Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 8.393
1.
Cell Death Dis ; 15(5): 331, 2024 May 13.
Article En | MEDLINE | ID: mdl-38740775

Pirh2 is an E3 ubiquitin ligase known to regulate the DNA damage responses through ubiquitylation of various participating signaling factors. DNA damage is a key pathological contributor to Alzheimer's disease (AD), therefore, the role of Pirh2 was investigated in streptozotocin and oligomer Aß1-42 induced rodent experimental model of AD. Pirh2 protein abundance increased during AD conditions, and transient silencing of Pirh2 inhibited the disease-specific pathological markers like level of p-Tau, ßamyloid, acetylcholinesterase activity, and neuronal death. Biochemically, Pirh2 silencing significantly attenuated the oxidative stress, depleted mitochondrial membrane potential, cytochrome c translocation from mitochondria to cytosol, and depleted mitochondrial complex-I activity, and ATP level. Pirh2 silencing also inhibited the altered level of VDAC1, hsp75, hexokinase1, t-Bid, caspase-9, and altered level of apoptotic proteins (Bcl-2, Bax). MALDI-TOF/TOF, co-immunoprecipitation, and UbcH13-linked ubiquitylation assay confirmed the interaction of Pirh2 with cytochrome c and the role of Pirh2 in ubiquitylation of cytochrome c, along with Pirh2-dependent altered proteasome activity. Additionally, Pirh2 silencing further inhibited the translocation of mitochondrion-specific endonuclease G and apoptosis-inducing factors to the nucleus and DNA damage. In conclusion, findings suggested the significant implication of Pirh2 in disease pathogenesis, particularly through impaired mitochondrial function, including biochemical alterations, translocation of cytochrome c, endonuclease G and apoptosis-inducing factor, DNA damage, and neuronal apoptosis.


Alzheimer Disease , Cytochromes c , Mitochondria , Neurons , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/genetics , Animals , Cytochromes c/metabolism , Mitochondria/metabolism , Neurons/metabolism , Neurons/pathology , Oxidative Stress , Rats , Male , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Amyloid beta-Peptides/metabolism , Membrane Potential, Mitochondrial , Ubiquitination , Humans , Apoptosis , Cell Death , Rats, Sprague-Dawley , Disease Models, Animal , Endodeoxyribonucleases
2.
Nat Commun ; 15(1): 3731, 2024 May 03.
Article En | MEDLINE | ID: mdl-38702306

Molecular recognition of proteins is key to their biological functions and processes such as protein-protein interactions (PPIs). The large binding interface involved and an often relatively flat binding surface make the development of selective protein-binding materials extremely challenging. A general method is reported in this work to construct protein-binding polymeric nanoparticles from cross-linked surfactant micelles. Preparation involves first dynamic covalent chemistry that encodes signature surface lysines on a protein template. A double molecular imprinting procedure fixes the binding groups on the nanoparticle for these lysine groups, meanwhile creating a binding interface complementary to the protein in size, shape, and distribution of acidic groups on the surface. These water-soluble nanoparticles possess excellent specificities for target proteins and sufficient affinities to inhibit natural PPIs such as those between cytochrome c (Cytc) and cytochrome c oxidase (CcO). With the ability to enter cells through a combination of energy-dependent and -independent pathways, they intervene apoptosis by inhibiting the PPI between Cytc and the apoptotic protease activating factor-1 (APAF1). Generality of the preparation and the excellent molecular recognition of the materials have the potential to make them powerful tools to probe protein functions in vitro and in cellulo.


Cytochromes c , Electron Transport Complex IV , Nanoparticles , Polymers , Nanoparticles/chemistry , Cytochromes c/metabolism , Cytochromes c/chemistry , Humans , Polymers/chemistry , Polymers/metabolism , Electron Transport Complex IV/metabolism , Electron Transport Complex IV/chemistry , Molecular Imprinting/methods , Protein Binding , Apoptosis , Micelles , HeLa Cells , Animals
3.
Proc Natl Acad Sci U S A ; 121(19): e2403049121, 2024 May 07.
Article En | MEDLINE | ID: mdl-38691587

Molecular chaperones assist in protein refolding by selectively binding to proteins in their nonnative states. Despite progress in creating artificial chaperones, these designs often have a limited range of substrates they can work with. In this paper, we present molecularly imprinted flexible polymer nanoparticles (nanoMIPs) designed as customizable biomimetic chaperones. We used model proteins such as cytochrome c, laccase, and lipase to screen polymeric monomers and identify the most effective formulations, offering tunable charge and hydrophobic properties. Utilizing a dispersed phase imprinting approach, we employed magnetic beads modified with destabilized whole-protein as solid-phase templates. This process involves medium exchange facilitated by magnetic pulldowns, resulting in the synthesis of nanoMIPs featuring imprinted sites that effectively mimic chaperone cavities. These nanoMIPs were able to selectively refold denatured enzymes, achieving up to 86.7% recovery of their activity, significantly outperforming control samples. Mechanistic studies confirmed that nanoMIPs preferentially bind denatured rather than native enzymes, mimicking natural chaperone interactions. Multifaceted analyses support the functionality of nanoMIPs, which emulate the protective roles of chaperones by selectively engaging with denatured proteins to inhibit aggregation and facilitate refolding. This approach shows promise for widespread use in protein recovery within biocatalysis and biomedicine.


