ABSTRACT
The Tropical Indo-Pacific (TIP) includes about two thirds of the world's tropical oceans and harbors an enormous number of marine species. The distributions of those species within the region is affected by habitat discontinuities and oceanographic features. As well as many smaller ones, the TIP contains seven large recognized biogeographic barriers that separate the Red Sea and Indian Ocean, the Indian from the Pacific Ocean, the central and eastern Pacific, the Hawaiian archipelago, the Marquesas and Easter Islands. We examined the genetic structuring of populations of Cirrhitichthys oxycephalus, a small cryptic species of reef fish, across its geographic range, which spans the longitudinal limits of the TIP. We assessed geographic variation in the mitochondrial cytb gene and the nuclear RAG1 gene, using 166 samples collected in 46 localities from the western to eastern edges of the TIP. Sequences from cytb show three well-structured groups that are separated by large genetic distances (1.58-2.96%): two in the Tropical Eastern Pacific (TEP), one at Clipperton Atoll another occupying the rest of that region and the third that ranges across the remainder of the TIP, from the central Pacific to the Red Sea and South Africa. These results indicate that the ~4,000 km wide Eastern Pacific Barrier between the central and eastern Pacific is an efficient barrier separating the two main groups. Further, the ~950 km of open ocean that isolates Clipperton Atoll from the rest of the TEP is also an effective barrier. Contrary to many other cases, various major and minor barriers from the Central Indo-Pacific to the Red Sea are not effective against dispersal by C. oxycephalus, although this species has not colonized the Hawiian islands and Easter Island. The nuclear gene partially supports the genetic structure evident in cytb, although all haplotypes are geographically mixed.
Subject(s)
Genetic Variation , Animals , Pacific Ocean , Genetic Variation/genetics , Indian Ocean , Cytochromes b/genetics , Coral Reefs , Phylogeny , PhylogeographyABSTRACT
An outbreak of Psoroptes sp.-caused mange was detected in a llama herd of Larcas, Jujuy province, Argentina. Infested llamas showed alopecia, erythema, hyperpigmentation, hyperkeratosis, and inflammation of the ear pinnae, as well as crusts and serous, serosanguineous, or purulent drainage with unpleasant smell in the external ear canal. Microscopic evaluation of skin scrapings revealed 0.5- to 0.7-mm-long acari identified as Psoroptes sp. based on their morphology. Histology showed a typical allergic reaction with perivascular to periadnexal mixed inflammatory infiltrate. Phylogenetic tree analysis showed that the cytochrome c oxidase subunit I gene sequences analyzed from the sampled acari clustered into a single P. ovis clade including sequences isolated from rabbits and bighorn sheep, with P. natalensis as a sister taxon that infested bighorn sheep from the USA. Phylogenetic analysis of cytochrome b sequences showed three well-supported clades, one of which contained the sequences of the Larcas llamas and US bighorn sheep isolates. This is the first report on P. ovis infestation of llamas raised in their original location. Investigations on mange etiological agents acting on South American camelids and their distribution are necessary to implement control strategies to mitigate the negative impacts of these parasitic infections.
Subject(s)
Camelids, New World , Mite Infestations , Phylogeny , Psoroptidae , Animals , Camelids, New World/parasitology , Mite Infestations/veterinary , Mite Infestations/parasitology , Mite Infestations/epidemiology , Psoroptidae/genetics , Psoroptidae/classification , Argentina/epidemiology , Electron Transport Complex IV/genetics , Cytochromes b/genetics , Disease Outbreaks/veterinary , Sequence Analysis, DNAABSTRACT
Introduction. El Alférez, a village in Los Montes de María (Bolívar, Colombia) and a macro-focus of leishmaniasis, recorded its first case in 2018, evidencing changes in the distribution and eco-epidemiology of the disease, although interactions between vectors and local fauna remain unknown. Objective. To evaluate the diversity of sandflies and their blood meal sources in the community of El Alférez in the municipality of El Carmen de Bolívar (Bolívar, Colombia). Materials and methods. In 2018, sandflies were collected using LED-based light traps in domestic, peridomestic, and sylvatic ecotopes and identified at the species level. Multiplex polymerase chain reaction targeting the mitochondrial cytochrome B gene was used to analyze blood from the digestive tract. Results. Lutzomyia evansi was the most abundant species (71.85%; n = 485/675), followed by Lu. panamensis, Lu. gomezi, Lu. trinidadensis, Lu. dubitans, Lu. abonnenci, and Lu.aclydifera. Twenty-five percent of the species had blood meals from Canis familiaris (36.00%; n = 9/25), Ovis aries (36.00%; n=9:/25), Bos taurus (24.00%; n = 6/25), Sus scrofa (20.00%; n = 5/25), and Homo sapiens (8.00%; n = 2/25). Lutzomyia evansi registered the highest feeding frequency (68.00%; n = 17/25), predominantly on a single (44.00%; n = 11/25) or multiple species (24.00%; n = 6/25). Conclusion. Results indicate a eclectic feeding behavior in Lu. evansi, implying potential reservoir hosts for Leishmania spp. and increasing transmission risk. This study is a first step towards understanding the diversity of mammalian blood sources used by sandflies, that may be crucial for vector identification and formulation of effective control measures.
