Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.529
1.
Nat Commun ; 15(1): 5211, 2024 Jun 18.
Article En | MEDLINE | ID: mdl-38890314

Photosystem II (PSII) catalyzes water oxidation and plastoquinone reduction by utilizing light energy. It is highly susceptible to photodamage under high-light conditions and the damaged PSII needs to be restored through a process known as the PSII repair cycle. The detailed molecular mechanism underlying the PSII repair process remains mostly elusive. Here, we report biochemical and structural features of a PSII-repair intermediate complex, likely arrested at an early stage of the PSII repair process in the green alga Chlamydomonas reinhardtii. The complex contains three protein factors associated with a damaged PSII core, namely Thylakoid Enriched Factor 14 (TEF14), Photosystem II Repair Factor 1 (PRF1), and Photosystem II Repair Factor 2 (PRF2). TEF14, PRF1 and PRF2 may facilitate the release of the manganese-stabilizing protein PsbO, disassembly of peripheral light-harvesting complexes from PSII and blockage of the QB site, respectively. Moreover, an α-tocopherol quinone molecule is located adjacent to the heme group of cytochrome b559, potentially fulfilling a photoprotective role by preventing the generation of reactive oxygen species.


Chlamydomonas reinhardtii , Photosystem II Protein Complex , Photosystem II Protein Complex/metabolism , Chlamydomonas reinhardtii/metabolism , Chlamydomonas reinhardtii/genetics , Thylakoids/metabolism , Light-Harvesting Protein Complexes/metabolism , Light-Harvesting Protein Complexes/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Cytochrome b Group/metabolism , Cytochrome b Group/genetics , Oxidation-Reduction , Reactive Oxygen Species/metabolism , Light
2.
Biochim Biophys Acta Bioenerg ; 1865(3): 149045, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38614453

Cytochrome bo3 quinol oxidase belongs to the heme­copper-oxidoreductase (HCO) superfamily, which is part of the respiratory chain and essential for cell survival. While the reaction mechanism of cyt bo3 has been studied extensively over the last decades, specific details about its substrate binding and product release have remained unelucidated due to the lack of structural information. Here, we report a 2.8 Å cryo-electron microscopy structure of cyt bo3 from Escherichia coli assembled in peptidiscs. Our structural model shows a conformation for amino acids 1-41 of subunit I different from all previously published structures while the remaining parts of this enzyme are similar. Our new conformation shows a "U-shape" assembly in contrast to the transmembrane helix, named "TM0", in other reported structural models. However, TM0 blocks ubiquinone-8 (reaction product) release, suggesting that other cyt bo3 conformations should exist. Our structural model presents experimental evidence for an "open" conformation to facilitate substrate/product exchange. This work helps further understand the reaction cycle of this oxidase, which could be a benefit for potential drug/antibiotic design for health science.


Cryoelectron Microscopy , Cytochrome b Group , Escherichia coli Proteins , Escherichia coli , Ubiquinone , Ubiquinone/analogs & derivatives , Ubiquinone/metabolism , Ubiquinone/chemistry , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/ultrastructure , Escherichia coli/enzymology , Cytochrome b Group/chemistry , Cytochrome b Group/metabolism , Protein Conformation , Models, Molecular , Cytochromes/chemistry , Cytochromes/metabolism
3.
Angew Chem Int Ed Engl ; 63(16): e202401379, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38407997

Ferritins are multimeric cage-forming proteins that play a crucial role in cellular iron homeostasis. All H-chain-type ferritins harbour a diiron site, the ferroxidase centre, at the centre of a 4 α-helical bundle, but bacterioferritins are unique in also binding 12 hemes per 24 meric assembly. The ferroxidase centre is known to be required for the rapid oxidation of Fe2+ during deposition of an immobilised ferric mineral core within the protein's hollow interior. In contrast, the heme of bacterioferritin is required for the efficient reduction of the mineral core during iron release, but has little effect on the rate of either oxidation or mineralisation of iron. Thus, the current view is that these two cofactors function in iron uptake and release, respectively, with no functional overlap. However, rapid electron transfer between the heme and ferroxidase centre of bacterioferritin from Escherichia coli was recently demonstrated, suggesting that the two cofactors may be functionally connected. Here we report absorbance and (magnetic) circular dichroism spectroscopies, together with in vitro assays of iron-release kinetics, which demonstrate that the ferroxidase centre plays an important role in the reductive mobilisation of the bacterioferritin mineral core, which is dependent on the heme-ferroxidase centre electron transfer pathway.


