-induced hepatomegaly, a notable increase in the metabolic activity of CYP3A1/2 and CYP2C6/11, as evidenced by the plasma exposure of probe substrates and the AUC ratios of the characteristic metabolites to its corresponding probe substrates. The metabolic activity of CYP1A2, CYP3A1/2 and CYP2C6/11 decreased significantly after PHx. However, PCN treatment obviously enhanced the metabolic activity of CYP2C6/11 and CYP3A1/2 in PHx rats. Furthermore, the protein expression levels of CYP3A1/2 and CYP2C6/11 in liver were up-regulated. Taken together, this study demonstrates that PXR activation not only induces hepatomegaly and liver regeneration in rats, but also promotes the protein expression and metabolic activity of the PXR downstream metabolizing enzymes such as CYP3A1/2 and CYP2C6/11 in the body.


Subject(s)
Cytochrome P-450 CYP3A , Hepatomegaly , Liver Regeneration , Liver , Pregnane X Receptor , Pregnenolone Carbonitrile , Animals , Pregnane X Receptor/metabolism , Pregnane X Receptor/genetics , Liver Regeneration/drug effects , Male , Cytochrome P-450 CYP3A/metabolism , Pregnenolone Carbonitrile/pharmacology , Liver/metabolism , Liver/enzymology , Liver/drug effects , Rats , Hepatomegaly/metabolism , Hepatomegaly/pathology , Aryl Hydrocarbon Hydroxylases/metabolism , Aryl Hydrocarbon Hydroxylases/genetics , Cytochrome P450 Family 2/metabolism , Cytochrome P450 Family 2/genetics , Rats, Sprague-Dawley , Cytochrome P-450 CYP1A2/metabolism , Cytochrome P-450 CYP1A2/genetics , Steroid 16-alpha-Hydroxylase/metabolism , Steroid 16-alpha-Hydroxylase/genetics , Steroid 12-alpha-Hydroxylase/metabolism , Steroid 12-alpha-Hydroxylase/genetics , Hepatectomy
9.
Biol Pharm Bull ; 47(6): 1218-1223, 2024.
Article in English | MEDLINE | ID: mdl-38925922

ABSTRACT

Unknown interactions between drugs remain the limiting factor for clinical application of drugs, and the induction and inhibition of drug-metabolizing CYP enzymes are considered the key to examining the drug-drug interaction (DDI). In this study, using human HepaRG cells as an in vitro model system, we analyzed the potential DDI based on the expression levels of CYP3A4 and CYP1A2. Rifampicin and omeprazole, the potent inducers for CYP3A4 and CYP1A2, respectively, induce expression of the corresponding CYP enzymes at both the mRNA and protein levels. We noticed that, in addition to inducing CYP1A2, omeprazole induced CYP3A4 mRNA expression in HepaRG cells. However, unexpectedly, CYP3A4 protein expression levels were not increased after omeprazole treatment. Concurrent administration of rifampicin and omeprazole showed an inhibitory effect of omeprazole on the CYP3A4 protein expression induced by rifampicin, while its mRNA induction remained intact. Cycloheximide chase assay revealed increased CYP3A4 protein degradation in the cells exposed to omeprazole. The data presented here suggest the potential importance of broadening the current DDI examination beyond conventional transcriptional induction and enzyme-activity inhibition tests to include post-translational regulation analysis of CYP enzyme expression.


Subject(s)
Cytochrome P-450 CYP3A , Drug Interactions , Omeprazole , RNA, Messenger , Rifampin , Omeprazole/pharmacology , Humans , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 CYP3A/genetics , Rifampin/pharmacology , RNA, Messenger/metabolism , Cytochrome P-450 CYP3A Inducers/pharmacology , Cytochrome P-450 CYP1A2/genetics , Cytochrome P-450 CYP1A2/metabolism , Cytochrome P-450 CYP1A2/biosynthesis , Cell Line
10.
Drug Metab Dispos ; 52(7): 690-702, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38719744