Introducción. En 2018, en la vereda El Alférez de Los Montes de María (Bolívar, Colombia), un macrofoco de leishmaniasis, se reportó el primer caso y se evidenciaron cambios en la distribución y ecoepidemiología de la enfermedad. No obstante, las interacciones entre vectores y fauna local aún son desconocidas. Objetivo. Evaluar la diversidad de flebotomíneos y sus fuentes de alimentación sanguínea en la comunidad de El Alférez del municipio de El Carmen de Bolívar (Bolívar, Colombia). Materiales y métodos. En el 2018, se recolectaron flebotomíneos mediante trampas de luz led ubicadas en el domicilio, el peridomicilio y en el área silvestre, y se identificaron a nivel de especie. Se utilizó la reacción en cadena de la polimerasa múltiple dirigida al gen mitocondrial citocromo B para analizar la sangre del aparato digestivo. Resultados. Lutzomyia evansi fue la especie más abundante (71,85 %; n = 485/675), seguida por Lu. panamensis, Lu. gomezi, Lu. trinidadensis, Lu. dubitans, Lu. abonnenci y Lu. aclydifera. El 25 % (n = 25/100) de las especies analizadas tuvieron como fuentes de ingesta sanguínea a Canis familiaris (36 %; n = 9/25), Ovis aries (36 %; n = 9/25), Bos taurus (24 %; n = 6/25), Sus scrofa (20 %; n = 5/25) y Homo sapiens (8 %; n = 2/25). Lutzomyia evansi fue la especie con la mayor frecuencia de alimentación (68 %; n = 17/25), predominantemente de una sola especie (44 %; n = 11/25) o de varias (24 %; n = 6/25).
Subject(s)
Insect Vectors , Leishmaniasis , Psychodidae , Animals , Colombia/epidemiology , Psychodidae/parasitology , Insect Vectors/parasitology , Humans , Leishmaniasis/epidemiology , Leishmaniasis/transmission , Feeding Behavior , Dogs , Cattle , Cytochromes b/genetics , Female , MaleABSTRACT
Avian haemosporidians of the genera Plasmodium and Haemoproteus are a group of widely distributed blood parasites that can negatively affect the fitness of their hosts. Colombia contains the greatest diversity of birds on the planet, but knowledge about the associations between haemosporidian and its avifauna is scarce and fragmented. We collected blood samples from 255 birds (203 residents and 52 neotropical migrants) belonging to 27 families and 108 species. The study was conducted in six localities in the inter-Andean valleys of the Cauca and Magdalena rivers. Parasites of the genera Plasmodium and Haemoproteus were identified in the samples by morphological and molecular analysis of a fragment of the mitochondrial gene cyt b. Among the samples, 9.3% (n = 24) were positive for Plasmodium or Haemoproteus. Co-infection with Plasmodium and Haemoproteus was found in Red-eyed Vireo. Seventeen haemosporidian lineages were identified, five of which were reported for the first time in resident birds (Common Ground Dove, Checker-throated Stipplethroat, Tropical Kingbird, Pale-breasted Thrush, and Ruddy-breasted Seedeater) and one in the Summer Tanager (neotropical migrant). The research results confirm the wide diversity of haemosporidian present in tropical lowlands and the possible role of neotropical migratory birds in dissemination on haemosporidian along their migratory routes.
Subject(s)
Bird Diseases , Birds , Haemosporida , Plasmodium , Protozoan Infections, Animal , Animals , Colombia/epidemiology , Haemosporida/classification , Haemosporida/isolation & purification , Haemosporida/genetics , Birds/parasitology , Bird Diseases/parasitology , Bird Diseases/epidemiology , Plasmodium/classification , Plasmodium/isolation & purification , Plasmodium/genetics , Protozoan Infections, Animal/parasitology , Protozoan Infections, Animal/epidemiology , Cytochromes b/genetics , Animal Migration , Phylogeny , Coinfection/parasitology , Coinfection/veterinary , Coinfection/epidemiologyABSTRACT
The evolutionary dynamics of the ecoregions of southern South America and the species that inhabit them have been poorly studied, and few biogeographic hypotheses have been proposed and tested. Quaternary climatic oscillations are among the most important processes that have led to the current distribution of genetic variation in different regions of the world. In this work, we studied the evolutionary history and distribution of the Córdoba vesper mouse (Calomys venustus), a characteristic rodent of the region of which little is known about its natural history. Since the population dynamics of this species are influenced by climatic factors, this rodent is a suitable model to study the effects of Quaternary climatic oscillations in central Argentina. The mitochondrial cytochrome b gene was sequenced to analyze the phylogeography of C. venustus, and ecological niche modeling tools were used to map its potential distributions. The results of these approaches were combined to provide additional spatially explicit information about this species' past. Our results suggest that the Espinal was the area of origin of this species, which expanded demographically and spatially during the last glacial period. A close relationship was found between the Espinal and the Mountain Chaco. These results are consistent with previous studies and emphasize the role of the Espinal in the biogeographic history of southern South America as an area of origin of several species.