Molecular Chaperones , Nanoparticles , Polymers , Protein Denaturation , Nanoparticles/chemistry , Molecular Chaperones/chemistry , Molecular Chaperones/metabolism , Polymers/chemistry , Protein Refolding , Protein Folding , Cytochromes c/chemistry , Cytochromes c/metabolism , Laccase/chemistry , Laccase/metabolism , Lipase/chemistry , Lipase/metabolism
4.
Anal Chim Acta ; 1309: 342665, 2024 Jun 22.
Article En | MEDLINE | ID: mdl-38772653

BACKGROUND: The concentration of cytochrome C is demonstrated to be an effective indicator of the microbial corrosion strength of metals. Traditional cytochrome C sensor can detect cytochrome C with a low detection limit, but their use is limited by their high cost, cumbersome operation, and susceptibility to malignant environments. In addition, studies on the monitoring of cytochrome C in the field of microbial corrosion has still not been carried out. Therefore, there is a need for a highly sensitive, selective, low-cost, anti-interference, and stable cytochrome C sensor with online monitoring and remote sensing capabilities for in-situ measurement of microbial corrosion strength. RESULTS: This paper proposed a highly sensitive label-free fiber-optic sensor based on Mach-Zehnder interferometer (MZI) for in-situ measurement of the microbial corrosion marker cytochrome C. Two-dimensional Ti2C-MXene material is uniformly immobilized onto the surface of the sensing area to improve the sensitivity, hydrophilicity, and specific surface area of the sensing area, as well as to facilitate the immobilization of specific sensitive materials. The cytochrome C antibody is modified on the surface of Ti2C-MXene to specifically recognize cytochrome C, whose concentration variation can be measured by monitoring the spectral shift of MZI sensor. Results demonstrate a measurement sensitivity of 1.428 nm/µM for cytochrome C concentrations ranging from 0 to 7.04 µM. The detection limit of the sensor is calculated to be 0.392 µM with remarkable performance, including selectivity, stability, and reliability. Besides, the measurement result of the proposed sensor in real microbial corrosive environment is consistent with that of the ideal environment. SIGNIFICANCE AND NOVELTY: This is the first instance of achieving in-situ and label-free measurement of cytochrome C by using a fiber-optic MZI sensor, which undoubtedly provides a feasible solution for the effective monitoring of microbial metal corrosion in the environment.


Cytochromes c , Fiber Optic Technology , Interferometry , Titanium , Cytochromes c/analysis , Cytochromes c/metabolism , Titanium/chemistry , Biosensing Techniques/methods , Limit of Detection , Optical Fibers , Corrosion
5.
J Med Microbiol ; 73(5)2024 May.
Article En | MEDLINE | ID: mdl-38743468

Introduction. Innovative antifungal therapies are of crucial importance to combat the potentially life-threatening infections linked to the multidrug-resistant fungal pathogen Candida auris. Induction of regulated cell death, apoptosis, could provide an outline for future therapeutics. Human antimicrobial peptides (AMPs), well-known antifungal compounds, have shown the ability to induce apoptosis in pathogenic fungi.Hypothesis/Gap Statement . Although it is known that AMPs possess antifungal activity against C. auris, their ability to induce apoptosis requires further investigations.Aim. This study evaluated the effects of AMPs on the induction of apoptosis in C. auris.Methods. Human neutrophil peptide-1 (HNP-1), human ß-Defensins-3 (hBD-3) and human salivary histatin 5 (His 5) were assessed against two clinical C. auris isolates. Apoptosis hallmarks were examined using FITC-Annexin V/PI double labelling assay and terminal deoxynucleotidyl transferase deoxynucleotidyl transferase nick-end labelling (TUNEL) to detect phosphatidylserine externalization and DNA fragmentation, respectively. Then, several intracellular triggers were studied using JC-10 staining, spectrophotometric assay and 2',7'-dichlorofluorescin diacetate staining to measure the mitochondrial membrane potential, cytochrome-c release and reactive oxygen species (ROS) production, respectively.Results and conclusion. FITC-Annexin V/PI staining and TUNEL analysis revealed that exposure of C. auris cells to HNP-1 and hBD-3 triggered both early and late apoptosis, while His 5 caused significant necrosis. Furthermore, HNP-1 and hBD-3 induced significant mitochondrial membrane depolarization, which resulted in substantial cytochrome c release. In contrast to His 5, which showed minimal mitochondrial depolarization and no cytochrome c release. At last, all peptides significantly increased ROS production, which is related to both types of cell death. Therefore, these peptides represent promising and effective antifungal agents for treating invasive infections caused by multidrug-resistant C. auris.


