Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 7.210
1.
Viruses ; 16(5)2024 05 13.
Article En | MEDLINE | ID: mdl-38793653

BACKGROUND: Several screening strategies for identifying congenital CMV (cCMV) have been proposed; however, the optimal solution has yet to be determined. We aimed to determine the prevalence of cCMV by universal screening with saliva pool testing and to identify the clinical variables associated with a higher risk of cCMV to optimize an expanded screening strategy. METHODS: We carried out a prospective universal cCMV screening (September/2022 to August/2023) of 2186 newborns, analyzing saliva samples in pools of five (Alethia-LAMP-CMV®) and then performed confirmatory urine CMV RT-PCR. Infants with risk factors (small for gestational age, failed hearing screening, HIV-exposed, born to immunosuppressed mothers, or <1000 g birth weight) underwent expanded screening. Multivariate analyses were used to assess the association with maternal/neonatal variables. RESULTS: We identified 10 infants with cCMV (prevalence: 0.46%, 95% CI 0.22-0.84), with significantly higher rates (2.1%, 95% CI 0.58-5.3) in the high-risk group (p = 0.04). False positives occurred in 0.09% of cases. No significant differences in maternal/neonatal characteristics were observed, except for a higher prevalence among infants born to non-Chilean mothers (p = 0.034), notably those born to Haitian mothers (1.5%, 95% CI 0.31-4.34), who had higher odds of cCMV (OR 6.82, 95% CI 1.23-37.9, p = 0.04). Incorporating maternal nationality improved predictive accuracy (AUC: 0.65 to 0.83). CONCLUSIONS: For low-prevalence diseases such as cCMV, universal screening with pool testing in saliva represents an optimal and cost-effective approach to enhance diagnosis in asymptomatic patients. An expanded screening strategy considering maternal nationality could be beneficial in resource-limited settings.


Cytomegalovirus Infections , Cytomegalovirus , Developing Countries , Neonatal Screening , Saliva , Humans , Saliva/virology , Cytomegalovirus Infections/diagnosis , Cytomegalovirus Infections/congenital , Cytomegalovirus Infections/epidemiology , Cytomegalovirus Infections/virology , Infant, Newborn , Female , Cytomegalovirus/genetics , Cytomegalovirus/isolation & purification , Prospective Studies , Neonatal Screening/methods , Male , Molecular Diagnostic Techniques/methods , Prevalence , Mass Screening/methods , Sensitivity and Specificity , Pregnancy , Risk Factors
2.
Diagn Microbiol Infect Dis ; 109(3): 116301, 2024 Jul.
Article En | MEDLINE | ID: mdl-38723453

Accurate detection and quantification of cytomegalovirus (CMV) is crucial to preventing adverse outcomes in immunocompromised individuals. Current assays were developed for use with plasma specimens, but CMV may be present in bronchoalveolar lavage (BAL) fluid and cerebrospinal fluid (CSF). We evaluated the performance of the Abbott Alinity m CMV assay compared to the Abbott RealTime CMV assay for quantification of CMV in plasma, BAL, and CSF specimens. To evaluate clinical performance, 190 plasma, 78 BAL, and 20 CSF specimens were tested with the Alinity m assay and compared to the RealTime assay. The Alinity m CMV assay showed high precision (SD <0.01 to 0.13) for all 3 specimen types. Clincal plasma and BAL specimens with quantifiable CMV DNA demonstrated strong correlation to RealTime CMV assay results (r2 = 0.9779 for plasma, r2 = 0.9373 for BAL). The Alinity m CMV assay may be useful for quantification of CMV in plasma, BAL, and CSF specimens.


Bronchoalveolar Lavage Fluid , Cerebrospinal Fluid , Cytomegalovirus Infections , Cytomegalovirus , Humans , Bronchoalveolar Lavage Fluid/virology , Cytomegalovirus Infections/diagnosis , Cytomegalovirus Infections/cerebrospinal fluid , Cytomegalovirus Infections/virology , Cytomegalovirus/isolation & purification , Cytomegalovirus/genetics , Cerebrospinal Fluid/virology , Molecular Diagnostic Techniques/methods , Molecular Diagnostic Techniques/standards , Sensitivity and Specificity , Viral Load , Plasma/virology , DNA, Viral/cerebrospinal fluid
3.
New Microbiol ; 47(1): 52-59, 2024 May.
Article En | MEDLINE | ID: mdl-38700884

Monitoring Epstein-Barr virus (EBV) and cytomegalovirus (CMV) infection after transplantation is recommended to enable preemptive therapy. However, the most suitable sample type remains unclear. Patients who underwent hematopoietic stem cell or liver transplantation were included in this study. Viral loads in sequential whole-blood and plasma samples were retrospectively analyzed. EBV DNA was detected more frequently in whole blood (55%) than in plasma (18%). The detection rate of CMV DNA was similar between the two sample types. The correlation of viral loads between the two sample types were 0.515 and 0.688 for EBV and CMV, respectively. Among paired samples in which EBV DNA was detected in whole blood, the plasma EBV detection rate was significantly higher in patients who underwent hematopoietic stem cell transplantation than in those who underwent liver transplantation. The viral DNA load in whole blood and plasma showed similar trends. The EBV detection rate was higher in whole blood, and a high correlation was observed between CMV DNA loads and whole blood and plasma. These results indicate that whole blood is more sensitive for monitoring both EBV and CMV, whereas plasma is a potential alternative sample for monitoring CMV.