ABSTRACT

Brepocitinib is an oral once-daily Janus kinase 1 and Tyrosine kinase 2 selective inhibitor currently in development for the treatment of several autoimmune disorders. Mass balance and metabolic profiles were determined using accelerator mass spectrometry in six healthy male participants following a single oral 60 mg dose of 14C-brepocitinib (∼300 nCi). The average mass balance recovery was 96.7% ± 6.3%, with the majority of dose (88.0% ± 8.0%) recovered in urine and 8.7% ± 2.1% of the dose recovered in feces. Absorption of brepocitinib was rapid, with maximal plasma concentrations of total radioactivity and brepocitinib achieved within 0.5 hours after dosing. Circulating radioactivity consisted primarily of brepocitinib (47.8%) and metabolite M1 (37.1%) derived from hydroxylation at the C5' position of the pyrazole ring. Fractional contributions to metabolism via cytochrome P450 enzymes were determined to be 0.77 for CYP3A4/5 and 0.14 for CYP1A2 based on phenotyping studies in human liver microsomes. However, additional clinical studies are required to understand the potential contribution of CYP1A1. Approximately 83% of the dose was eliminated as N-methylpyrazolyl oxidative metabolites, with 52.1% of the dose excreted as M1 alone. Notably, M1 was not observed as a circulating metabolite in earlier metabolic profiling of human plasma from a multiple ascending dose study with unlabeled brepocitinib. Mechanistic studies revealed that M1 was highly unstable in human plasma and phosphate buffer, undergoing chemical oxidation leading to loss of the 5-hydroxy-1-methylpyrazole moiety and formation of aminopyrimidine cleavage product M2. Time-dependent inhibition and trapping studies with M1 yielded insights into the mechanism of this unusual and unexpected instability. SIGNIFICANCE STATEMENT: This study provides a detailed understanding of the disposition and metabolism of brepocitinib, a JAK1/TYK2 inhibitor for atopic dermatitis, in humans as well as characterization of clearance pathways and pharmacokinetics of brepocitinib and its metabolites.


Subject(s)
Protein Kinase Inhibitors , Humans , Male , Adult , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/metabolism , Young Adult , Pyrazoles/pharmacokinetics , Pyrazoles/metabolism , Pyrazoles/blood , Pyrazoles/administration & dosage , Janus Kinase 1/antagonists & inhibitors , Janus Kinase 1/metabolism , Administration, Oral , Cytochrome P-450 CYP3A/metabolism , Healthy Volunteers , Microsomes, Liver/metabolism , Janus Kinase 2/antagonists & inhibitors , Janus Kinase 2/metabolism , Feces/chemistry , Hydroxylation , Cytochrome P-450 CYP1A2/metabolism , Middle Aged
11.
Phytomedicine ; 130: 155760, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38797029

ABSTRACT

BACKGROUND: The Xin-yi-san herbal decoction (XYS) is commonly used to treat patients with allergic rhinitis in Taiwan. Theophylline is primarily oxidized with high affinity by human cytochrome P450 (CYP)1A2, and has a narrow therapeutic index. PURPOSE: This study aimed to investigate the inhibition of human CYP1A2-catalyzed theophylline oxidation (THO) by XYS and its adverse effects in patients. METHODS: Human CYPs were studied in recombinant enzyme systems. The influence of concurrent XYS usage in theophylline-treated patients was retrospectively analyzed. RESULTS: Among the major human hepatic and respiratory CYPs, XYS inhibitors preferentially inhibited CYP1A2 activity, which determined the elimination and side effects of theophylline. Among the herbal components of XYS decoction, Angelicae Dahuricae Radix contained potent THO inhibitors. Furanocoumarin imperatorin was abundant in XYS and Angelicae Dahuricae Radix decoctions, and non-competitively inhibited THO activity with Ki values of 77‒84 nM, higher than those (20‒52 nM) of fluvoxamine, which clinically interacted with theophylline. Compared with imperatorin, the intestinal bacterial metabolite xanthotoxol caused weaker THO inhibition. Consistent with the potency of the inhibitory effects, the docking analysis generated Gold fitness values in the order-fluvoxamine > imperatorin > xanthotoxol. During 2017‒2018, 2.6 % of 201,093 theophylline users consumed XYS. After inverse probability weighting, XYS users had a higher occurrence of undesired effects than non-XYS users; in particular, there was an approximately two-fold higher occurrence of headaches (odds ratio (OR), 2.14; 95 % confidence interval (CI), 1.99‒2.30; p < 0.001) and tachycardia (OR, 1.83; 95 % CI, 1.21‒2.77; p < 0.05). The incidence of irregular heartbeats increased (OR, 1.36; 95 % CI, 1.07‒1.72; p < 0.05) only in the theophylline users who took a high cumulative dose (≥ 24 g) of XYS. However, the mortality in theophylline users concurrently taking XYS was lower than that in non-XYS users (OR, 0.24; 95 % CI, 0.14‒0.40; p < 0.001). CONCLUSION: XYS contains human CYP1A2 inhibitors, and undesirable effects were observed in patients receiving both theophylline and XYS. Further human studies are essential to reduce mortality and to adjust the dosage of theophylline in XYS users.