Subject(s)
Cytochromes b , Ecosystem , Phylogeography , Animals , Argentina , Cytochromes b/genetics , Biological Evolution , DNA, Mitochondrial/genetics , Models, Biological , Genetic Variation , Animal DistributionABSTRACT
Molecular appraoch for identification of unknown species by using Cytochrome b gene is an effective and reliable as compared with morphological based identification. For DNA barcoding universal molecular genes were used to identify the species. Cytochrome b is a specific gene used for identification purpose. DNA barcoding is a reliable and effective method compared to the different traditional morphological methods of specie identification. So,in the present study which was conducted to identify the species, a total of 50 fish samples were collected from five different sites. DNA was extracted by using the Phenol Chloroform method from muscle tissue. Five sequences were sequenced (one from each site), analyzed, and identified specific species as Pangasius pangasius. Identified sequences were variable in length from 369 bp (Site 1), 364 bp (Site 2), 364 bp (Site 3), 352 bp (Site 4), and 334 bp (Site 5). Identity matches on the NCBI database confirmed the specific specie as P. pangasius. A distancing tree was drawn to show maximum likelihood among the same and different species. Yet, in many cases fishes on diverse development stages are difficult to identify by morphological characters. DNA-based identification methods offer an analytically powerful addition or even an alternative tool for species identification and phylogenetic study. This work intends to provide an updated and extensive overview on the DNA based methods for fish species identification by using Cytochrome b gene as targeted markers for identification purpose.
A abordagem molecular para identificação de espécies desconhecidas usando o gene citocromo b é eficaz e confiável em comparação com a identificação baseada na morfologia. Códigos de barras de DNA de genes moleculares universais foram usados ââpara identificar as espécies. O citocromo b é um gene específico usado para fins de identificação. O código de barras de DNA é um método confiável e eficaz em comparação com os diferentes métodos morfológicos tradicionais de identificação de espécies. Assim, no presente estudo, que foi realizado para identificar as espécies, um total de 50 amostras de peixes foram coletadas em cinco locais diferentes. O DNA foi extraído usando o método Fenol Clorofórmio do tecido muscular. Cinco sequências foram sequenciadas (uma de cada local), analisadas e identificadas espécies específicas, como Pangasius pangasius. As sequências identificadas tinham comprimento variável de 369 bp (Local 1), 364 bp (Local 2), 369 bp (Local 1), 364 bp (Local 3), 352 bp (Local 4) e 334 bp (Local 5). As correspondências de identidade no banco de dados do NCBI confirmaram a espécie específica como P. pangasius. Uma árvore de distanciamento foi desenhada para mostrar a máxima probabilidade entre elas e diferentes espécies. No entanto, em muitos casos, peixes em diversos estágios de desenvolvimento são difíceis de identificar por caracteres morfológicos. Os métodos de identificação baseados em DNA oferecem uma adição analiticamente poderosa ou mesmo uma ferramenta alternativa para identificação de espécies e estudo filogenético. Este trabalho pretende fornecer uma visão geral atualizada e abrangente sobre os métodos baseados em DNA para identificação de espécies de peixes usando o gene citocromo b como marcadores direcionados para fins de identificação.
Subject(s)
Animals , Phylogeny , Cytochromes b , Biodiversity , FishesABSTRACT
BACKGROUND: Angiostrongylus cantonensis (rat lungworm) is the main pathogen responsible for eosinophilic meningitis in humans. One of its intermediate snail hosts, Achatina fulica, was already present in many countries around the world before it appeared in the West Indies in the late 1980s. In the French territories in the Caribbean and northern South America, the first cases of human neuroangiostrongyliasis were reported in Martinique, Guadeloupe and French Guiana in 2002, 2013 and 2017, respectively. In order to better characterize angiostrongyliasis in Guadeloupe, particularly its geographical origin and route of introduction, we undertook molecular characterization of adult worms of Angiostrongylus cantonensis and its intermediate host Achatina fulica. METHODS: Genomic DNA of adult Angiostrongylus cantonensis and Achatina fulica was extracted and amplified by polymerase chain reaction (PCR) targeting the mitochondrial genes cytochrome B and C for A. cantonensis and 16S ribosomal RNA for A. fulica. The PCR products were sequenced and studied by phylogenetic analysis. RESULTS: Cytochrome B and cytochrome C molecular markers indicate a monophyletic lineage of A. cantonensis adult worms in Guadeloupe. Two sequences of A. fulica were identified. CONCLUSIONS: These results confirm the recent introduction of both Angiostrongylus cantonensis and Achatina fulica into Guadeloupe. Achatina fulica in Guadeloupe shares a common origin with those in Barbados and New Caledonia, while Angiostrongylus cantonensis in Guadeloupe shares a common origin with those in Brazil, Hawaii and Japan.