Cytomegalovirus Infections , Cytomegalovirus , Epstein-Barr Virus Infections , Herpesvirus 4, Human , Viral Load , Humans , Cytomegalovirus/genetics , Cytomegalovirus/isolation & purification , Cytomegalovirus Infections/virology , Cytomegalovirus Infections/blood , Cytomegalovirus Infections/diagnosis , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/isolation & purification , Epstein-Barr Virus Infections/virology , Epstein-Barr Virus Infections/blood , Epstein-Barr Virus Infections/diagnosis , Male , Female , Middle Aged , Adult , Retrospective Studies , DNA, Viral/blood , Young Adult , Hematopoietic Stem Cell Transplantation , Aged , Plasma/virology , Liver Transplantation , Adolescent
4.
Viruses ; 16(5)2024 04 26.
Article En | MEDLINE | ID: mdl-38793573

Cytomegalovirus (CMV) colitis is a critical condition associated with severe complications in ulcerative colitis (UC). This study aimed to investigate the diagnostic value of the presence of CMV DNA in intestinal mucosa tissue and blood samples in patients with active UC. This study included 81 patients with exacerbated symptoms of UC. Patient data were obtained from the Hospital Information Management System. CMV DNA in colorectal tissue and plasma samples were analyzed using a real-time quantitative PCR assay. CMV markers were detected using immunohistochemistry and hematoxylin-eosin staining. Immunohistochemistry positivity was observed in tissue samples from eight (9.9%) patients. Only one (1.2%) patient showed CMV-specific intranuclear inclusion bodies. CMV DNA was detected in 63.0% of the tissues (median: 113 copies/mg) and in 58.5% of the plasma samples (median: 102 copies/mL). For tissues, sensitivity and the negative predictive value (NPV) for qPCR were excellent (100.0%), whereas specificity and the positive predictive value (PPV) were low (41.9% and 15.7%, respectively). For plasma, sensitivity and NPV were high (100.0%) for qPCR, whereas specificity and PPV were low (48.6% and 24.0%, respectively). CMV DNA ≥392 copies/mg in tissue samples (sensitivity 100.0% and specificity 83.6%) and ≥578 copies/mL (895 IU/mL) in plasma samples (sensitivity 66.7% and specificity 100.0%) provided an optimal diagnosis for this test. The qPCR method improved patient management through the early detection of CMV colitis in patients with UC. However, reliance on qPCR positivity alone can lead to overdiagnosis. Quantification of CMV DNA can improve diagnostic specificity, although standardization is warranted.


Colitis, Ulcerative , Cytomegalovirus Infections , Cytomegalovirus , DNA, Viral , Real-Time Polymerase Chain Reaction , Sensitivity and Specificity , Humans , Colitis, Ulcerative/diagnosis , Colitis, Ulcerative/virology , Cytomegalovirus/genetics , Cytomegalovirus/isolation & purification , Cytomegalovirus Infections/diagnosis , Cytomegalovirus Infections/virology , DNA, Viral/blood , DNA, Viral/genetics , Female , Male , Middle Aged , Adult , Real-Time Polymerase Chain Reaction/methods , Aged , Intestinal Mucosa/virology , Young Adult , Immunohistochemistry , Viral Load
5.
J Clin Virol ; 172: 105675, 2024 Jun.
Article En | MEDLINE | ID: mdl-38640886

BACKGROUND: Congenital CMV infection is the most common congenital infection worldwide and a major cause of neurological impairment and sensorineural hearing loss. Fetal CMV infection is confirmed by a positive PCR test in the amniotic fluid (amniocentesis performed after 18-20 weeks of gestation and at least 8 weeks after maternal infection). However, despite a negative antenatal CMV PCR result, some newborns can be tested positive at birth. Although not widely documented, the prognosis for these babies appears to be good. OBJECTIVES: The aim of this study is to evaluate the long-term prognosis of fetuses with a false-negative AFS for cCMV, with a minimum follow-up period of 6 years. STUDY DESIGN: This is a retrospective cohort study of false-negative amniocentesis reported at the CUB-Hôpital Erasme and Hôpital CHIREC in Brussels between 1985 and 2017. RESULTS: Of the 712 negative CMV PCR amniocenteses, 24 had a CMV PCR positive at birth. The false negative rate was 8.6 %. Of the 24 cases, 9 primary maternal infections occurred in the first trimester, 14 in the second trimester and 1 in the third trimester. Among the 24 children, 2 had symptoms at birth (hyperbilirubinemia and left paraventricular cysts), but all had normal follow-up (minimum 4 years, mean 16,6 years). DISCUSSION: Only 2 cases could be explained by early amniocentesis. Among the others, the false-negative results could be attributed to a low viral load, a delayed infection or, less likely, to a sample degradation. CONCLUSION: Despite the false-negative results, all 24 children had a normal long-term follow-up.