Antifungal Agents , Apoptosis , Candida auris , Histatins , Reactive Oxygen Species , Apoptosis/drug effects , Humans , Antifungal Agents/pharmacology , Histatins/pharmacology , Reactive Oxygen Species/metabolism , Candida auris/drug effects , beta-Defensins/pharmacology , Membrane Potential, Mitochondrial/drug effects , alpha-Defensins/pharmacology , Microbial Sensitivity Tests , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Cytochromes c/metabolism , DNA Fragmentation/drug effects , Candidiasis/drug therapy , Candidiasis/microbiology
6.
Toxicon ; 243: 107718, 2024 May 28.
Article En | MEDLINE | ID: mdl-38614246

Mycotoxins are toxic, fungal secondary metabolites that contaminate agricultural commodities, food, and feed. Among them, T-2, HT-2, and diacetoxyscirpenol (DAS; the major type A trichothecene) are primarily produced from Fusarium species. These mycotoxins exert numerous toxicological effects in animals and humans, such as dermatotoxicity, haematotoxicity, hepatotoxicity, nephrotoxicity, neurotoxicity, and immunotoxicity. In the present study, human Jurkat T cells were used as a model to investigate apoptotic cell death induced by T-2, HT-2, and DAS. The results showed that T-2, HT-2, and DAS decreased cell viability and increased production of Reactive Oxygen Species in a time- and dose-dependency. Based on their IC50 values, they could be ranked in decreasing order of cytotoxicity as T-2 > HT-2 > DAS. All tested mycotoxins caused DNA fragmentation, up-regulated cytochrome C, caspase 3, and caspase 9 mRNA levels, and down-regulated the relative expression of Bcl-2 and caspase 8. The effects of these trichothecenes on apoptosis were determined based on flow cytometry. At the IC50 concentrations, the percentages of apoptotic cells were significantly higher than for the controls. Taken together, these data suggested that T-2, HT-2, and DAS could induce apoptosis through the mitochondrial apoptotic pathway.


Apoptosis , Cell Survival , Reactive Oxygen Species , T-2 Toxin , Trichothecenes , Humans , Trichothecenes/toxicity , Jurkat Cells , T-2 Toxin/toxicity , T-2 Toxin/analogs & derivatives , Apoptosis/drug effects , Reactive Oxygen Species/metabolism , Cell Survival/drug effects , DNA Fragmentation/drug effects , Cytochromes c/metabolism , Caspase 3/metabolism , Caspase 9/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism
7.
J Phys Chem B ; 128(16): 3807-3823, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38605466

The origin of highly efficient asymmetric aminohydroxylation of styrene catalyzed by engineered cytochrome c is investigated by the developed Atom-Bond Electronegativity Equalization Method polarizable force field (ABEEM PFF), which is a combined outcome of electronic and steric effects. Model molecules were used to establish the charge parameters of the ABEEM PFF, for which the bond-stretching and angle-bending parameters were obtained by using a combination of modified Seminario and scan methods. The interactions between carbon-radical Fe-porphyrin (FePP) and waters are simulated by molecular dynamics, which shows a clear preference for the pre-R over the pre-S. This preference is attributed to the hydrogen-bond between the mutated 100S and 101P residues as well as van der Waals interactions, enforcing a specific conformation of the carbon-radical FePP complex within the binding pocket. Meanwhile, the hydrogen-bond between water and the nitrogen atom in the active intermediate dictates the stereochemical outcome. Quantum mechanics/molecular mechanics (QM/MM (ABEEM PFF)) and free-energy perturbation calculations elucidate that the 3RTS is characterized by sandwich-like structure among adjacent amino acid residues, which exhibits greater stability than crowed arrangement in 3STS and enables the R enantiomer to form more favorably. Thus, this study provides mechanistic insight into the catalytic reaction of hemoproteins.