Ceruloplasmin , Iron , Iron/chemistry , Ceruloplasmin/chemistry , Escherichia coli/metabolism , Ferritins/chemistry , Bacterial Proteins/metabolism , Cytochrome b Group/chemistry , Minerals , Oxidation-Reduction , Heme/metabolism
4.
Int J Mol Sci ; 25(2)2024 Jan 20.
Article En | MEDLINE | ID: mdl-38279276

The terminal oxidases of bacterial aerobic respiratory chains are redox-active electrogenic enzymes that catalyze the four-electron reduction of O2 to 2H2O taking out electrons from quinol or cytochrome c. Living bacteria often deal with carbon monoxide (CO) which can act as both a signaling molecule and a poison. Bacterial terminal oxidases contain hemes; therefore, they are potential targets for CO. However, our knowledge of this issue is limited and contradictory. Here, we investigated the effect of CO on the cell growth and aerobic respiration of three different Escherichia coli mutants, each expressing only one terminal quinol oxidase: cytochrome bd-I, cytochrome bd-II, or cytochrome bo3. We found that following the addition of CO to bd-I-only cells, a minimal effect on growth was observed, whereas the growth of both bd-II-only and bo3-only strains was severely impaired. Consistently, the degree of resistance of aerobic respiration of bd-I-only cells to CO is high, as opposed to high CO sensitivity displayed by bd-II-only and bo3-only cells consuming O2. Such a difference between the oxidases in sensitivity to CO was also observed with isolated membranes of the mutants. Accordingly, O2 consumption of wild-type cells showed relatively low CO sensitivity under conditions favoring the expression of a bd-type oxidase.


Escherichia coli Proteins , Escherichia coli , Carbon Monoxide/pharmacology , Carbon Monoxide/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Cytochrome b Group/genetics , Cytochrome b Group/metabolism , Electron Transport Chain Complex Proteins/genetics , Electron Transport Chain Complex Proteins/metabolism , Cytochromes/genetics , Cytochromes/metabolism , Oxidation-Reduction , Oxidoreductases/genetics , Oxidoreductases/metabolism , Respiration
5.
PLoS One ; 18(12): e0291564, 2023.
Article En | MEDLINE | ID: mdl-38039324

Cytochrome b561 (cytb561) proteins comprise a family of transmembrane oxidoreductases that transfer single electrons across a membrane. Most eukaryotic species, including insects, possess multiple cytb561 homologs. To learn more about this protein family in insects, we carried out a bioinformatics-based investigation of cytb561 family members from nine species representing eight insect orders. We performed a phylogenetic analysis to classify insect cytb561 ortholog groups. We then conducted sequence analyses and analyzed protein models to predict structural elements that may impact the biological functions and localization of these proteins, with a focus on possible ferric reductase activity. Our study revealed three ortholog groups, designated CG1275, Nemy, and CG8399, and a fourth group of less-conserved genes. We found that CG1275 and Nemy proteins are similar to a human ferric reductase, duodenal cytochrome b561 (Dcytb), and have many conserved amino acid residues that function in substrate binding in Dcytb. Notably, CG1275 and Nemy proteins contain a conserved histidine and other residues that play a role in ferric ion reduction by Dcytb. Nemy proteins were distinguished by a novel cysteine-rich cytoplasmic loop sequence. CG8399 orthologs are similar to a putative ferric reductase in humans, stromal cell-derived receptor 2. Like other members of the CYBDOM class of cytb561 proteins, these proteins contain reeler, DOMON, and cytb561 domains. Drosophila melanogaster CG8399 is the only insect cytb561 with known ferric reductase activity. Our investigation of the DOMON domain in CG8399 proteins revealed a probable heme-binding site and a possible site for ferric reduction. The fourth group includes a subgroup of proteins with a conserved "KXXXXKXH" non-cytoplasmic loop motif that may be a substrate binding site and is present in a potential ferric reductase, human tumor suppressor cytochrome b561. This study provides a foundation for future investigations of the biological functions of cytb561 genes in insects.