Subject(s)
Angiostrongylus cantonensis , Angiostrongylus , Strongylida Infections , Adult , Rats , Humans , Animals , Angiostrongylus cantonensis/genetics , Phylogeny , Guadeloupe , Cytochromes b/genetics , Snails , Brazil , Strongylida Infections/veterinaryABSTRACT
This study aimed to identify the phylogenetic similarities among the muntjac (Muntiacus spp.). The phylogenetic similarities among seven major muntjac species were studied by comparing the nucleotide sequence of 16s rRNA and cytochrome b genome. Nucleotide sequences, retrieved from NCBI databases were aligned by using DNASTAR software. A phylogenetic tree was created for the selected species of muntjac by using the maximum likelihood method on MEGA7 software. The results of nucleotide sequences (16s rRNA) showed phylogenetic similarities between, the M. truongsonensis and M. rooseveltorum had the highest (99.2%) while the lowest similarities (96.8%) found between M. crinifrons and M. putaoensi. While the results of nucleotide sequences (Cty b) showed the highest similarity (100%) between M. muntjak and M. truongsonensis and the lowest s (91.5%) among M. putaoensis and M. crinifrons. The phylogenetic tree of muntjac species (16s rRNA gene) shows the main two clusters, the one including M. putaoensis, M. truongsonensis, M. rooseveltorum, and M. muntjak, and the second one including M. crinifrons and M. vuquangensis. The M. reevesi exists separately in the phylogenetic tree. The phylogenetic tree of muntjac species using cytochrome b genes shows that the M. muntjak and M. truongsonensis are clustered in the same group.(AU)
Este estudo visou identificar as semelhanças filogenéticas entre os muntjac (Muntiacus spp.). As semelhanças filogenéticas entre sete grandes espécies muntjac foram estudadas comparando a sequência de nucleótidos de 16s rRNA e genoma citocromo b. As sequências de nucleótidos, obtidas a partir de bases de dados NCBI, foram alinhadas utilizando o software DNASTAR. Foi criada uma árvore filogenética para as espécies selecionadas de muntjac utilizando o método de probabilidade máxima no software MEGA7. Os resultados das sequências de nucleótidos (16s rRNA) mostraram semelhanças filogenéticas entre o M. truongsonensis e o M. rooseveltorum tiveram o maior número (99,2%) enquanto as semelhanças mais baixas (96,8%) encontradas entre M. crinifrons e M. putaoensi. Enquanto os resultados das sequências de nucleótidos (Cty-b) apresentaram a maior semelhança (100%) entre M. muntjak e M. truongsonensis e os mais baixos (91,5%) entre M. putaoensis e M. crinifrons. A árvore filogenética das espécies muntjac (gene rRNA 16s) mostra os dois principais aglomerados, o que inclui M. putaoensis, M. truongsonensis, M. rooseveltorum e M. muntjak, e o segundo incluindo M. crinifrons e M. vuquangensis. O M. reevesi existe separadamente na árvore filogenética. A árvore filogenética das espécies muntjac usando genes citocromo b mostra que os M. muntjak e M. truongsonensis estão agrupados no mesmo grupo.(AU)
Subject(s)
Animals , Muntjacs/genetics , Muntjacs/classification , RNA, Ribosomal, 16S/analysis , Cytochromes b/analysisABSTRACT
This study aimed to identify the phylogenetic similarities among the muntjac (Muntiacus spp.). The phylogenetic similarities among seven major muntjac species were studied by comparing the nucleotide sequence of 16s rRNA and cytochrome b genome. Nucleotide sequences, retrieved from NCBI databases were aligned by using DNASTAR software. A phylogenetic tree was created for the selected species of muntjac by using the maximum likelihood method on MEGA7 software. The results of nucleotide sequences (16s rRNA) showed phylogenetic similarities between, the M. truongsonensis and M. rooseveltorum had the highest (99.2%) while the lowest similarities (96.8%) found between M. crinifrons and M. putaoensi. While the results of nucleotide sequences (Cty b) showed the highest similarity (100%) between M. muntjak and M. truongsonensis and the lowest s (91.5%) among M. putaoensis and M. crinifrons. The phylogenetic tree of muntjac species (16s rRNA gene) shows the main two clusters, the one including M. putaoensis, M. truongsonensis, M. rooseveltorum, and M. muntjak, and the second one including M. crinifrons and M. vuquangensis. The M. reevesi exists separately in the phylogenetic tree. The phylogenetic tree of muntjac species using cytochrome b genes shows that the M. muntjak and M. truongsonensis are clustered in the same group.