Cytochromes c , Molecular Dynamics Simulation , Quantum Theory , Stereoisomerism , Cytochromes c/chemistry , Cytochromes c/metabolism , Hydrolysis , Carbon/chemistry , Protein Engineering , Hydrogen Bonding , Biocatalysis , Metalloporphyrins/chemistry , Metalloporphyrins/metabolism
8.
J Biomed Sci ; 31(1): 38, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38627765

BACKGROUND: Mitochondria are essential organelles involved in cellular energy production. Changes in mitochondrial function can lead to dysfunction and cell death in aging and age-related disorders. Recent research suggests that mitochondrial dysfunction is closely linked to neurodegenerative diseases. Glucagon-like peptide-1 receptor (GLP-1R) agonist has gained interest as a potential treatment for Parkinson's disease (PD). However, the exact mechanisms responsible for the therapeutic effects of GLP-1R-related agonists are not yet fully understood. METHODS: In this study, we explores the effects of early treatment with PT320, a sustained release formulation of the GLP-1R agonist Exenatide, on mitochondrial functions and morphology in a progressive PD mouse model, the MitoPark (MP) mouse. RESULTS: Our findings demonstrate that administration of a clinically translatable dose of PT320 ameliorates the reduction in tyrosine hydroxylase expression, lowers reactive oxygen species (ROS) levels, and inhibits mitochondrial cytochrome c release during nigrostriatal dopaminergic denervation in MP mice. PT320 treatment significantly preserved mitochondrial function and morphology but did not influence the reduction in mitochondria numbers during PD progression in MP mice. Genetic analysis indicated that the cytoprotective effect of PT320 is attributed to a reduction in the expression of mitochondrial fission protein 1 (Fis1) and an increase in the expression of optic atrophy type 1 (Opa1), which is known to play a role in maintaining mitochondrial homeostasis and decreasing cytochrome c release through remodeling of the cristae. CONCLUSION: Our findings suggest that the early administration of PT320 shows potential as a neuroprotective treatment for PD, as it can preserve mitochondrial function. Through enhancing mitochondrial health by regulating Opa1 and Fis1, PT320 presents a new neuroprotective therapy in PD.


Mitochondrial Diseases , Parkinson Disease , Mice , Animals , Dopamine/metabolism , Cytochromes c/metabolism , Cytochromes c/pharmacology , Cytochromes c/therapeutic use , Parkinson Disease/genetics , Mitochondria , Mitochondrial Diseases/drug therapy , Mitochondrial Diseases/metabolism , Disease Models, Animal
9.
Chemistry ; 30(28): e202400268, 2024 May 17.
Article En | MEDLINE | ID: mdl-38472116

Modern approaches in metallodrug research focus on compounds that bind protein targets rather than DNA. However, the identification of protein targets and binding sites is challenging. Using intact mass spectrometry and proteomics, we investigated the binding of the antimetastatic agent RAPTA-C to the model proteins ubiquitin, cytochrome c, lysozyme, and myoglobin. Binding to cytochrome c and lysozyme was negligible. However, ubiquitin bound up to three Ru moieties, two of which were localized at Met1 and His68 as [Ru(cym)], and [Ru(cym)] or [Ru(cym)(PTA)] adducts, respectively. Myoglobin bound up to four [Ru(cym)(PTA)] moieties and five sites were identified at His24, His36, His64, His81/82 and His113. Collision-induced unfolding (CIU) studies via ion-mobility mass spectrometry allowed measuring protein folding as a function of collisional activation. CIU of protein-RAPTA-C adducts showed binding of [Ru(cym)] to Met1 caused a significant compaction of ubiquitin, likely from N-terminal S-Ru-N chelation, while binding of [Ru(cym)(PTA)] to His residues of ubiquitin or myoglobin induced a smaller effect. Interestingly, the folded state of ubiquitin formed by His functionalization was more stable than Met1 metalation. The data suggests that selective metalation of amino acids at different positions on the protein impacts the conformation and potentially the biological activity of anticancer compounds.


Cytochromes c , Muramidase , Myoglobin , Protein Folding , Ubiquitin , Ubiquitin/chemistry , Ubiquitin/metabolism , Myoglobin/chemistry , Myoglobin/metabolism , Binding Sites , Cytochromes c/chemistry , Cytochromes c/metabolism , Muramidase/chemistry , Muramidase/metabolism , Protein Binding , Ruthenium/chemistry , Coordination Complexes/chemistry , Coordination Complexes/metabolism
10.
Cells ; 13(6)2024 Mar 12.
Article En | MEDLINE | ID: mdl-38534337