Drosophila melanogaster , Oxidoreductases , Animals , Humans , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Phylogeny , Oxidoreductases/metabolism , Cytochrome b Group/genetics , Cytochrome b Group/metabolism , Iron/metabolism
6.
Biochemistry (Mosc) ; 88(10): 1504-1512, 2023 Oct.
Article En | MEDLINE | ID: mdl-38105020

An overview of current notions on the mechanism of generation of a transmembrane electric potential difference (Δψ) during the catalytic cycle of a bd-type triheme terminal quinol oxidase is presented in this work. It is suggested that the main contribution to Δψ formation is made by the movement of H+ across the membrane along the intra-protein hydrophilic proton-conducting pathway from the cytoplasm to the active site for oxygen reduction of this bacterial enzyme.


Cytochrome b Group , Escherichia coli Proteins , Membrane Potentials , Cytochrome b Group/metabolism , Escherichia coli Proteins/metabolism , Electron Transport Chain Complex Proteins/metabolism , Cytochromes/metabolism , Oxidation-Reduction
7.
J Inorg Biochem ; 247: 112341, 2023 10.
Article En | MEDLINE | ID: mdl-37515940

Carbon monoxide (CO) plays a multifaceted role in the physiology of organisms, from poison to signaling molecule. Heme proteins, including terminal oxidases, are plausible CO targets. Three quinol oxidases terminate the branched aerobic respiratory chain of Escherichia coli. These are the heme­copper cytochrome bo3 and two copper-lacking bd-type cytochromes, bd-I and bd-II. All three enzymes generate a proton motive force during the four-electron oxygen reduction reaction that is used for ATP production. The bd-type oxidases also contribute to mechanisms of bacterial defense against various types of stresses. Here we report that in E. coli cells, at the enzyme concentrations tested, cytochrome bd-I is much more resistant to inhibition by CO than cytochrome bd-II and cytochrome bo3. The apparent half-maximal inhibitory concentration values, IC50, for inhibition of O2 consumption of the membrane-bound bd-II and bo3 oxidases by CO at ~150 µM O2 were estimated to be 187.1 ± 11.1 and 183.3 ± 13.5 µM CO, respectively. Under the same conditions, the maximum inhibition observed with the membrane-bound cytochrome bd-I was 20 ± 10% at ~200 µM CO.


Escherichia coli Proteins , Escherichia coli , Escherichia coli/metabolism , Carbon Monoxide/pharmacology , Carbon Monoxide/metabolism , Copper/metabolism , Escherichia coli Proteins/metabolism , Cytochrome b Group , Electron Transport Chain Complex Proteins/metabolism , Cytochromes/metabolism , Oxidoreductases/metabolism , Oxidation-Reduction
8.
Sci Rep ; 13(1): 12226, 2023 07 28.
Article En | MEDLINE | ID: mdl-37507428

Bacterial energy metabolism has become a promising target for next-generation tuberculosis chemotherapy. One strategy to hamper ATP production is to inhibit the respiratory oxidases. The respiratory chain of Mycobacterium tuberculosis comprises a cytochrome bcc:aa3 and a cytochrome bd ubiquinol oxidase that require a combined approach to block their activity. A quinazoline-type compound called ND-011992 has previously been reported to ineffectively inhibit bd oxidases, but to act bactericidal in combination with inhibitors of cytochrome bcc:aa3 oxidase. Due to the structural similarity of ND-011992 to quinazoline-type inhibitors of respiratory complex I, we suspected that this compound is also capable of blocking other respiratory chain complexes. Here, we synthesized ND-011992 and a bromine derivative to study their effect on the respiratory chain complexes of Escherichia coli. And indeed, ND-011992 was found to inhibit respiratory complex I and bo3 oxidase in addition to bd-I and bd-II oxidases. The IC50 values are all in the low micromolar range, with inhibition of complex I providing the lowest value with an IC50 of 0.12 µM. Thus, ND-011992 acts on both, quinone reductases and quinol oxidases and could be very well suited to regulate the activity of the entire respiratory chain.