Amniocentesis , Cytomegalovirus Infections , Pregnancy Complications, Infectious , Humans , Female , Pregnancy , Retrospective Studies , Cytomegalovirus Infections/diagnosis , Cytomegalovirus Infections/congenital , False Negative Reactions , Infant, Newborn , Follow-Up Studies , Pregnancy Complications, Infectious/virology , Pregnancy Complications, Infectious/diagnosis , Cytomegalovirus/genetics , Cytomegalovirus/isolation & purification , Amniotic Fluid/virology , Male , Adult , Prognosis , Infectious Disease Transmission, Vertical , Polymerase Chain Reaction/methods
6.
J Virol ; 98(5): e0003224, 2024 May 14.
Article En | MEDLINE | ID: mdl-38651900

Critical stages of lytic herpes simplex virus type 1 (HSV-1) replication are marked by the sequential expression of immediate early (IE) to early (E), then late (L) viral genes. HSV-1 can also persist in neuronal cells via a non-replicative, transcriptionally repressed infection called latency. The regulation of lytic and latent transcriptional profiles is critical to HSV-1 pathogenesis and persistence. We sought a fluorescence-based approach to observe the outcome of neuronal HSV-1 infection at the single-cell level. To achieve this goal, we constructed and characterized a novel HSV-1 recombinant that enables discrimination between lytic and latent infection. The dual reporter HSV-1 encodes a human cytomegalovirus-immediate early (hCMV-IE) promoter-driven enhanced yellow fluorescent protein (eYFP) to visualize the establishment of infection and an endogenous mCherry-VP26 fusion to report lytic replication. We confirmed that viral gene expression, replication, and spread of infection are not altered by the incorporation of the fluorescent reporters, and fluorescent protein (FP) detection virtuously reports the progression of lytic replication. We demonstrate that the outcome of HSV-1 infection of compartmentalized primary neurons is determined by viral inoculating dose: high-dose axonal inoculation proceeds to lytic replication, whereas low-dose axonal inoculation establishes a latent HSV-1 infection. Interfering with low-dose axonal inoculation via small molecule drugs reports divergent phenotypes of eYFP and mCherry reporter detection, correlating with altered states of viral gene expression. We report that the transcriptional state of neuronal HSV-1 infection is variable in response to changes in the intracellular neuronal environment.IMPORTANCEHerpes simplex virus type 1 (HSV-1) is a prevalent human pathogen that infects approximately 67% of the global human population. HSV-1 invades the peripheral nervous system, where latent HSV-1 infection persists within the host for life. Immunological evasion, viral persistence, and herpetic pathologies are determined by the regulation of HSV-1 gene expression. Studying HSV-1 gene expression during neuronal infection is challenging but essential for the development of antiviral therapeutics and interventions. We used a recombinant HSV-1 to evaluate viral gene expression during infection of primary neurons. Manipulation of cell signaling pathways impacts the establishment and transcriptional state of HSV-1 latency in neurons. The work here provides critical insight into the cellular and viral factors contributing to the establishment of latent HSV-1 infection.


Herpes Simplex , Herpesvirus 1, Human , Luminescent Proteins , Neurons , Virus Replication , Herpesvirus 1, Human/genetics , Herpesvirus 1, Human/physiology , Neurons/virology , Neurons/metabolism , Humans , Animals , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Herpes Simplex/virology , Genes, Reporter , Virus Latency/genetics , Gene Expression Regulation, Viral , Chlorocebus aethiops , Vero Cells , Cytomegalovirus/genetics , Cytomegalovirus/physiology
7.
Turk Neurosurg ; 34(3): 448-452, 2024.
Article En | MEDLINE | ID: mdl-38650560

AIM: To demonstrate if the human cytomegalovirus (HCMV) genome, that is involved in the pathogenesis of gliomas, is part of the genomic DNA of glioma cells or not. MATERIAL AND METHODS: The study included U87MG glioblastoma cell culture and tumor samples from glioma patients. The genomic DNA of tumor samples and U87MG cells were extracted and real-time quantitative PCR was used to assess the presence of the human cytomegalovirus genomic DNA. RESULTS: Consequently, HCMV positivity was not detected in the tumor and cell line genomic DNA under the aforementioned experimental conditions. CONCLUSION: We found that the genomic DNA of all the samples was negative for HCMV genomic DNA. Thus, HCMV could not be detected in human glioma tumors and we put forward that HCMV genomic DNA was not incorporated into the genomic DNA of glioma cells. Thus, total viral DNA is not involved in the pathogenesis of glioma; however, small viral particles or specific genes might be incorporated into the genomic DNA of glioma cells, leading to cancer development. This prompts further studies for verification.