Cytochrome c (Cytc) has both life-sustaining and cellular death-related functions, depending on subcellular localization. Within mitochondria, Cytc acts as a single electron carrier as part of the electron transport chain (ETC). When released into the cytosol after cellular insult, Cytc triggers the assembly of the apoptosome, committing the cell to intrinsic apoptosis. Due to these dual natures, Cytc requires strong regulation by the cell, including post-translational modifications, such as phosphorylation and acetylation. Six phosphorylation sites and three acetylation sites have been detected on Cytc in vivo. Phosphorylations at T28, S47, Y48, T49, T58, and Y97 tend to be present under basal conditions in a tissue-specific manner. In contrast, the acetylations at K8, K39, and K53 tend to be present in specific pathophysiological conditions. All of the phosphorylation sites and two of the three acetylation sites partially inhibit respiration, which we propose serves to maintain an optimal, intermediate mitochondrial membrane potential (ΔΨm) to minimize reactive oxygen species (ROS) production. Cytc phosphorylations are lost during ischemia, which drives ETC hyperactivity and ΔΨm hyperpolarization, resulting in exponential ROS production thus causing reperfusion injury following ischemia. One of the acetylation sites, K39, shows a unique behavior in that it is gained during ischemia, stimulating respiration while blocking apoptosis, demonstrating that skeletal muscle, which is particularly resilient to ischemia-reperfusion injury compared to other organs, possesses a different metabolic strategy to handle ischemic stress. The regulation of Cytc by these post-translational modifications underscores the importance of Cytc for the ETC, ΔΨm, ROS production, apoptosis, and the cell as a whole.


Cytochromes c , Mitochondria , Humans , Phosphorylation , Cytochromes c/metabolism , Acetylation , Reactive Oxygen Species/metabolism , Membrane Potential, Mitochondrial , Mitochondria/metabolism , Apoptosis , Respiration , Ischemia/metabolism
11.
J Environ Manage ; 356: 120750, 2024 Apr.
Article En | MEDLINE | ID: mdl-38520849

The nitrate denitrifying anaerobic methane oxidation-anaerobic ammonia oxidation (DAMO-anammox) can accomplish nitrogen removal and methane (CH4) reduction. This process greatly contributes to carbon emission mitigation and carbon neutrality. In this study, we investigated the electron transfer process of functional microorganisms in the iron-mediated DAMO-anammox system. Fe3+ could be bound to several functional groups (-CH3, COO-, -CH) in extracellular polymeric substance (EPS), and the functional groups bound were different at different iron concentration. Fe3+ underwent reduction reactions to produce Fe2+. Most Fe3+ and Fe2+ react with microorganisms and formed chelates with EPS. Three-dimensional fluorescence spectra showed that Fe3+ affected the secretion of tyrosine and tryptophan, which were essential for cytochrome synthesis. The presence of Fe3+ accelerated c-type cytochrome-mediated extracellular electron transfer (EET), and when more Fe3+ existed, the more cytochrome C expressed. DAMO archaea (M. nitroreducens) in the system exhibited a high positive correlation with the functional genes (resa and ccda) for cytochrome c synthesis. Some denitrifying microorganisms showed positive correlations with the abundance of riboflavin. This finding showed that riboflavin secreted by functional microorganisms acted as an electron shuttle. In addition, DAMO archaea were positively correlated with the hair synthesis gene pily1, which indicated that direct interspecies electron transfer (DIET) may exist in the iron-mediated DAMO-anammox system.


Ammonium Compounds , Iron , Anaerobic Ammonia Oxidation , Extracellular Polymeric Substance Matrix/metabolism , Cytochromes c/metabolism , Electrons , Denitrification , Anaerobiosis , Archaea , Oxidation-Reduction , Methane , Carbon/metabolism , Riboflavin/metabolism , Bioreactors , Ammonium Compounds/metabolism , Nitrogen/metabolism , Nitrites/metabolism
12.
Nano Lett ; 24(14): 4178-4185, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38552164

Elucidating charge transport (CT) through proteins is critical for gaining insights into ubiquitous CT chain reactions in biological systems and developing high-performance bioelectronic devices. While intra-protein CT has been extensively studied, crucial knowledge about inter-protein CT via interfacial amino acids is still absent due to the structural complexity. Herein, by loading cytochrome c (Cyt c) on well-defined peptide self-assembled monolayers to mimic the protein-protein interface, we provide a precisely controlled platform for identifying the roles of interfacial amino acids in solid-state CT via peptide-Cyt c junctions. The terminal amino acid of peptides serves as a fine-tuning factor for both the interfacial interaction between peptides and Cyt c and the immobilized Cyt c orientation, resulting in a nearly 10-fold difference in current through peptide-Cyt c junctions with varied asymmetry. This work provides a valuable platform for studying CT across proteins and contributes to the understanding of fundamental principles governing inter-protein CT.