Escherichia coli Proteins , Quinone Reductases , Hydroquinones/pharmacology , Hydroquinones/metabolism , Electron Transport Complex I/metabolism , Quinone Reductases/metabolism , Oxidoreductases/metabolism , Electron Transport Complex IV/metabolism , Cytochromes/metabolism , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Cytochrome b Group/metabolism
9.
Inorg Chem ; 62(10): 4066-4075, 2023 Mar 13.
Article En | MEDLINE | ID: mdl-36857027

The cytochrome bd oxygen reductase catalyzes the four-electron reduction of dioxygen to two water molecules. The structure of this enzyme reveals three heme molecules in the active site, which differs from that of heme-copper cytochrome c oxidase. The quantum chemical cluster approach was used to uncover the reaction mechanism of this intriguing metalloenzyme. The calculations suggested that a proton-coupled electron transfer reduction occurs first to generate a ferrous heme b595. This is followed by the dioxygen binding at the heme d center coupled with an outer-sphere electron transfer from the ferrous heme b595 to the dioxygen moiety, affording a ferric ion superoxide intermediate. A second proton-coupled electron transfer produces a heme d ferric hydroperoxide, which undergoes efficient O-O bond cleavage facilitated by an outer-sphere electron transfer from the ferrous heme b595 to the O-O σ* orbital and an inner-sphere proton transfer from the heme d hydroxyl group to the leaving hydroxide. The synergistic benefits of the two types of hemes rationalize the highly efficient oxygen reduction repertoire for the multi-heme-dependent cytochrome bd oxygen reductase family.


Escherichia coli Proteins , Oxidoreductases , Oxidoreductases/chemistry , Oxygen/chemistry , Protons , Electrons , Cytochrome b Group/metabolism , Escherichia coli Proteins/chemistry , Electron Transport Chain Complex Proteins/chemistry , Electron Transport Chain Complex Proteins/metabolism , Cytochromes/chemistry , Oxidation-Reduction , Heme/chemistry , Iron
10.
J Biol Chem ; 299(3): 102968, 2023 03.
Article En | MEDLINE | ID: mdl-36736898

Photosystem II (PSII), the water:plastoquinone oxidoreductase of oxygenic photosynthesis, contains a heme b559 iron whose axial ligands are provided by histidine residues from the α (PsbE) and ß (PsbF) subunits. PSII assembly depends on accessory proteins that facilitate the step-wise association of its protein and pigment components into a functional complex, a process that is challenging to study due to the low accumulation of assembly intermediates. Here, we examined the putative role of the iron[1Fe-0S]-containing protein rubredoxin 1 (RBD1) as an assembly factor for cytochrome b559, using the RBD1-lacking 2pac mutant from Chlamydomonas reinhardtii, in which the accumulation of PSII was rescued by the inactivation of the thylakoid membrane FtsH protease. To this end, we constructed the double mutant 2pac ftsh1-1, which harbored PSII dimers that sustained its photoautotrophic growth. We purified PSII from the 2pac ftsh1-1 background and found that α and ß cytochrome b559 subunits are still present and coordinate heme b559 as in the WT. Interestingly, immunoblot analysis of dark- and low light-grown 2pac ftsh1-1 showed the accumulation of a 23-kDa fragment of the D1 protein, a marker typically associated with structural changes resulting from photodamage of PSII. Its cleavage occurs in the vicinity of a nonheme iron which binds to PSII on its electron acceptor side. Altogether, our findings demonstrate that RBD1 is not required for heme b559 assembly and point to a role for RBD1 in promoting the proper folding of D1, possibly via delivery or reduction of the nonheme iron during PSII assembly.