Brain Neoplasms , Cytomegalovirus , DNA, Viral , Genome, Viral , Glioma , Humans , Cytomegalovirus/genetics , Cytomegalovirus/isolation & purification , DNA, Viral/analysis , DNA, Viral/genetics , Glioma/virology , Glioma/genetics , Cell Line, Tumor , Brain Neoplasms/virology , Brain Neoplasms/genetics , Male , Female , Cytomegalovirus Infections/virology , Middle Aged , Real-Time Polymerase Chain Reaction , Adult
8.
J Gen Virol ; 105(4)2024 Apr.
Article En | MEDLINE | ID: mdl-38687323

The human cytomegalovirus (HCMV) pUS2 glycoprotein exploits the host's endoplasmic reticulum (ER)-associated degradation (ERAD) pathway to degrade major histocompatibility complex class I (MHC-I) and prevent antigen presentation. Beyond MHC-I, pUS2 has been shown to target a range of cellular proteins for degradation, preventing their cell surface expression. Here we have identified a novel pUS2 target, ER-resident protein lectin mannose binding 2 like (LMAN2L). pUS2 expression was both necessary and sufficient for the downregulation of LMAN2L, which was dependent on the cellular E3 ligase TRC8. Given the hypothesized role of LMAN2L in the trafficking of glycoproteins, we employed proteomic plasma membrane profiling to measure LMAN2L-dependent changes at the cell surface. A known pUS2 target, integrin alpha-6 (ITGA6), was downregulated from the surface of LMAN2L-deficient cells, but not other integrins. Overall, these results suggest a novel strategy of pUS2-mediated protein degradation whereby pUS2 targets LMAN2L to impair trafficking of ITGA6. Given that pUS2 can directly target other integrins, we propose that this single viral protein may exhibit both direct and indirect mechanisms to downregulate key cell surface molecules.


Cytomegalovirus , Endoplasmic Reticulum , Viral Envelope Proteins , Viral Proteins , Humans , Cytomegalovirus/genetics , Cytomegalovirus/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/virology , Viral Proteins/metabolism , Viral Proteins/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Proteolysis , Membrane Proteins/metabolism , Membrane Proteins/genetics , Mannose-Binding Lectins/metabolism , Mannose-Binding Lectins/genetics , Endoplasmic Reticulum-Associated Degradation , Host-Pathogen Interactions , Cell Membrane/metabolism , Cell Membrane/virology
9.
J Med Virol ; 96(4): e29609, 2024 Apr.
Article En | MEDLINE | ID: mdl-38647051

This study evaluated the cost-effectiveness of maribavir versus investigator-assigned therapy (IAT; valganciclovir/ganciclovir, foscarnet, or cidofovir) for post-transplant refractory cytomegalovirus (CMV) infection with or without resistance. A two-stage Markov model was designed using data from the SOLSTICE trial (NCT02931539), real-world multinational observational studies, and published literature. Stage 1 (0-78 weeks) comprised clinically significant CMV (csCMV), non-clinically significant CMV (n-csCMV), and dead states; stage 2 (78 weeks-lifetime) comprised alive and dead states. Total costs (2022 USD) and quality-adjusted life years (QALYs) were estimated for the maribavir and IAT cohorts. An incremental cost-effectiveness ratio was calculated to determine cost-effectiveness against a willingness-to-pay threshold of $100 000/QALY. Compared with IAT, maribavir had lower costs ($139 751 vs $147 949) and greater QALYs (6.04 vs 5.83), making it cost-saving and more cost-effective. Maribavir had higher acquisition costs compared with IAT ($80 531 vs $65 285), but lower costs associated with administration/monitoring ($16 493 vs $27 563), adverse events (AEs) ($11 055 vs $16 114), hospitalization ($27 157 vs $33 905), and graft loss ($4516 vs $5081), thus making treatment with maribavir cost-saving. Maribavir-treated patients spent more time without CMV compared with IAT-treated patients (0.85 years vs 0.68 years), leading to lower retreatment costs for maribavir (cost savings: -$42 970.80). Compared with IAT, maribavir was more cost-effective for transplant recipients with refractory CMV, owing to better clinical efficacy and avoidance of high costs associated with administration, monitoring, AEs, and hospitalizations. These results can inform healthcare decision-makers on the most effective use of their resources for post-transplant refractory CMV treatment.


Antiviral Agents , Benzimidazoles , Cost-Benefit Analysis , Cytomegalovirus Infections , Dichlororibofuranosylbenzimidazole/analogs & derivatives , Quality-Adjusted Life Years , Ribonucleosides , Humans , Cytomegalovirus Infections/drug therapy , Cytomegalovirus Infections/economics , Antiviral Agents/therapeutic use , Antiviral Agents/economics , Ribonucleosides/therapeutic use , Ribonucleosides/economics , Benzimidazoles/therapeutic use , Benzimidazoles/economics , United States , Cytomegalovirus/drug effects , Cytomegalovirus/genetics , Drug Resistance, Viral , Male , Female , Middle Aged , Adult , Genotype , Transplant Recipients
10.
Shock ; 61(6): 894-904, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38662585

ABSTRACT: Objective: We conducted a two-sample bidirectional Mendelian randomization (MR) study to investigate the causal relationships between herpes viruses and sepsis. Methods: Publicly available genome-wide association study data were used. Four viruses, HSV-1, HSV-2, EBV, and CMV, were selected, with serum positivity and levels of antibody in serum as the herpes virus data. Results: In forward MR, susceptibility to HSV-1 was a risk factor for sepsis. The susceptibility to CMV showed a severity-dependent effect on sepsis and was a risk factor for the 28-day mortality from sepsis, and was also a risk factor for 28-day sepsis mortality in critical care admission. The EBV EA-D antibody level after EBV infection was a protective factor for 28-day sepsis mortality in critical care admission, and CMV pp28 antibody level was a risk factor for 28-day sepsis mortality in critical care admission. No statistically significant causal relationships between HSV-2 and sepsis were found. No exposures having statistically significant association with sepsis critical care admission as an outcome were found. In reverse MR, the sepsis critical care admission group manifested a decrease in CMV pp52 antibody levels. No causal relationships with statistical significance between sepsis exposure and other herpes virus outcomes were found. Conclusion: Our study identifies HSV-1 susceptibility as a sepsis risk, with CMV susceptibility elevating severity. Varied effects of EBV and CMV antibodies on sepsis severity are noted. Severe sepsis results in a decline in CMV antibody levels. Our results help prognostic and predictive enrichment and offer valuable information for precision sepsis treatment.