Este estudo visou identificar as semelhanças filogenéticas entre os muntjac (Muntiacus spp.). As semelhanças filogenéticas entre sete grandes espécies muntjac foram estudadas comparando a sequência de nucleótidos de 16s rRNA e genoma citocromo b. As sequências de nucleótidos, obtidas a partir de bases de dados NCBI, foram alinhadas utilizando o software DNASTAR. Foi criada uma árvore filogenética para as espécies selecionadas de muntjac utilizando o método de probabilidade máxima no software MEGA7. Os resultados das sequências de nucleótidos (16s rRNA) mostraram semelhanças filogenéticas entre o M. truongsonensis e o M. rooseveltorum tiveram o maior número (99,2%) enquanto as semelhanças mais baixas (96,8%) encontradas entre M. crinifrons e M. putaoensi. Enquanto os resultados das sequências de nucleótidos (Cty-b) apresentaram a maior semelhança (100%) entre M. muntjak e M. truongsonensis e os mais baixos (91,5%) entre M. putaoensis e M. crinifrons. A árvore filogenética das espécies muntjac (gene rRNA 16s) mostra os dois principais aglomerados, o que inclui M. putaoensis, M. truongsonensis, M. rooseveltorum e M. muntjak, e o segundo incluindo M. crinifrons e M. vuquangensis. O M. reevesi existe separadamente na árvore filogenética. A árvore filogenética das espécies muntjac usando genes citocromo b mostra que os M. muntjak e M. truongsonensis estão agrupados no mesmo grupo.
Subject(s)
Animals , Muntjacs/classification , Muntjacs/genetics , Cytochromes b/analysis , /analysisABSTRACT
We evaluated the extent of intraspecific and interspecific genetic distances and the effectiveness of predefined threshold values using the main genes for estimates of biodiversity and specimens' identification in anurans. Partial sequences of the mitochondrial genes for small (12S) and large (16S) ribosomal subunits, cytochrome c oxidase subunit I (COI) and Cytochrome b (Cytb) of the family Hylidae were downloaded from GenBank and curated for length, coverage, and potential contaminations. We performed analyses for all sequences of each gene and the same species present in these datasets by distance and tree (monophyly)-based evaluations. We also evaluated the ability to identify specimens using these datasets applying "nearest neighbor" (NN), "best close match" (BCM) and "BOLD ID" tests. Genetic distance thresholds were generated by the function 'threshVal' and "localMinima" from SPIDER package and traditional threshold values (1%, 3%, 6% and 10%) were also evaluated. Coding genes, especially COI, had a better identification capacity than non-coding genes on barcoding gap and monophyly analysis and NN, BCM, BOLD ID tests. Considering the multiple factors involved in global DNA barcoding evaluations, we present a critical assessment of the use of these genes for biodiversity estimation and specimens' identification in anurans (e.g. hylids).
Subject(s)
Anura , Cytochromes b , Animals , RNA, Ribosomal, 16S/genetics , DNA Barcoding, TaxonomicABSTRACT
Molecular appraoch for identification of unknown species by using Cytochrome b gene is an effective and reliable as compared with morphological based identification. For DNA barcoding universal molecular genes were used to identify the species. Cytochrome b is a specific gene used for identification purpose. DNA barcoding is a reliable and effective method compared to the different traditional morphological methods of specie identification. So,in the present study which was conducted to identify the species, a total of 50 fish samples were collected from five different sites. DNA was extracted by using the Phenol Chloroform method from muscle tissue. Five sequences were sequenced (one from each site), analyzed, and identified specific species as Pangasius pangasius. Identified sequences were variable in length from 369 bp (Site 1), 364 bp (Site 2), 364 bp (Site 3), 352 bp (Site 4), and 334 bp (Site 5). Identity matches on the NCBI database confirmed the specific specie as P. pangasius. A distancing tree was drawn to show maximum likelihood among the same and different species. Yet, in many cases fishes on diverse development stages are difficult to identify by morphological characters. DNA-based identification methods offer an analytically powerful addition or even an alternative tool for species identification and phylogenetic study. This work intends to provide an updated and extensive overview on the DNA based methods for fish species identification by using Cytochrome b gene as targeted markers for identification purpose.
Subject(s)
Catfishes , Cytochromes b , Animals , Phylogeny , Cytochromes b/genetics , Catfishes/genetics , DNA Barcoding, Taxonomic/methodsABSTRACT
BACKGROUND: Incidence of Cutaneous Leishmaniasis as an infectious and neglected disease is increasing, for the diagnosis of which several traditional methods and conventional PCR techniques have been developed, employing different genes for species identification. METHODS: Leishmania parasites were sampled, DNA was extracted, and new specific and sensitive primers were designed. Two ITS-rDNA and Cyt b genes were targeted by qPCR using the High- Resolution Melting method to identify Leishmania parasites. The standard curves were drawn, compared, and identified by high-resolution melting curve analysis. RESULTS: Melting temperature and Cycle of Threshold of ITS-rDNA was higher than Cyt b but Cyt b was more sensitive than ITS-rDNA when Leishmania major and Leishmania tropica were analyzed and evaluated. By aligning melt curves, normalizing fluorescence curves, and difference plotting melt curves, each Leishmania species was distinguished easily. L. major and L. tropica were separated at 83.6 °C and 84.7 °C, respectively, with less than 0.9 °C of temperature difference. Developing sensitivity and specificity of real-time PCR based on EvaGreen could detect DNA concentration to less than one pmol. CONCLUSIONS: Precise identification of Leishmania parasites is crucial for strategies of disease control. Real-time PCR using EvaGreen provides rapid, highly sensitive, and specific detection of parasite's DNA. The modified High-Resolution Melting could determine unique curves and was able to detect single nucleotide polymorphisms according to small differences in the nucleotide content of Leishmania parasites.