Chlamydomonas reinhardtii , Cytochrome b Group , Photosystem II Protein Complex , Rubredoxins , Cytochrome b Group/genetics , Cytochrome b Group/metabolism , Heme/metabolism , Iron/metabolism , Photosystem II Protein Complex/genetics , Photosystem II Protein Complex/metabolism , Rubredoxins/metabolism , Chlamydomonas reinhardtii/genetics , Chlamydomonas reinhardtii/metabolism
11.
Cell Death Dis ; 14(1): 1, 2023 01 02.
Article En | MEDLINE | ID: mdl-36593242

DEAD box helicase 17 (DDX17) has been reported to be involved in the initiation and development of several cancers. However, the functional role and mechanisms of DDX17 in colorectal cancer (CRC) malignant progression and metastasis remain unclear. Here, we reported that DDX17 expression was increased in CRC tissues compared with noncancerous mucosa tissues and further upregulated in CRC liver metastasis compared with patient-paired primary tumors. High levels of DDX17 were significantly correlated with aggressive phenotypes and worse clinical outcomes in CRC patients. Ectopic expression of DDX17 promoted cell migration and invasion in vitro and in vivo, while the opposite results were obtained in DDX17-deficient CRC cells. We identified miR-149-3p as a potential downstream miRNA of DDX17 through RNA sequencing analysis, and miR-149-3p displayed a suppressive effect on the metastatic potential of CRC cells. We demonstrated that CYBRD1 (a ferric reductase that contributes to dietary iron absorption) was a direct target of miR-149-3p and that miR-149-3p was required for DDX17-mediated regulation of CYBRD1 expression. Moreover, DDX17 contributed to the metastasis and epithelial to mesenchymal transition (EMT) of CRC cells via downregulation of miR-149-3p, which resulted in increased CYBRD1 expression. In conclusion, our findings not only highlight the significance of DDX17 in the aggressive development and prognosis of CRC patients, but also reveal a novel mechanism underlying DDX17-mediated CRC cell metastasis and EMT progression through manipulation of the miR-149-3p/CYBRD1 pathway.


Colorectal Neoplasms , Cytochrome b Group , DEAD-box RNA Helicases , MicroRNAs , Humans , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Colorectal Neoplasms/pathology , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Down-Regulation , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplasm Metastasis , Cytochrome b Group/genetics , Cytochrome b Group/metabolism
12.
Biochim Biophys Acta Bioenerg ; 1864(2): 148952, 2023 04 01.
Article En | MEDLINE | ID: mdl-36535430

Escherichia coli contains two cytochrome bd oxidases, bd-I and bd-II. The structure of both enzymes is highly similar, but they exhibit subtle differences such as the accessibility of the active site through a putative proton channel. Here, we demonstrate that the duroquinol:dioxygen oxidoreductase activity of bd-I increased with alkaline pH, whereas bd-II showed a broad activity maximum around pH 7. Likewise, the pH dependence of NO release from the reduced active site, an essential property of bd oxidases, differed between the two oxidases as detected by UV/vis spectroscopy. Both findings may be attributed to differences in the proton channel leading to the active site heme d. The channel comprises a titratable residue (Asp58B in bd-I and Glu58B in bd-II). Conservative mutations at this position drastically altered NO release demonstrating its contribution to the process.