Herpesvirus 1, Human , Mendelian Randomization Analysis , Sepsis , Humans , Sepsis/genetics , Herpesvirus 1, Human/immunology , Risk Factors , Cytomegalovirus Infections/genetics , Cytomegalovirus/genetics , Herpes Simplex/genetics , Genome-Wide Association Study , Male , Genetic Predisposition to Disease , Severity of Illness Index , Female
11.
J Clin Virol ; 172: 105673, 2024 Jun.
Article En | MEDLINE | ID: mdl-38564881

BACKGROUND: Long-term allograft and patient survival after kidney transplantation (KTX) depends on the balance between over- and under-immunosuppression (IS). High levels of IS predispose to opportunistic infections. Plasma load of Torque Teno Virus (TTV), a non-pathogenic highly prevalent Annellovirus, is associated with its hosts immune status, especially after solid organ transplantation. OBJECTIVES: To investigate the association of plasma TTV load and opportunistic viral infections after pediatric KTX. STUDY DESIGN: This retrospective study includes all pediatric KTX patients followed at the Medical University of Vienna 2014-2020. PCR for Cytomegalovirus (CMV), Epstein-Barr virus (EBV), BK virus (BKV), and TTV was performed every 4-8 weeks at routine follow-up visits. RESULTS: 71 pediatric KTX patients were followed with TTV measurements for a median of 2.7 years. TTV plasma load was associated with CMV DNAemia at the next visit with an OR of 2.37 (95 % CI 1.15-4.87; p = 0.03) after adjustment for time after KTX and recipient age. For a cut-off of 7.68 log10 c/mL TTV a sensitivity of 100 %, a specificity of 61 %, a NPV 100 %, and a PPV of 46 % to detect CMV DNAemia at the next visit was calculated. TTV plasma loads were also associated with BKV DNAuria and BKV DNAemia at the next visit, but not with EBV DNAemia. CONCLUSIONS: This is the first study to analyse associations between TTV plasma loads and opportunistic viral infections in pediatric KTX. We were able to present a TTV cut-off for the prediction of clinically relevant CMV DNAemia that might be useful in clinical care.


BK Virus , Cytomegalovirus Infections , Cytomegalovirus , DNA Virus Infections , Kidney Transplantation , Polyomavirus Infections , Torque teno virus , Viral Load , Humans , Kidney Transplantation/adverse effects , Torque teno virus/genetics , Torque teno virus/isolation & purification , Child , Cytomegalovirus Infections/virology , Retrospective Studies , Male , BK Virus/isolation & purification , BK Virus/genetics , Adolescent , Female , Polyomavirus Infections/virology , Cytomegalovirus/genetics , DNA Virus Infections/virology , DNA Virus Infections/blood , DNA Virus Infections/epidemiology , Child, Preschool , DNA, Viral/blood , Opportunistic Infections/virology , Opportunistic Infections/diagnosis , Transplant Recipients/statistics & numerical data , Infant
12.
Viruses ; 16(3)2024 02 27.
Article En | MEDLINE | ID: mdl-38543731

The chromatin-remodeler SPOC1 (PHF13) is a transcriptional co-regulator and has been identified as a restriction factor against various viruses, including human cytomegalovirus (HCMV). For HCMV, SPOC1 was shown to block the onset of immediate-early (IE) gene expression under low multiplicities of infection (MOI). Here, we demonstrate that SPOC1-mediated restriction of IE expression is neutralized by increasing viral titers. Interestingly, our study reveals that SPOC1 exerts an additional antiviral function beyond the IE phase of HCMV replication. Expression of SPOC1 under conditions of high MOI resulted in severely impaired viral DNA replication and viral particle release, which may be attributed to inefficient viral transcription. With the use of click chemistry, the localization of viral DNA was investigated at late time points after infection. Intriguingly, we detected a co-localization of SPOC1, RNA polymerase II S5P and polycomb repressor complex 2 (PRC2) components in close proximity to viral DNA in areas that are hypothesized to harbor viral transcription sites. We further identified the N-terminal domain of SPOC1 to be responsible for interaction with EZH2, a subunit of the PRC2 complex. With this study, we report a novel and potent antiviral function of SPOC1 against HCMV that is efficient even with unrestricted IE gene expression.