Subject(s)
Angelica , Cytochrome P-450 CYP1A2 Inhibitors , Cytochrome P-450 CYP1A2 , Drugs, Chinese Herbal , Furocoumarins , Theophylline , Theophylline/pharmacology , Humans , Drugs, Chinese Herbal/pharmacology , Cytochrome P-450 CYP1A2/metabolism , Cytochrome P-450 CYP1A2 Inhibitors/pharmacology , Angelica/chemistry , Furocoumarins/pharmacology , Male , Herb-Drug Interactions , Retrospective Studies , Female , Taiwan , Middle Aged , Adult , Oxidation-Reduction , Rhinitis, Allergic/drug therapy , Rhinitis, Allergic/chemically induced
12.
Basic Clin Pharmacol Toxicol ; 134(6): 805-817, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38599832

ABSTRACT

Clozapine is characterized by a large within- and between-patient variability in its pharmacokinetics, attributed to non-genetic and genetic factors. A cross-sectional analysis of clozapine trough concentration (Clz C0) issued from Tunisian schizophrenic patients was collected and analysed using a nonparametric modelling approach. We assessed the impact of demographic covariates (age, weight and sex), patient's habits (smoking status, alcohol and caffeine intake) and the genetic factors (CYP1A2*1C, CYP1A2*1F and CYP2C19*2 polymorphisms) on each pharmacokinetic parameter. An external validation of this pharmacokinetic model using an independent data set was performed. Fit goodness between observed- and individual-predicted data was evaluated using the mean prediction error (% MPE), the mean absolute prediction error (% MAPE) as a measure of bias, and the root mean squared error (% RMSE) as a measure of precision. Sixty-three CLz C0 values issued from 51 schizophrenic patients were assessed in this study and divided into building and validation groups. CYP1A2*1F polymorphism and smoking status were the only covariates significantly associated with clozapine clearance. Precision parameters were as follows: 1.02%, 0.95% and 22.4%, respectively, for % MPE, % MAPE and % RMSE. We developed and validated an accurate pharmacokinetic model able to predict Clz C0 in Tunisian schizophrenic patients using the two parameters CYP1A2*1F polymorphism and smoking.


Subject(s)
Antipsychotic Agents , Clozapine , Cytochrome P-450 CYP1A2 , Cytochrome P-450 CYP2C19 , Schizophrenia , Humans , Clozapine/pharmacokinetics , Clozapine/blood , Schizophrenia/drug therapy , Schizophrenia/genetics , Male , Female , Tunisia , Cytochrome P-450 CYP1A2/genetics , Cytochrome P-450 CYP1A2/metabolism , Adult , Antipsychotic Agents/pharmacokinetics , Cross-Sectional Studies , Middle Aged , Cytochrome P-450 CYP2C19/genetics , Models, Biological , Smoking , Young Adult , Polymorphism, Genetic
13.
Xenobiotica ; 54(5): 226-232, 2024 May.
Article in English | MEDLINE | ID: mdl-38646717