Escherichia coli Proteins , Oxidoreductases , Oxidoreductases/metabolism , Escherichia coli , Cytochromes/chemistry , Protons , Escherichia coli Proteins/metabolism , Cytochrome b Group/genetics , Electron Transport Chain Complex Proteins/metabolism , Electron Transport Complex IV , Hydrogen-Ion Concentration
13.
FEBS Lett ; 597(4): 547-556, 2023 02.
Article En | MEDLINE | ID: mdl-36460943

Cytochrome bd-I from Escherichia coli is a terminal oxidase in the respiratory chain that plays an important role under stress conditions. Cytochrome bd-I was thought to consist of the major subunits CydA and CydB plus the small CydX subunit. Recent high-resolution structures of cytochrome bd-I demonstrated the presence of an additional subunit, CydH/CydY (called CydH here), the function of which is unclear. In this report, we show that in the absence of CydH, cytochrome bd-I is catalytically active, can sustain bacterial growth and displays haem spectra and susceptibility for haem-binding inhibitors comparable to the wild-type enzyme. Removal of CydH did not elicit catalase activity of cytochrome bd-I in our experimental system. Taken together, in the absence of the CydH subunit cytochrome bd-I retained key enzymatic properties.


Escherichia coli Proteins , Escherichia coli , Cytochrome b Group/genetics , Cytochrome b Group/chemistry , Cytochromes/genetics , Cytochromes/chemistry , Electron Transport Chain Complex Proteins/genetics , Electron Transport Chain Complex Proteins/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Heme
14.
Eur J Med Chem ; 245(Pt 1): 114896, 2023 Jan 05.
Article En | MEDLINE | ID: mdl-36370551

The cytochrome bcc-aa3 oxidase (Cyt-bcc) of Mycobacterium tuberculosis (Mtb) is a promising anti-tuberculosis target. However, when Cyt-bcc is inhibited, cytochrome bd terminal oxidase (Cyt-bd) can still maintain the activity of the respiratory chain and drive ATP synthesis. Through virtual screening and biological validation, we discovered two FDA-approved drugs, ivacaftor and roquinimex, exhibited moderate binding affinity to Cyt-bd. Structural modifications of them led to 1-hydroxy-2-methylquinolin-4(1H)-one derivatives as potent new Cyt-bd inhibitors. Compound 8d binds to Cyt-bd with a Kd value of 4.17 µM and inhibits the growth of the Cyt-bcc knock-out strain (ΔqcrCAB, Cyt-bd+) with a MIC value of 6.25 µM. The combination of 8d with the Cyt-bcc inhibitor Q203 completely inhibited oxygen consumption of the wild-type strain and the inverted-membrane vesicles expressing M. tuberculosis Cyt-bd (ΔcydAB::MtbCydAB+). Our study provides a promising starting point for the development of novel dual chemotherapies for tuberculosis.


Antitubercular Agents , Cytochrome b Group , Cytochrome d Group , Mycobacterium tuberculosis , Oxidoreductases , Humans , Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/enzymology , Oxidoreductases/antagonists & inhibitors , Tuberculosis/drug therapy , Cytochrome b Group/antagonists & inhibitors , Cytochrome d Group/antagonists & inhibitors
15.
Biotechnol Adv ; 61: 108057, 2022 12.
Article En | MEDLINE | ID: mdl-36328189

Bacterioferritin (Bfr) is a subfamily of ferritin protein family. Bfrs are composed of 24 identical subunits and self-assemble into 4-3-2-fold symmetric cage-like structure with the incorporation of 12 heme groups into twelve 2-fold symmetric binding sites between subunits. Bfr protein cage has an outer diameter of ∼12 nm and interior cavity diameter of ∼8 nm with a total of 62 pores to connect the interior cavity with the bulk solution outside the protein nanocage. In vivo, the interior cavity of Bfr can store up to ∼2700 iron atoms in the ferrihydrite-like mineral. Recent years, more and more Bfr structures have been solved, which elucidated more details about the ferroxidase center, the catalytic mechanism, the possible channels used by iron ions to access the interior cavity, the electron transfer pathway involved in the iron redox cycle, and the molecular function of the heme group. The preliminary applications of both mammalian and bacterial ferritins in drug delivery, imaging diagnosis, and nanoparticle vaccine make Bfr exploration uniquely attractive for researchers from a broad range of research fields because Bfr has advantages over ferritins in controlling the self-assembly and redesigning the subunit. In this article, we outline the structure of Bfr, review the recent progress in the molecular mechanism of Bfr to store and release iron, and focus on the self-assembly and genetic modification of Bfr nanocage. Based on the comparison between Bfr and other ferritin family members, we further discuss the potential applications of Bfr. We expect that both fundamental and applied researches on Bfr will attract broad interest in protein nanocage design, nanomedicine, precise therapy, nanoparticle vaccine, bionanotechnology, bionanoelectronics, and so on.