Cytomegalovirus , Virus Replication , Humans , Cytomegalovirus/genetics , Cytomegalovirus/metabolism , DNA Replication , DNA, Viral/metabolism , Antiviral Agents/pharmacology , DNA-Binding Proteins/metabolism , Transcription Factors/genetics
13.
Viruses ; 16(3)2024 03 08.
Article En | MEDLINE | ID: mdl-38543779

Cytomegalovirus (CMV) can cause serious complications in immunocompromised individuals and fetuses with congenital infections. These can include neurodevelopmental impairments and congenital abnormalities in newborns. This paper emphasizes the importance of concurrently evaluating ultrasonography findings and laboratory parameters in diagnosing congenital CMV infection. To examine the prenatal characteristics of CMV DNA-positive patients, we assessed serum and amniotic fluid from 141 pregnant women aged 19-45 years, each with fetal anomalies. ELISA and PCR tests, conducted in response to these amniocentesis findings, were performed at an average gestational age of 25 weeks. Serological tests revealed that all 141 women were CMV IgG-positive, and 2 (1.41%) had low-avidity CMV IgG, suggesting a recent infection. CMV DNA was detected in 17 (12.05%) amniotic fluid samples using quantitative PCR. Of these, 82% exhibited central nervous system abnormalities. Given that most infections in pregnant women are undetectable and indicators non-specific, diagnosing primary CMV in pregnant women using clinical findings alone is challenging. We contend that serological tests should not be the sole means of diagnosing congenital CMV infection during pregnancy.


Cytomegalovirus Infections , Pregnancy Complications, Infectious , Pregnancy , Humans , Female , Infant, Newborn , Pregnant Women , Cytomegalovirus/genetics , Amniotic Fluid/chemistry , Immunoglobulin G , DNA, Viral/analysis , Hospitals
14.
Cells ; 13(6)2024 Mar 19.
Article En | MEDLINE | ID: mdl-38534385

Approximately 15-20% of global cancer cases are attributed to virus infections. Oncoviruses employ various molecular strategies to enhance replication and persistence. Human cytomegalovirus (HCMV), acting as an initiator or promoter, enables immune evasion, supporting tumor growth. HCMV activates pro-oncogenic pathways within infected cells and direct cellular transformation. Thus, HCMV demonstrates characteristics reminiscent of oncoviruses. Cumulative evidence emphasizes the crucial roles of EZH2 and Myc in oncogenesis and stemness. EZH2 and Myc, pivotal regulators of cellular processes, gain significance in the context of oncoviruses and HCMV infections. This axis becomes a central focus for comprehending the mechanisms driving virus-induced oncogenesis. Elevated EZH2 expression is evident in various cancers, making it a prospective target for cancer therapy. On the other hand, Myc, deregulated in over 50% of human cancers, serves as a potent transcription factor governing cellular processes and contributing to tumorigenesis; Myc activates EZH2 expression and induces global gene expression. The Myc/EZH2 axis plays a critical role in promoting tumor growth in oncoviruses. Considering that HCMV has been shown to manipulate the Myc/EZH2 axis, there is emerging evidence suggesting that HCMV could be regarded as a potential oncovirus due to its ability to exploit this critical pathway implicated in tumorigenesis.


Cytomegalovirus Infections , Neoplasms , Humans , Cytomegalovirus/genetics , Gene Expression Regulation , Carcinogenesis , Cell Transformation, Neoplastic , Enhancer of Zeste Homolog 2 Protein/genetics
15.
Int J Mol Sci ; 25(6)2024 Mar 14.
Article En | MEDLINE | ID: mdl-38542246

To date, limited information is available on cytomegalovirus (CMV) and lymphocryptovirus (LCV) from Chlorocebus monkeys. We report here high detection rates of herpesviruses in free-roaming African green monkeys (AGMs, Chlorocebus sabaeus) (26.4%, 23/87) and in captive AGMs (75%, 3/4) with respiratory disease on the Caribbean Island of St. Kitts. LCV (81.25%) was more prevalent than CMV (18.75%) in the AGMs. Applying a bigenic PCR approach (targeting DNA polymerase (DPOL) and glycoprotein B (gB) genes), long sequences were obtained from representative AGM CMV (KNA-SD6) and LCV (KNA-E4, -N6 and -R15) samples, and mixed LCV infections were identified in KNA-N6 and -R15. The nucleotide (nt) sequence (partial DPOL-intergenic region-partial gB) and partial DPOL- and gB-amino acid (aa) sequences of AGM CMV KNA-SD6 were closely related to Cytomegalovirus cercopithecinebeta5 isolates from grivet monkeys, whilst those of AGM LCV KNA-E4 and -N6 (and E4-like gB of KNA-R15) were more closely related to cognate sequences of erythrocebus patas LCV1 from patas monkey than other LCVs, corroborating the concept of cospeciation in the evolution of CMV/LCV. On the other hand, the partial DPOL aa sequence of KNA-R15, and additional gB sequences (N6-gB-2 and R15-gB-2) from samples KNA-N6 and -R15 (respectively) appeared to be distinct from those of Old World monkey LCVs, indicating LCV evolutionary patterns that were not synchronous with those of host species. The present study is the first to report the molecular prevalence and genetic diversity of CMV/LCV from free-roaming/wild and captive AGMs, and is the first report on analysis of CMV nt/deduced aa sequences from AGMs and LCV gB sequences from Chlorocebus monkeys.