Subject(s)
Leishmania tropica , Leishmaniasis, Cutaneous , Humans , Cytochromes b/genetics , DNA, Ribosomal , Leishmaniasis, Cutaneous/epidemiology , Leishmania tropica/genetics , Real-Time Polymerase Chain Reaction/methodsABSTRACT
Present work aimed to identify blood feeding sources and attempt to detect Leishmania DNA in Nyssomyia antunesi, suspected vector of Leishmania sp., from a park in the urban center of Belém, the capital of Pará State, in the Brazilian Amazon. Entire bodies and gut contents of Ny. antunesi engorged females, previously captured in the urban park with Centers for Disease Control (CDC) light traps and aspiration on tree bases, were subjected to Leishmania and vertebrate DNA detection through amplification of the Leishmania mini-exon and vertebrate cytochrome b (cyt b) gene regions, respectively. The quality of DNA extraction from entire bodies was ensured through amplification of the dipteran cyt b region. The vertebrate cyt b amplicons were sequenced and compared with those available on GenBank. A maximum likelihood phylogenetic tree was constructed to assess the clustering patterns of these sequences. Leishmania DNA was not detected. The sequences of 13 vertebrate cyt b amplicons were considered informative, exhibiting similarity and clustering with the following six vertebrate species: Dasyprocta leporina (1), Cuniculus paca (1), Tamandua tetradactyla (4), Choloepus didactylus (4), Pteroglossus aracari aracari (2), Homo sapiens (1). The samples of D. leporina and C. paca were obtained from the CDC canopy, whereas the others were by aspiration from tree bases. The present results revealed the eclectic and opportunist blood-feeding behavior of Ny. antunesi, with birds and mammals, these last ones acting as potential reservoirs for Leishmania species, distributed throughout the vertical forest strata.
Subject(s)
Kinetoplastida , Leishmania , Psychodidae , Animals , Brazil , Cytochromes b/genetics , Female , Insect Vectors , Leishmania/genetics , Mammals , PhylogenyABSTRACT
Non-native species are a major problem affecting numerous biomes around the globe. Information on their population genetics is crucial for understanding their invasion history and dynamics. We evaluated the population structure of the non-native American bullfrog, Aquarana catesbeiana, in Brazil on the basis of 324 samples collected from feral and captive groups at 38 sites in seven of the nine states where feral populations occur. We genotyped all samples using previously developed, highly polymorphic microsatellite loci and performed a discriminant analysis of principal components together with Jost's D index to quantify pairwise differentiation between populations. We then amplified 1,047 base pairs of the mitochondrial cytochrome b (cytb) gene from the most divergent samples from each genetic population and calculated their pairwise differences. Both the microsatellite and cytb data indicated that bullfrogs comprise two populations. Population grouping 1 is widespread and possesses two cytb haplotypes. Population grouping 2 is restricted to only one state and possesses only one of the haplotypes from Population grouping 1. We show that there were two imports of bullfrogs to Brazil and that there is low genetic exchange between population groupings. Also, we find that there is no genetic divergence among feral and captive populations suggesting continuous releases. The limited genetic variability present in the country is associated to the small number of introductions and founders. Feral bullfrogs are highly associated to leaks from farms, and control measures should focus on preventing escapes using other resources than genetics, as feral and captive populations do not differ.