Cytochrome b Group , Ferritins , Animals , Iron , Heme , Mammals
16.
Biochemistry ; 61(19): 2063-2072, 2022 10 04.
Article En | MEDLINE | ID: mdl-36106943

Metals can play key roles in stabilizing protein structures, but ensuring their proper incorporation is a challenge when a metalloprotein is overexpressed in a non-native cellular environment. Here, we have used computational protein design tools to redesign cytochrome b562 (cyt b562), which relies on the binding of its heme cofactor to achieve its proper fold, into a stable, heme-free protein. The resulting protein, ApoCyt, features only four mutations and no metal-ligand or covalent bonds, yet displays improved stability over cyt b562. Mutagenesis studies and X-ray crystal structures reveal that the increase in stability is due to the computationally prescribed mutations, which stabilize the protein fold through a combination of hydrophobic packing interactions, hydrogen bonds, and cation-π interactions. Upon installation of the relevant mutations, ApoCyt is capable of assembling into previously reported, cytochrome-based trimeric and tetrameric assemblies, demonstrating that ApoCyt retains the structure and assembly properties of cyt b562. The successful design of ApoCyt therefore enables further functional diversification of cytochrome-based assemblies and demonstrates that structural metal cofactors can be replaced by a small number of well-designed, non-covalent interactions.


Hemeproteins , Metalloproteins , Cytochrome b Group/chemistry , Cytochromes b , Heme/chemistry , Ligands
17.
Biochemistry (Mosc) ; 87(8): 720-730, 2022 Aug.
Article En | MEDLINE | ID: mdl-36171653

Cytochrome bd-II is one of the three terminal quinol oxidases of the aerobic respiratory chain of Escherichia coli. Preparations of the detergent-solubilized untagged bd-II oxidase isolated from the bacterium were shown to scavenge hydrogen peroxide (H2O2) with high rate producing molecular oxygen (O2). Addition of H2O2 to the same buffer that does not contain enzyme or contains thermally denatured cytochrome bd-II does not lead to any O2 production. The latter observation rules out involvement of adventitious transition metals bound to the protein. The H2O2-induced O2 production is not susceptible to inhibition by N-ethylmaleimide (the sulfhydryl binding compound), antimycin A (the compound that binds specifically to a quinol binding site), and CO (diatomic gas that binds specifically to the reduced heme d). However, O2 formation is inhibited by cyanide (IC50 = 4.5 ± 0.5 µM) and azide. Addition of H2O2 in the presence of dithiothreitol and ubiquinone-1 does not inactivate cytochrome bd-II and apparently does not affect the O2 reductase activity of the enzyme. The ability of cytochrome bd-II to detoxify H2O2 could play a role in bacterial physiology by conferring resistance to the peroxide-mediated stress.


Bacterial Outer Membrane Proteins , Escherichia coli Proteins , Escherichia coli , Antimycin A/metabolism , Azides/metabolism , Bacterial Outer Membrane Proteins/metabolism , Cyanides/metabolism , Cytochrome b Group/metabolism , Cytochromes/metabolism , Detergents , Dithiothreitol/metabolism , Electron Transport Chain Complex Proteins/metabolism , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Ethylmaleimide/metabolism , Hydrogen Peroxide/metabolism , Hydroquinones/metabolism , Oxidation-Reduction , Oxidoreductases/metabolism , Oxygen/metabolism , Ubiquinone/metabolism
18.
FEBS Lett ; 596(18): 2418-2424, 2022 09.
Article En | MEDLINE | ID: mdl-36029102

The reduction of oxygen to water is crucial to life and a central metabolic process. To fulfil this task, prokaryotes use among other enzymes cytochrome bd oxidases (Cyt bds) that also play an important role in bacterial virulence and antibiotic resistance. To fight microbial infections by pathogens, an in-depth understanding of the enzyme mechanism is required. Here, we combine bioinformatics, mutagenesis, enzyme kinetics and FTIR spectroscopy to demonstrate that proton delivery to the active site contributes to the rate limiting steps in Cyt bd-I and involves Asp58 of subunit CydB. Our findings reveal a previously unknown catalytic function of subunit CydB in the reaction of Cyt bd-I.