ABSTRACT

Various cytochrome P450 enzymes (CYPs) that contribute to drug metabolism are expressed in the skin. However, variation among individuals in CYP expression profiles is not well-understood.To investigate CYPs related to the metabolism of transdermal preparations in Japan, multiple skin tissue specimens of individuals of Japanese descent were prepared, and the mRNA expression levels of CYP1A2, CYP3A4, and CYP3A5 were measured. Associations between the expression patterns of these CYPs and body mass index (BMI) were also investigated.There were considerable individual differences in epidermal CYP1A2 mRNA expression levels, and CYP1A2 showed a weak positive correlation with CYP3A4 mRNA expression levels. In contrast to previous results for other organs, epidermal CYP3A4 mRNA expression levels showed a weak positive correlation with BMI.CYP3A4 in the epidermis may have been locally enhanced as a defence mechanism against xenobiotics in response to impaired barrier function. These differences in mRNA expression in the skin may affect the transdermal absorption of drugs, such as lidocaine and fentanyl, which are metabolised by multiple overlapping CYPs.Our study provides new insights into drug metabolism in the skin. These results are valuable for predicting drug effects and transdermal drug transfer rates in Japanese patients.


Subject(s)
Cytochrome P-450 CYP3A , Epidermis , RNA, Messenger , Humans , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 CYP3A/genetics , RNA, Messenger/metabolism , RNA, Messenger/genetics , Epidermis/metabolism , Japan , Cytochrome P-450 CYP1A2/metabolism , Cytochrome P-450 CYP1A2/genetics , Male , Female , Asian People , Middle Aged , Adult , Body Mass Index , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/genetics , East Asian People
14.
Pathol Res Pract ; 257: 155290, 2024 May.
Article in English | MEDLINE | ID: mdl-38640781

ABSTRACT

The intricate relationship between smoking and the effects of the antiplatelet drug clopidogrel has been termed the "smoker's paradox". This paradox details the enhanced efficacy of clopidogrel in smokers compared to non-smokers. This review begins with an exploration of the proposed mechanisms of the smoker's paradox, particularly drawing attention to the induction of cytochrome P450 (CYP) isoenzymes via tobacco smoke, specifically the enzymes CYP1A2 and CYP2C19. Moreover, an investigation of the effects of genetic variability on the smoker's paradox was undertaken from both clinical and molecular perspectives, delving into the effects of ethnicity and genetic polymorphisms. The intriguing role of CYP1A2 genotypes and the response to clopidogrel in smoking and non-smoking populations was examined conferring insight into the individuality rather than universality of the smoker's paradox. CYP1A2 induction is hypothesised to elucidate the potency of smoking in exerting a counteracting effect in those taking clopidogrel who possess CYP2C19 loss of function polymorphisms. Furthermore, we assess the comparative efficacies of clopidogrel and other antiplatelet agents, namely prasugrel and ticagrelor. Studies indicated that prasugrel and ticagrelor provided a more consistent effect and further reduced platelet reactivity compared to clopidogrel within both smoking and non-smoking populations. Personalised dosing was another focus of the review considering patient comorbidities, genetic makeup, and smoking status with the objective of improving the antiplatelet response of those taking clopidogrel. In summation, this review provides insight into multiple areas of research concerning clopidogrel and the smoker's paradox taking into account proposed mechanisms, genetics, other antiplatelet agents, and personalised dosing.


Subject(s)
Clopidogrel , Platelet Aggregation Inhibitors , Smoking , Humans , Clopidogrel/therapeutic use , Platelet Aggregation Inhibitors/therapeutic use , Platelet Aggregation Inhibitors/pharmacology , Smoking/adverse effects , Cytochrome P-450 CYP2C19/genetics , Cytochrome P-450 CYP2C19/metabolism , Smokers , Cytochrome P-450 CYP1A2/genetics , Cytochrome P-450 CYP1A2/metabolism
15.
Drug Metab Dispos ; 52(6): 555-564, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38565301