Subject(s)
Genetics, Population , Microsatellite Repeats , Animals , Brazil , Cytochromes b/genetics , Genetic Variation , Haplotypes/genetics , Microsatellite Repeats/genetics , Rana catesbeiana/geneticsABSTRACT
Mutations in the mitochondrial genome (mtDNA) are ubiquitous in humans and can lead to a broad spectrum of disorders. However, due to the presence of multiple mtDNA molecules in the cell, co-existence of mutant and wild-type mtDNAs (termed heteroplasmy) can mask disease phenotype unless a threshold of mutant molecules is reached. Importantly, the mutant mtDNA level can change across lifespan as mtDNA segregates in an allele- and cell-specific fashion, potentially leading to disease. Segregation of mtDNA is mainly evident in hepatic cells, resulting in an age-dependent increase of mtDNA variants, including non-synonymous potentially deleterious mutations. Here we modeled mtDNA segregation using a well-established heteroplasmic mouse line with mtDNA of NZB/BINJ and C57BL/6N origin on a C57BL/6N nuclear background. This mouse line showed a pronounced age-dependent NZB mtDNA accumulation in the liver, thus leading to enhanced respiration capacity per mtDNA molecule. Remarkably, liver-specific atg7 (autophagy related 7) knockout abolished NZB mtDNA accumulat ion, resulting in close-to-neutral mtDNA segregation through development into adulthood. prkn (parkin RBR E3 ubiquitin protein ligase) knockout also partially prevented NZB mtDNA accumulation in the liver, but to a lesser extent. Hence, we propose that age-related liver mtDNA segregation is a consequence of macroautophagic clearance of the less-fit mtDNA. Considering that NZB/BINJ and C57BL/6N mtDNAs have a level of divergence comparable to that between human Eurasian and African mtDNAs, these findings have potential implications for humans, including the safe use of mitochondrial replacement therapy.Abbreviations: Apob: apolipoprotein B; Atg1: autophagy-related 1; Atg7: autophagy related 7; Atp5a1: ATP synthase, H+ transporting, mitochondrial F1 complex, alpha subunit 1; BL6: C57BL/6N mouse strain; BNIP3: BCL2/adenovirus E1B interacting protein 3; FCCP: carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; MAP1LC3A: microtubule-associated protein 1 light chain 3 alpha; MAP1LC3B: microtubule-associated protein 1 light chain 3 beta; mt-Atp8: mitochondrially encoded ATP synthase 8; MT-CO1: mitochondrially encoded cytochrome c oxidase I; MT-CO2: mitochondrially encoded cytochrome c oxidase II; mt-Co3: mitochondrially encoded cytochrome c oxidase III; mt-Cytb: mitochondrially encoded cytochrome b; mtDNA: mitochondrial DNA; MUL1: mitochondrial ubiquitin ligase activator of NFKB 1; nDNA: nuclear DNA; Ndufa9: NADH:ubiquinone oxireductase subunit A9; NDUFB8: NADH:ubiquinone oxireductase subunit B8; Nnt: nicotinamide nucleotide transhydrogenase; NZB: NZB/BINJ mouse strain; OXPHOS: oxidative phosphorylation; PINK1: PTEN induced putative kinase 1; Polg2: polymerase (DNA directed), gamma 2, accessory subunit; Ppara: peroxisome proliferator activated receptor alpha; Ppia: peptidylprolyl isomerase A; Prkn: parkin RBR E3 ubiquitin protein ligase; P10: post-natal day 10; P21: post-natal day 21; P100: post-natal day 100; qPCR: quantitative polymerase chain reaction; Rpl19: ribosomal protein L19; Rps18: ribosomal protein S18; SD: standard deviation; SEM: standard error of the mean; SDHB: succinate dehydrogenase complex, subunit B, iron sulfur (Ip); SQSTM1: sequestosome 1; Ssbp1: single-stranded DNA binding protein 1; TFAM: transcription factor A, mitochondrial; Tfb1m: transcription factor B1, mitochondrial; Tfb2m: transcription factor B2, mitochondrial; TOMM20: translocase of outer mitochondrial membrane 20; UQCRC2: ubiquinol cytochrome c reductase core protein 2; WT: wild-type.
Subject(s)
Mitophagy , NADP Transhydrogenases , Adenosine Triphosphate , Adult , Animals , Apolipoproteins/metabolism , Apolipoproteins B/metabolism , Autophagy/genetics , Carbon Dioxide/metabolism , Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone , Cytochromes b/metabolism , DNA, Mitochondrial/genetics , DNA-Binding Proteins/metabolism , Electron Transport Complex III , Electron Transport Complex IV/metabolism , Humans , Iron/metabolism , Liver/metabolism , Mice , Mice, Inbred C57BL , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Mitochondrial Proteins , NAD/metabolism , NADP Transhydrogenases/metabolism , PPAR alpha/metabolism , Peptidylprolyl Isomerase/metabolism , Protein Kinases/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Ribosomal Proteins/metabolism , Sequestosome-1 Protein/metabolism , Succinate Dehydrogenase/metabolism , Sulfur/metabolism , Transcription Factors/metabolism , Ubiquinone , Ubiquitin-Protein Ligases/metabolism , Ubiquitins/metabolismABSTRACT
Myotis is the most diverse genus of bats in the world, with more than 30 species recognized in the Neotropics. However, many of these species represent cryptic complexes and are evidence of the existence of hidden diversity in several regions. Using an integrative approach based on molecular, morphological, and bioacoustic data, we performed a systematic review of Myotis species from Chile. Phylogenetic inference using cytochrome-b indicated the existence of three monophyletic lineages, and qualitative and quantitative morphological analyses supported these lineages as distinct and morphologically diagnosable taxa. Analysis of discriminant functions using parameters of echolocation calls also indicates the existence of three distinct bioacoustic clusters. Thus, all lines of evidence congruently indicate the existence of three distinct taxa. As a result, we recognize Myotis arescens as a valid and distinct species and define its taxonomic limits from the other species from Chile, Myotis atacamensis and Myotis chiloensis.