Escherichia coli Proteins , Escherichia coli , Cytochrome b Group/genetics , Cytochrome b Group/metabolism , Cytochromes/chemistry , Electron Transport Chain Complex Proteins/metabolism , Electron Transport Complex IV/metabolism , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Oxidoreductases/metabolism , Oxygen/metabolism , Protons , Water/metabolism
19.
Mol Biol (Mosk) ; 56(4): 619-627, 2022.
Article Ru | MEDLINE | ID: mdl-35964318

In cells of Escherichia coli, terminal oxidase bd-I encoded by the cydAB gene catalyzes the reduction of O2 to water using hydroquinone as an electron donor. In addition to the cydAB operon, two other genes, cydC and cydD, encoding the heterodimeric ATP-binding cassette-type transporter are essential for the assembly of cytochrome bd-I. It was shown that inactivation of cytochrome bd-I by the introduction of cydB or cydD deletions into the E. coli chromosome leads to supersensitivity of the bacteria to antibiotics of the quinolone and beta-lactam classes. The sensitivity of these mutants to antibiotics is partially suppressed by introduction of a constitutively expressed gene katG under the control of the Ptet promoter into their genome. The increased level of hydrogen sulfide resulting from the introduction of the mstA gene, encoding 3-mercaptopyruvate sulfurtransferase, under the control of the Ptet promoter, leads to the same effect. These data demonstrate the important role of cytochrome bd-I in the defense of bacteria from oxidative stress and bactericidal antibiotics.


Escherichia coli Proteins , Quinolones , ATP-Binding Cassette Transporters/genetics , Anti-Bacterial Agents/pharmacology , Cytochrome b Group , Cytochromes/genetics , Cytochromes/metabolism , Electron Transport Chain Complex Proteins , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Oxidoreductases/genetics , beta-Lactams
20.
Nanoscale ; 14(34): 12322-12331, 2022 Sep 02.
Article En | MEDLINE | ID: mdl-35969005

The thermal and chemical stability of 24mer ferritins has led to attempts to exploit their naturally occurring nanoscale (8 nm) internal cavities for biotechnological applications. An area of increasing interest is the encapsulation of molecules either for medical or biocatalysis applications. Encapsulation requires ferritin dissociation, typically induced using high temperature or acidic conditions (pH ≥ 2), which generally precludes the inclusion of fragile cargo such as proteins or peptide fragments. Here we demonstrate that minimizing salt concentration combined with adjusting the pH to ≤8.5 (i.e. low proton/metal ion concentration) reversibly shifts the naturally occurring equilibrium between dimeric and 24meric assemblies of Escherichia coli bacterioferritin (Bfr) in favour of the disassembled form. Interconversion between the different oligomeric forms of Bfr is sufficiently slow under these conditions to allow the use of size exclusion chromatography to obtain wild type protein in the purely dimeric and 24meric forms. This control over association state was exploited to bind heme at natural sites that are not accessible in the assembled protein. The potential for biotechnological applications was demonstrated by the encapsulation of a small, acidic [3Fe-4S] cluster-containing ferredoxin within the Bfr internal cavity. The capture of ∼4-6 negatively charged ferredoxin molecules per cage indicates that charge complementarity with the inner protein surface is not an essential determinant of successful encapsulation.


Cytochrome b Group , Ferredoxins , Bacterial Proteins/chemistry , Cytochrome b Group/chemistry , Cytochrome b Group/metabolism , Escherichia coli/metabolism , Ferredoxins/metabolism , Ferritins/chemistry
...