ABSTRACT

Cytochrome P450 1A2 (CYP1A2) is a known tumor suppressor in hepatocellular carcinoma (HCC), but its expression is repressed in HCC and the underlying mechanism is unclear. In this study, we investigated the epigenetic mechanisms of CYP1A2 repression and potential therapeutic implications. In HCC tumor tissues, the methylation rates of CYP1A2 CpG island (CGI) and DNA methyltransferase (DNMT) 3A protein levels were significantly higher, and there was a clear negative correlation between DNMT3A and CYP1A2 protein expression. Knockdown of DNMT3A by siRNA significantly increased CYP1A2 expression in HCC cells. Additionally, treating HCC cells with decitabine (DAC) resulted in a dose-dependent upregulation of CYP1A2 expression by reducing the methylation level of CYP1A2 CGI. Furthermore, we observed a decreased enrichment of H3K27Ac in the promoter region of CYP1A2 in HCC tissues. Treatment with the trichostatin A (TSA) restored CYP1A2 expression in HCC cells by increasing H3K27Ac levels in the CYP1A2 promoter region. Importantly, combination treatment of sorafenib with DAC or TSA resulted in a leftward shift of the dose-response curve, lower IC50 values, and reduced colony numbers in HCC cells. Our findings suggest that hypermethylation of the CGI at the promoter, mediated by the high expression of DNMT3A, and hypoacetylation of H3K27 in the CYP1A2 promoter region, leads to CYP1A2 repression in HCC. Epigenetic drugs DAC and TSA increase HCC cell sensitivity to sorafenib by restoring CYP1A2 expression. Our study provides new insights into the epigenetic regulation of CYP1A2 in HCC and highlights the potential of epigenetic drugs as a therapeutic approach for HCC. SIGNIFICANCE STATEMENT: This study marks the first exploration of the epigenetic mechanisms underlying cytochrome P450 (CYP) 1A2 suppression in hepatocellular carcinoma (HCC). Our findings reveal that heightened DNA methyltransferase expression induces hypermethylation of the CpG island at the promoter, coupled with diminished H3K27Ac levels, resulting in the repression of CYP1A2 in HCC. The use of epigenetic drugs such as decitabine and trichostatin A emerges as a novel therapeutic avenue, demonstrating their potential to restore CYP1A2 expression and enhance sorafenib sensitivity in HCC cells.


Subject(s)
Carcinoma, Hepatocellular , Cytochrome P-450 CYP1A2 , DNA Methylation , Epigenesis, Genetic , Liver Neoplasms , Sorafenib , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Humans , Sorafenib/pharmacology , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Epigenesis, Genetic/drug effects , Epigenesis, Genetic/genetics , DNA Methylation/drug effects , Cell Line, Tumor , Cytochrome P-450 CYP1A2/genetics , Cytochrome P-450 CYP1A2/metabolism , DNA Methyltransferase 3A , Antineoplastic Agents/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , Decitabine/pharmacology , CpG Islands/genetics , Hydroxamic Acids/pharmacology , Promoter Regions, Genetic/genetics , Promoter Regions, Genetic/drug effects
16.
Eur J Drug Metab Pharmacokinet ; 49(3): 367-381, 2024 May.
Article in English | MEDLINE | ID: mdl-38554232

ABSTRACT

BACKGROUND AND OBJECTIVE: Abrocitinib is an oral small-molecule Janus kinase (JAK)-1 inhibitor approved for the treatment of moderate-to-severe atopic dermatitis. In vitro studies indicated that abrocitinib is a weak time-dependent inhibitor of cytochrome P450 (CYP) 2C19/3A and a weak inducer of CYP1A2/2B6/2C19/3A. To assess the potential effect of abrocitinib on concomitant medications, drug-drug interaction (DDI) studies were conducted for abrocitinib with sensitive probe substrates of these CYP enzymes. The impact of abrocitinib on hormonal oral contraceptives (ethinyl estradiol and levonorgestrel), as substrates of CYP3A and important concomitant medications for female patients, was also evaluated. METHODS: Three Phase 1 DDI studies were performed to assess the impact of abrocitinib 200 mg once daily (QD) on the probe substrates of: (1) 1A2 (caffeine), 2B6 (efavirenz) and 2C19 (omeprazole) in a cocktail study; (2) 3A (midazolam); and (3) 3A (oral contraceptives). RESULTS: After multiple doses of abrocitinib 200 mg QD, there is a lack of effect on the pharmacokinetics of midazolam, efavirenz and contraceptives. Abrocitinib increased the area under the concentration time curve from 0 to infinity (AUCinf) and the maximum concentration (Cmax) of omeprazole by approximately 189 and 134%, respectively. Abrocitinib increased the AUCinf of caffeine by 40% with lack of effect on Cmax. CONCLUSIONS: Based on the study results, abrocitinib is a moderate inhibitor of CYP2C19. Caution should be exercised when using abrocitinib concomitantly with narrow therapeutic index medicines that are primarily metabolized by CYP2C19 enzyme. Abrocitinib is a mild inhibitor of CYP1A2; however, the impact is not clinically relevant, and no general dose adjustment is recommended for CYP1A2 substrates. Abrocitinib does not inhibit CYP3A or induce CYP1A2/2B6/2C19/3A and does not affect the pharmacokinetics of contraceptives. CLINICAL TRIALS REGISTRATION: ClinicalTrials.gov registration IDs: NCT03647670, NCT05067439, NCT03662516.