Subject(s)
Chiroptera , Animals , Phylogeny , Chile , Cytochromes b/geneticsABSTRACT
BACKGROUND: Urushiols are pro-electrophilic haptens that cause severe contact dermatitis mediated by CD8+ effector T-cells and downregulated by CD4+ T-cells. However, the molecular mechanism by which urushiols stimulate innate immunity in the initial stages of this allergic reaction is poorly understood. Here we explore the sub-cellular mechanisms by which urushiols initiate the allergic response. RESULTS: Electron microscopy observations of mouse ears exposed to litreol (3-n-pentadecyl-10-enyl-catechol]) showed keratinocytes containing swollen mitochondria with round electron-dense inclusion bodies in the matrix. Biochemical analyses of sub-mitochondrial fractions revealed an inhibitory effect of urushiols on electron flow through the mitochondrial respiratory chain, which requires both the aliphatic and catecholic moieties of these allergens. Moreover, urushiols extracted from poison ivy/oak (mixtures of 3-n-pentadecyl-8,11,13 enyl/3-n-heptadecyl-8,11 enyl catechol) exerted a higher inhibitory effect on mitochondrial respiration than did pentadecyl catechol or litreol, indicating that the higher number of unsaturations in the aliphatic chain, stronger the allergenicity of urushiols. Furthermore, the analysis of radioactive proteins isolated from mitochondria incubated with 3H-litreol, indicated that this urushiol was bound to cytochrome c1. According to the proximity of cytochromes c1 and b, functional evidence indicated the site of electron flow inhibition was within complex III, in between cytochromes bL (cyt b566) and bH (cyt b562). CONCLUSION: Our data provide functional and molecular evidence indicating that the interruption of the mitochondrial electron transport chain constitutes an important mechanism by which urushiols initiates the allergic response. Thus, mitochondria may constitute a source of cellular targets for generating neoantigens involved in the T-cell mediated allergy induced by urushiols.
Subject(s)
Allergens , Cytochromes b , Animals , Catechols , Cytochromes c , Cytochromes c1 , Electron Transport , Mice , MitochondriaABSTRACT
Analysis of the mtDNA variation in Apis mellifera L. has allowed distinguishing subspecies and evolutionary lineages by means of different molecular methods; from RFLP, to PCR-RFLP and direct sequencing. Likewise, geometric morphometrics (GM) has been used to distinguish Africanized honey bees with a high degree of consistency with studies using molecular information. High-resolution fusion analysis (HRM) allows one to quickly identify sequence polymorphisms by comparing DNA melting curves in short amplicons generated by real-time PCR (qPCR). The objective of this work was to implement the HRM technique in the diagnosis of Africanization of colonies of A. mellifera from Argentina, using GM as a validation method. DNA was extracted from 60 A. mellifera colonies for mitotype identification. Samples were initially analyzed by HRM, through qPCRs of two regions (485 bp/385 bp) of the mitochondrial cytochrome b gene (cytb). This technique was then optimizing to amplify a smaller PCR product (207 bp) for the HRM diagnosis for the Africanization of colonies. Of the 60 colony samples analyzed, 41 were classified as colonies of European origin whereas 19 revealed African origin. All the samples classified by HRM were correctly validated by GM, demonstrating that this technique could be implemented for a rapid identification of African mitotypes in Apis mellifera samples.
Subject(s)
Bees/classification , Bees/genetics , DNA, Mitochondrial/genetics , Phylogeny , Animals , Cytochromes b/genetics , Evolution, Molecular , Genes, Mitochondrial/genetics , Nucleic Acid Denaturation , Reproducibility of ResultsABSTRACT
This study aimed to identify the phylogenetic similarities among the muntjac (Muntiacus spp.). The phylogenetic similarities among seven major muntjac species were studied by comparing the nucleotide sequence of 16s rRNA and cytochrome b genome. Nucleotide sequences, retrieved from NCBI databases were aligned by using DNASTAR software. A phylogenetic tree was created for the selected species of muntjac by using the maximum likelihood method on MEGA7 software. The results of nucleotide sequences (16s rRNA) showed phylogenetic similarities between, the M. truongsonensis and M. rooseveltorum had the highest (99.2%) while the lowest similarities (96.8%) found between M. crinifrons and M. putaoensi. While the results of nucleotide sequences (Cty b) showed the highest similarity (100%) between M. muntjak and M. truongsonensis and the lowest s (91.5%) among M. putaoensis and M. crinifrons. The phylogenetic tree of muntjac species (16s rRNA gene) shows the main two clusters, the one including M. putaoensis, M. truongsonensis, M. rooseveltorum, and M. muntjak, and the second one including M. crinifrons and M. vuquangensis. The M. reevesi exists separately in the phylogenetic tree. The phylogenetic tree of muntjac species using cytochrome b genes shows that the M. muntjak and M. truongsonensis are clustered in the same group.