Cytomegalovirus Infections , Lymphocryptovirus , Animals , Chlorocebus aethiops , Lymphocryptovirus/genetics , Cytomegalovirus/genetics , Phylogeny , Herpesvirus 4, Human , Glycoproteins/genetics , Genetic Variation
16.
mBio ; 15(4): e0019924, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38440980

Congenital hearing loss is a common chronic condition affecting children in both developed and developing nations. Viruses correlated with congenital hearing loss include human cytomegalovirus (HCMV) and Zika virus (ZIKV), which causes congenital Zika syndrome. The mechanisms by which HCMV and ZIKV infections cause hearing loss are poorly understood. It is challenging to study human inner ear cells because they are encased in bone and also scarce as autopsy samples. Recent advances in culturing human stem cell-derived otic progenitor cells (OPCs) have allowed us herein to describe successful in vitro infection of OPCs with HCMV and ZIKV, and also to propose potential mechanisms by which each viral infection could affect hearing. We find that ZIKV infection rapidly and significantly induces the expression of type I interferon and interferon-stimulated genes, while OPC viability declines, at least in part, from apoptosis. In contrast, HCMV infection did not appear to upregulate interferons or cause a reduction in cell viability, and instead disrupted expression of key genes and pathways associated with inner ear development and function, including Cochlin, nerve growth factor receptor, SRY-box transcription factor 11, and transforming growth factor-beta signaling. These findings suggest that ZIKV and HCMV infections cause congenital hearing loss through distinct pathways, that is, by inducing progenitor cell death in the case of ZIKV infection, and by disruption of critical developmental pathways in the case of HCMV infection. IMPORTANCE: Congenital virus infections inflict substantial morbidity and devastating disease in neonates worldwide, and hearing loss is a common outcome. It has been difficult to study viral infections of the human hearing apparatus because it is embedded in the temporal bone of the skull. Recent technological advances permit the differentiation of otic progenitor cells (OPCs) from human-induced pluripotent stem cells. This paper is important for demonstrating that inner ear virus infections can be modeled in vitro using OPCs. We infected OPCs with two viruses associated with congenital hearing loss: human cytomegalovirus (HCMV), a DNA virus, or Zika virus (ZIKV), an RNA virus. An important result is that the gene expression and cytokine production profiles of HCMV/ZIKV-infected OPCs are markedly dissimilar, suggesting that mechanisms of hearing loss are also distinct. The specific molecular regulatory pathways identified in this work could suggest important targets for therapeutics.


Cytomegalovirus Infections , Zika Virus Infection , Zika Virus , Infant, Newborn , Child , Humans , Zika Virus/physiology , Cytomegalovirus/genetics , Stem Cells , Interferons/metabolism
17.
Clin Transplant ; 38(3): e15287, 2024 03.
Article En | MEDLINE | ID: mdl-38477177

BACKGROUND: Little is known about the relationship between cytomegalovirus (CMV) infections and donor-derived cell-free DNA (dd-cfDNA) in heart transplant recipients. METHODS: In our study, CMV and dd-cfDNA results were prospectively collected on single-organ heart transplant recipients. If the CMV study was positive, a CMV study with dd-cfDNA was repeated 1-3 months later. The primary aim was to compare dd-cfDNA between patients with positive and negative CMV results. RESULTS: Of 44 patients enrolled between August 2022 and April 2023, 12 tested positive for CMV infections, 25 were included as controls, and seven patients with a viral infection without CMV were excluded. Baseline characteristics did not differ significantly between CMV-positive and CMV-negative patients with the exception of a later median time post-transplant in the CMV-positive group (253 days vs. 120 days, p = .03). Dd-cfDNA levels were significantly higher in patients with CMV infections compared to those without (p < .001) with more patients in the CMV positive group showing dd-cfDNA results ≥.12% (75% vs. 8%, p < .001) and ≥.20% (58% vs. 8%, p = .002). Each 1 log10 copy/ml reduction in CMV viral load from visit 1 to visit 2 was associated with a.23% reduction in log10 dd-cfDNA (p = .002). CONCLUSION: Our findings suggest that active CMV infections may raise dd-cfDNA levels in patients following heart transplantation. Larger studies are needed to validate these preliminary findings.


Cell-Free Nucleic Acids , Cytomegalovirus Infections , Heart Transplantation , Humans , Cytomegalovirus/genetics , Tissue Donors , Transplant Recipients , Graft Rejection
18.
Clin Transplant ; 38(4): e15292, 2024 04.
Article En | MEDLINE | ID: mdl-38545888