Subject(s)
Drug Interactions , Pyrimidines , Sulfonamides , Humans , Female , Adult , Young Adult , Pyrimidines/pharmacokinetics , Pyrimidines/administration & dosage , Cytochrome P-450 CYP1A2/metabolism , Male , Ethinyl Estradiol/pharmacokinetics , Healthy Volunteers , Contraceptives, Oral, Hormonal/pharmacokinetics , Cytochrome P-450 CYP2C19/metabolism , Levonorgestrel/pharmacokinetics , Levonorgestrel/administration & dosage , Contraceptives, Oral, Combined/pharmacokinetics , Contraceptives, Oral, Combined/administration & dosage , Middle Aged , Area Under Curve , Drug Combinations
17.
Reprod Sci ; 31(8): 2234-2245, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38499949

ABSTRACT

Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders in women. This study aimed to investigate the therapeutic effects and mechanism of Jujuboside A on PCOS using a dehydroepiandrosterone (DHEA)-induced PCOS mouse model. Estrogen and androgen homeostasis was evaluated in serum from both clinical samples and PCOS mice. The stages of the estrous cycle were determined based on vaginal cytology. The ovarian morphology was observed by stained with hematoxylin and eosin. Moreover, we analyzed protein expression of cytochrome P450 1A1 (CYP1A1), cytochrome P450 1A2 (CYP1A2) and aryl hydrocarbon receptor (AhR) in ovary and KGN cells. Molecular docking, immunofluorescence, and luciferase assay were performed to confirm the activation of AhR by Jujuboside A. Jujuboside A effectively alleviated the disturbance of estrogen homeostasis and restored ovarian function, leading to an improvement in the occurrence and progression of PCOS. Furthermore, the protective effect of JuA against PCOS was dependent on increased CYP1A2 levels regulated by AhR. Our findings suggest that Jujuboside A improves estrogen disorders and may be a potential therapeutic agent for the treatment of PCOS.


Subject(s)
Cytochrome P-450 CYP1A2 , Estrogens , Polycystic Ovary Syndrome , Receptors, Aryl Hydrocarbon , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/drug therapy , Polycystic Ovary Syndrome/chemically induced , Polycystic Ovary Syndrome/pathology , Female , Receptors, Aryl Hydrocarbon/metabolism , Animals , Humans , Estrogens/pharmacology , Estrogens/metabolism , Mice , Cytochrome P-450 CYP1A2/metabolism , Cytochrome P-450 CYP1A1/metabolism , Ovary/drug effects , Ovary/metabolism , Ovary/pathology , Basic Helix-Loop-Helix Transcription Factors/metabolism , Disease Models, Animal , Adult
18.
Environ Pollut ; 345: 123514, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38346634

ABSTRACT

N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-Q) is an ozonation product of the rubber antioxidant N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD). 6PPD-Q has recently been detected in various environmental media, which may enter the human body via inhalation and skin contact pathways. However, the human metabolism of 6PPD-Q has remained unknown. This study investigated the in vitro Cytochrome P450-mediated metabolism of 6PPD-Q in human and rat liver microsomes (HLMs and RLMs). 6PPD-Q was significantly metabolized at lower concentrations but slowed at high concentrations. The intrinsic clearance (CLint) of 6PPD-Q was 21.10 and 18.58 µL min-1 mg-1 protein of HLMs and RLMs, respectively, suggesting low metabolic ability compared with other reported pollutants. Seven metabolites and one intermediate were identified, and metabolites were predicted immunotoxic or mutagenic toxicity. Mono- and di-oxygenation reactions were the main phase I in vitro metabolic pathways. Enzyme inhibition experiments and molecular docking techniques were further used to reveal the metabolic mechanism. CYP1A2, 3A4, and 2C19, especially CYP1A2, play critical roles in 6PPD-Q metabolism in HLMs, whereas 6PPD-Q is extensively metabolized in RLMs. Our study is the first to demonstrate the in vitro metabolic profile of 6PPD-Q in HLMs and RLMs. The results will significantly contribute to future human health management targeting the emerging pollutant 6PPD-Q.