Amino Acids , Cytochromes c , Cytochromes c/chemistry , Cytochromes c/metabolism , Peptides/metabolism , Proteins , Electron Transport
13.
Cell Death Differ ; 31(4): 387-404, 2024 Apr.
Article En | MEDLINE | ID: mdl-38521844

The redox-active protein cytochrome c is a highly positively charged hemoglobin that regulates cell fate decisions of life and death. Under normal physiological conditions, cytochrome c is localized in the mitochondrial intermembrane space, and its distribution can extend to the cytosol, nucleus, and extracellular space under specific pathological or stress-induced conditions. In the mitochondria, cytochrome c acts as an electron carrier in the electron transport chain, facilitating adenosine triphosphate synthesis, regulating cardiolipin peroxidation, and influencing reactive oxygen species dynamics. Upon cellular stress, it can be released into the cytosol, where it interacts with apoptotic peptidase activator 1 (APAF1) to form the apoptosome, initiating caspase-dependent apoptotic cell death. Additionally, following exposure to pro-apoptotic compounds, cytochrome c contributes to the survival of drug-tolerant persister cells. When translocated to the nucleus, it can induce chromatin condensation and disrupt nucleosome assembly. Upon its release into the extracellular space, cytochrome c may act as an immune mediator during cell death processes, highlighting its multifaceted role in cellular biology. In this review, we explore the diverse structural and functional aspects of cytochrome c in physiological and pathological responses. We summarize how posttranslational modifications of cytochrome c (e.g., phosphorylation, acetylation, tyrosine nitration, and oxidation), binding proteins (e.g., HIGD1A, CHCHD2, ITPR1, and nucleophosmin), and mutations (e.g., G41S, Y48H, and A51V) affect its function. Furthermore, we provide an overview of the latest advanced technologies utilized for detecting cytochrome c, along with potential therapeutic approaches related to this protein. These strategies hold tremendous promise in personalized health care, presenting opportunities for targeted interventions in a wide range of conditions, including neurodegenerative disorders, cardiovascular diseases, and cancer.


Cytochromes c , Humans , Cytochromes c/metabolism , Animals , Cell Death , Apoptosis , Nucleophosmin , Mitochondria/metabolism , Protein Processing, Post-Translational , Neoplasms/metabolism , Neoplasms/pathology
14.
Analyst ; 149(9): 2697-2708, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38506099

In this paper, we present Raman imaging as a non-invasive approach for studying changes in mitochondrial metabolism caused by cardiolipin-cytochrome c interactions. We investigated the effect of mitochondrial dysregulation on cardiolipin (CL) and cytochrome c (Cyt c) interactions for a brain cancer cell line (U-87 MG). Mitochondrial metabolism was monitored by checking the intensities of the Raman bands at 750 cm-1, 1126 cm-1, 1310 cm-1, 1337 cm-1, 1444 cm-1 and 1584 cm-1. The presented results indicate that under pathological conditions, the content and redox status of Cyt c in mitochondria can be used as a Raman marker to characterize changes in cellular metabolism. This work provides evidence that cardiolipin-cytochrome c interactions are crucial for mitochondrial energy homeostasis by controlling the redox status of Cyt c in the electron transport chain, switching from disabling Cyt c reduction and enabling peroxidase activity. This paper provides experimental support for the hypothesis of how cardiolipin-cytochrome c interactions regulate electron transfer in the respiratory chain, apoptosis and mROS production in mitochondria.


Brain Neoplasms , Cardiolipins , Cytochromes c , Glioblastoma , Mitochondria , Spectrum Analysis, Raman , Cardiolipins/metabolism , Cytochromes c/metabolism , Humans , Mitochondria/metabolism , Cell Line, Tumor , Spectrum Analysis, Raman/methods , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Glioblastoma/metabolism , Glioblastoma/pathology , Oxidation-Reduction
15.
J Biol Inorg Chem ; 29(2): 169-176, 2024 Mar.
Article En | MEDLINE | ID: mdl-38472487

Variants in the gene encoding human cytochrome c (CYCS) cause mild autosomal dominant thrombocytopenia. Despite high sequence conservation between mouse and human cytochrome c, this phenotype is not recapitulated in mice for the sole mutant (G41S) that has been investigated. The effect of the G41S mutation on the in vitro activities of cytochrome c is also not conserved between human and mouse. Peroxidase activity is increased in both mouse and human G41S variants, whereas apoptosome activation is increased for human G41S cytochrome c but decreased for mouse G41S cytochrome c. These apoptotic activities of cytochrome c are regulated at least in part by conformational dynamics of the main chain. Here we use computational and in vitro approaches to understand why the impact of the G41S mutation differs between mouse and human cytochromes c. The G41S mutation increases the inherent entropy and main chain mobility of human but not mouse cytochrome c. Exclusively in human G41S cytochrome c this is accompanied by a decrease in occupancy of H-bonds between protein and heme during simulations. These data demonstrate that binding of cytochrome c to Apaf-1 to trigger apoptosome formation, but not the peroxidase activity of cytochrome c, is enhanced by increased mobility of the native protein conformation.


Cytochromes c , Enzyme Activation , Mutation , Protein Conformation , Cytochromes c/metabolism , Cytochromes c/genetics , Cytochromes c/chemistry , Humans , Animals , Mice , Species Specificity , Molecular Dynamics Simulation , Caspases/metabolism , Caspases/genetics , Caspases/chemistry
16.
Brain Res ; 1834: 148890, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38552936

NADPH-oxidase (NOX) is a multi-subunit enzyme complex. The upregulation of NOX causes massive production of superoxide (O2¯), which avidly reacts with nitric oxide (NO) and increases cellular reactive oxygen/nitrogen species (ROS/RNS). Increased ROS/RNS plays pivotal role in the sporadic Alzheimer's disease (sAD) development and brain damage following impaired insulin signaling. Hence, this study aimed to examine early-time course of changes in NOX and NOS expression, and apoptotic proteins in the rats hippocampi following insulin signaling impairment [induced by STZ injection; intraperitoneal (IP) or in cerebral ventricles (ICV)]. Early effects (1, 3, or 6 weeks) on the NOX activity, translocation of NOX subunits from cytosol to the membrane, NO-synthases [neuronal-, inducible- and endothelial-NOS; nNOS, iNOS and eNOS], The Rac-1 protein expression, levels of NO and O2¯, cytochrome c release, caspase-3 and 9 activations (cleavage) were studied. STZ injection (in both models) increased NOX activity, O2¯ production, and enhanced cytosolic subunits translocation into membrane. The iNOS but not nNOS and eNOS expression and NO levels were increased in STZ treated rats. Finally, STZ injection increased cytochrome c release, caspase-3 and 9 activations in a manner that was significantly associated with levels of O2¯ and NO in the hippocampus. ICV-STZ administration resulted in significant profound changes over the IP route. In conclusion, impairment in insulin function induces early changes in ROS/RNS contents through NOX and iNOS upregulation and neuronal apoptosis in the hippocampus. Our results could mechanistically explain the role of impaired insulin function in the development of sAD.


Alzheimer Disease , Apoptosis , Hippocampus , Insulin , NADPH Oxidases , Nitric Oxide Synthase Type II , Rats, Wistar , Signal Transduction , Up-Regulation , Animals , Hippocampus/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Male , Apoptosis/physiology , Up-Regulation/physiology , Insulin/metabolism , NADPH Oxidases/metabolism , Nitric Oxide Synthase Type II/metabolism , Signal Transduction/physiology , Rats , Streptozocin , Nitric Oxide/metabolism , rac1 GTP-Binding Protein/metabolism , Reactive Oxygen Species/metabolism , Disease Models, Animal , Caspase 3/metabolism , Cytochromes c/metabolism
17.
J Bioenerg Biomembr ; 56(3): 221-234, 2024 Jun.
Article En | MEDLINE | ID: mdl-38517564

Na,K-ATPase is a crucial enzyme responsible for maintaining Na+, K+-gradients across the cell membrane, which is essential for numerous physiological processes within various organs and tissues. Due to its significance in cellular physiology, inhibiting Na,K-ATPase can have profound physiological consequences. This characteristic makes it a target for various pharmacological applications, and drugs that modulate the pump's activity are thus used in the treatment of several medical conditions. Cytochrome c (Cytc) is a protein with dual functions in the cell. In the mitochondria, it is essential for ATP synthesis and energy production. However, in response to apoptotic stimuli, it is released into the cytosol, where it triggers programmed cell death through the intrinsic apoptosis pathway. Aside from its role in canonical intrinsic apoptosis, Cytc also plays additional roles. For instance, Cytc participates in certain non-apoptotic functions -those which are less well-understood in comparison to its role in apoptosis. Within this in vitro study, we have shown the impact of Cytc on Na,K-ATPase for the first time. Cytc has a biphasic action on Na,K-ATPase, with activation at low concentrations (0.06 ng/ml; 6 ng/ml) and inhibition at high concentration (120 ng/ml). Cytc moreover displays isoform/subunit specificity and regulates the Na+ form of the enzyme, while having no effect on the activity or kinetic parameters of the K+-dependent form of the enzyme. Changing the affinity of p-chloromercuribenzoic acid (PCMB) by Cytc is therefore both a required and sufficient condition for confirming that PCMB and Cytc share the same target, namely the thiol groups of cysteine in Na,K-ATPase.


Cytochromes c , Sodium-Potassium-Exchanging ATPase , Sodium-Potassium-Exchanging ATPase/metabolism , Cytochromes c/metabolism , Animals
18.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167134, 2024 Jun.
Article En | MEDLINE | ID: mdl-38531481

Five pathogenic variants in the gene encoding cytochrome c (CYCS) associated with mild autosomal dominant thrombocytopenia have been reported. Previous studies of peripheral blood CD34+ or CD45+ cells from subjects with the G42S CYCS variant showed an acceleration in megakaryopoiesis compared to wild-type (WT) cells. To determine whether this result reflects a common feature of the CYCS variants, the c.145T>C mutation (Y49H variant) was introduced into the endogenous CYCS locus in K-562 cells, which undergo megakaryocytic maturation in response to treatment with a phorbol ester. The c.145T>C (Y49H) variant enhanced the megakaryocyte maturation of the K-562 cells, and this effect was seen when the cells were cultured at both 18 % and 5 % oxygen. Thus, alteration of megakaryopoiesis is common to both the G42S and Y49H CYCS variants and may contribute to the low platelet phenotype. The Y49H CYCS variant has previously been reported to impair mitochondrial respiratory chain function in vitro, however using extracellular flux analysis the c.145T>C (Y49H) variant does not alter mitochondrial bioenergetics of the K-562 cells, consistent with the lack of a phenotype characteristic of mitochondrial diseases in CYCS variant families. The Y49H variant has also been reported to enhance the ability of cytochrome c to trigger caspase activation in the intrinsic apoptosis pathway. However, as seen in peripheral blood cells from G42S CYCS variant carriers, the presence of Y49H cytochrome c in K-562 cells did not significantly change their response to an apoptotic stimulus.


Cytochromes c , Megakaryocytes , Mitochondria , Humans , Cytochromes c/metabolism , Cytochromes c/genetics , Megakaryocytes/metabolism , Megakaryocytes/cytology , Mitochondria/metabolism , Mitochondria/genetics , K562 Cells , Thrombocytopenia/genetics , Thrombocytopenia/metabolism , Thrombocytopenia/pathology , Apoptosis/genetics , Thrombopoiesis/genetics , Mutation
19.
Nat Commun ; 15(1): 1548, 2024 Feb 20.
Article En | MEDLINE | ID: mdl-38378784

Mitochondrial cytochrome c maturation (CCM) requires heme attachment via distinct pathways termed systems I and III. The mosaic distribution of these systems in Archaeplastida raises questions about the genetic mechanisms and evolutionary forces promoting repeated evolution. Here, we show a recurrent shift from ancestral system I to the eukaryotic-specific holocytochrome c synthase (HCCS) of system III in 11 archaeplastid lineages. Archaeplastid HCCS is sufficient to rescue mutants of yeast system III and Arabidopsis system I. Algal HCCS mutants exhibit impaired growth and respiration, and altered biochemical and metabolic profiles, likely resulting from deficient CCM and reduced cytochrome c-dependent respiratory activity. Our findings demonstrate that archaeplastid HCCS homologs function as system III components in the absence of system I. These results elucidate the evolutionary trajectory and functional divergence of CCM pathways in Archaeplastida, providing insight into the causes, mechanisms, and consequences of repeated cooption of an entire biological pathway.


Cytochromes c , Mitochondria , Amino Acid Sequence , Cytochromes c/genetics , Cytochromes c/metabolism , Mitochondria/genetics , Mitochondria/metabolism
20.
Nano Lett ; 24(7): 2384-2391, 2024 Feb 21.
Article En | MEDLINE | ID: mdl-38341873

Ferroptosis and apoptosis are two types of regulated cell death that are closely associated with the pathophysiological processes of many diseases. The significance of ferroptosis-apoptosis crosstalk in cell fate determination has been reported, but the underlying molecular mechanisms are poorly understood. Herein mitochondria-mediated molecular crosstalk is explored. Based on a comprehensive spectroscopic investigation and mass spectrometry, cytochrome c-involved Fenton-like reactions and lipid peroxidation are revealed. More importantly, cytochrome c is found to induce ROS-independent and cardiolipin-specific lipid peroxidation depending on its redox state. In situ Raman spectroscopy unveiled that erastin can interrupt membrane permeability, specifically through cardiolipin, facilitating cytochrome c release from the mitochondria. Details of the erastin-cardiolipin interaction are determined using molecular dynamics simulations. This study provides novel insights into how molecular crosstalk occurs around mitochondrial membranes to trigger ferroptosis and apoptosis, with significant implications for the rational design of mitochondria-targeted cell death reducers in cancer therapy.


Ferroptosis , Spectrum Analysis, Raman , Cardiolipins/metabolism , Cytochromes c/metabolism , Reactive Oxygen Species/metabolism , Apoptosis , Mitochondria/metabolism , Lipid Peroxidation
...