BACKGROUND: There is variability in recommended viral monitoring protocols after kidney transplant. In response to increased demand for laboratory testing during the COVID-19 pandemic, the Transplant Manitoba Adult Kidney Program updated its monitoring protocols for cytomegalovirus (CMV), Epstein-Barr virus (EBV), and BK polyomavirus (BKV) to a reduced frequency. METHODS: This single-center nested case-control study evaluated 252 adult kidney transplant recipients transplanted from 2015 to 2021, with the updated protocols effective on March 19th 2020. Cases included recipients transplanted after the protocol update who developed CMV, EBV, and BKV DNAemia and were matched to controls with DNAemia transplanted prior to the protocol update. The primary outcome was the difference in maximum DNA load titers between cases and matched controls. Secondary outcomes included time to initial DNAemia detection and DNAemia clearance. Safety outcomes of tissue-invasive viral disease were described. RESULTS: There were 216 recipients transplanted preupdate and 36 recipients postupdate. There was no difference between cases and controls in maximum or first DNA load titers for EBV, CMV, or BKV. Cases experienced earlier EBV DNAemia detection (26 (IQR 8, 32) vs. 434 (IQR 96, 1184) days, p = .005). Median follow-up was significantly longer for recipients transplanted preupdate (4.3 vs. 1.3 years, p < .0001). After adjusting for follow-up time, there was no difference in DNAemia clearance or tissue-invasive viral disease. CONCLUSION: Our findings suggest that reduced frequency viral monitoring protocols may be safe and cost-effective. This quality assurance initiative should be extended to detect longer-term and tissue-invasive disease outcomes.


BK Virus , Cytomegalovirus Infections , Epstein-Barr Virus Infections , Kidney Transplantation , Adult , Humans , Herpesvirus 4, Human/genetics , Cytomegalovirus/genetics , Kidney Transplantation/adverse effects , Epstein-Barr Virus Infections/diagnosis , Epstein-Barr Virus Infections/etiology , BK Virus/genetics , Case-Control Studies , Pandemics , Cytomegalovirus Infections/diagnosis , DNA , DNA, Viral/genetics , Transplant Recipients
19.
J Med Virol ; 96(3): e29564, 2024 Mar.
Article En | MEDLINE | ID: mdl-38506145

Cytomegalovirus (CMV) DNA in plasma is mainly unprotected and highly fragmented. The size of the amplicon largely explains the variation in CMV DNA loads quantified across PCR platforms. In this proof-of-concept study, we assessed whether the CMV DNA fragmentation profile may vary across allogeneic hematopoietic stem cell transplant recipients (allo-SCT), within the same patient over time, or is affected by letermovir (LMV) use. A total of 52 plasma specimens from 14 nonconsecutive allo-SCT recipients were included. The RealTime CMV PCR (Abbott Molecular), was used to monitor CMV DNA load in plasma, and fragmentation was assessed with a laboratory-designed PCR generating overlapping amplicons (around 90-110 bp) within the CMV UL34, UL80.5, and UL54 genes. Intrapatient, inter-patient, and LMV-associated qualitative and quantitative variations in seven amplicons were observed. These variations were seemingly unrelated to the CMV DNA loads measured by the Abbott PCR assay. CMV DNA loads quantified by UL34_4, UL54.5, and UL80.5_1 PCR assays discriminate between LMV and non-LMV patients. Our observations may have relevant implications in the management of active CMV infection in allo-SCT recipients, either treated or not with LMV, although the data need further validation.


Acetates , Cytomegalovirus Infections , Hematopoietic Stem Cell Transplantation , Quinazolines , Humans , Cytomegalovirus/genetics , DNA Fragmentation , Hematopoietic Stem Cell Transplantation/adverse effects , Cytomegalovirus Infections/drug therapy , Transplant Recipients , DNA, Viral , Antiviral Agents/therapeutic use , Viral Proteins/genetics
20.
J Med Virol ; 96(3): e29538, 2024 Mar.
Article En | MEDLINE | ID: mdl-38506230

To compare prevalence of positive PCR tests for herpesviruses between patients with and without a history of clinical corneal endothelial allograft rejection (AGR). Retrospective cross-sectional study with two-group comparison. A total of 307 aqueous humor (AH) samples from 235 Patients and 244 eyes who underwent penetrating keratoplasty or Descemet membrane endothelial keratoplasty or had a diagnostic AH aspiration due to clinical AGR between 2019 and 2023 were tested for DNA of herpes simplex virus (HSV), varicella-zoster virus (VZV), cytomegalovirus (CMV), and Epstein-Barr virus (EBV). PCR test results were compared between the two groups (with/without AGR). Another sub-analysis examined the results of patients without a history of herpetic keratitis. A total of 8% of eyes with clinical AGR (9/108) had a positive PCR result for one of the herpesviruses (HSV:3, CMV:3, EBV:2, VZV:1). All patients in the group without AGR had negative PCR results for all previous viruses (0/136). The difference was statistically significant (p < 0.001). The sub-analysis of eyes without a history of herpetic keratitis also revealed significantly more positive herpes PCR results (7/87) in eyes with AGR than in eyes without AGR (0/42, p = 0.005). Clinical AGR after keratoplasty shows a significant correlation to viral replication. Herpetic infection and AGR could occur simultaneously and act synergistically. Timely differentiation between active herpetic infection and/or AGR is pivotal for proper treatment and graft preservation.


Cytomegalovirus Infections , Epstein-Barr Virus Infections , Herpesviridae Infections , Keratitis, Herpetic , Humans , Retrospective Studies , Aqueous Humor/chemistry , Graft Rejection/diagnosis , Cross-Sectional Studies , Herpesvirus 4, Human/genetics , Simplexvirus/genetics , Cytomegalovirus/genetics , Herpesviridae Infections/diagnosis , Herpesvirus 3, Human/genetics , Polymerase Chain Reaction , DNA, Viral/genetics , DNA, Viral/analysis
...