Subject(s)
Cytochrome P-450 CYP1A2 , Microsomes, Liver , Phenylenediamines , Humans , Rats , Animals , Cytochrome P-450 CYP1A2/metabolism , Microsomes, Liver/metabolism , Molecular Docking Simulation , Cytochrome P-450 Enzyme System/metabolism , Quinones , Kinetics
19.
Adv Healthc Mater ; 13(12): e2303699, 2024 05.
Article in English | MEDLINE | ID: mdl-38277695

ABSTRACT

Artificial cells are engineered units with cell-like functions for different purposes including acting as supportive elements for mammalian cells. Artificial cells with minimal liver-like function are made of alginate and equipped with metalloporphyrins that mimic the enzyme activity of a member of the cytochrome P450 family namely CYP1A2. The artificial cells are employed to enhance the dealkylation activity within 3D bioprinted structures composed of HepG2 cells and these artificial cells. This enhancement is monitored through the conversion of resorufin ethyl ether to resorufin. HepG2 cell aggregates are 3D bioprinted using an alginate/gelatin methacryloyl ink, resulting in the successful proliferation of the HepG2 cells. The composite ink made of an alginate/gelatin liquid phase with an increasing amount of artificial cells is characterized. The CYP1A2-like activity of artificial cells is preserved over at least 35 days, where 6 nM resorufin is produced in 8 h. Composite inks made of artificial cells and HepG2 cell aggregates in a liquid phase are used for 3D bioprinting. The HepG2 cells proliferate over 35 days, and the structure has boosted CYP1A2 activity. The integration of artificial cells and their living counterparts into larger 3D semi-synthetic tissues is a step towards exploring bottom-up synthetic biology in tissue engineering.


Subject(s)
Bioprinting , Cytochrome P-450 CYP1A2 , Printing, Three-Dimensional , Humans , Hep G2 Cells , Bioprinting/methods , Cytochrome P-450 CYP1A2/metabolism , Alginates/chemistry , Gelatin/chemistry , Tissue Engineering/methods , Cell Proliferation/drug effects , Metalloporphyrins/chemistry , Metalloporphyrins/pharmacology
20.
Molecules ; 29(2)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38276571

ABSTRACT

Human cytochrome P450 enzymes (CYPs) are critical for the metabolism of small-molecule pharmaceuticals (drugs). As such, the prediction of drug metabolism by and drug inhibition of CYP activity is an important component of the drug discovery and design process. Relative to the availability of a wide range of experimental atomic-resolution CYP structures, the development of structure-based CYP activity models has been limited. To better characterize the role of CYP conformational fluctuations in CYP activity, we perform multiple microsecond-scale all-atom explicit-solvent molecular dynamics (MD) simulations on three CYP isoforms, 1A2, 2D6, and 3A4, which together account for the majority of CYP-mediated drug metabolism. The MD simulations employ a variety of positional restraints, ranging from keeping all CYP atoms close to their experimentally determined coordinates to allowing full flexibility. We find that, with full flexibility, large fluctuations in the CYP binding sites correlate with efficient water exchange from these buried binding sites. This is especially true for 1A2, which, when restrained to its crystallographic conformation, is unable to exchange water between the binding site and bulk solvent. These findings imply that, in addition to crystal structures, a representative ensemble of conformational states ought to be included when developing structure-based CYP activity models.


Subject(s)
Cytochrome P-450 Enzyme System , Water , Humans , Water/metabolism , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 CYP1A2/metabolism , Binding Sites , Solvents , Microsomes, Liver/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL