ABSTRACT
Aflatoxin B1 (AFB1) is a mycotoxin highly toxic and carcinogenic to humans due to its potential to induce oxidative stress. The Beta-caryophyllene (BCP) have been highlighted for its broad spectrum of pharmacological effects. The present study aimed to investigate the beneficial effects of BCP against the susceptibility of hepatic and renal tissues to AFB1 toxicity, in biochemical parameters to assess organ function, tissue oxidation, and the immunocontent of oxidative and inflammatory proteins. Male Wistar rats was exposed to AFB1 (250 µg/kg, i.g.) and/or BCP (100 mg/kg, i.p.) for 14 successive days. It was found that exposure to AFB1 did not change the measured renal toxicity parameters. Also, AFB1 increased liver injury biomarkers (gamma glutamyl transferase and alkaline phosphatase) and reduced levels of non-enzymatic antioxidant defenses (ascorbic acid and non-protein thiol), however did not cause changes in the lipid peroxidation levels. Moreover, AFB1 interfered in oxidative pathway regulated by Kelch-like ECH-associated protein (Keap1)/nuclear factor (erythroid-derived 2)-like 2 (Nrf2), overacting Glutathione-S-Transferase (GST) activity. Lastly, a main effect of AFB1 on the total interleukin 1 beta (IL-1ß) was observed. Remarkably, the associated treatment of AFB1 + BCP improved altered liver parameters. In addition, BCP and AFB1 + BCP groups showed an increase in the levels of inhibitor of nuclear factor kappa-B kinase subunit beta (IKKß). Thus, these results indicated that BCP has potential protective effect against AFB1 induced hepatotoxicity.
Subject(s)
Aflatoxin B1/toxicity , Cytoprotection/drug effects , Liver/drug effects , Sesquiterpenes/pharmacology , Animals , Antioxidants/metabolism , Glutathione/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Lipid Peroxidation/drug effects , Liver/cytology , Liver/metabolism , Male , NF-E2-Related Factor 2/metabolism , Oxidative Stress/drug effects , Rats , Rats, WistarABSTRACT
In this study, a polysaccharide from marine alga Acanthophora spicifera (PAs) was isolated and structurally characterized. Its protective potential against chemically-induced gastric mucosa injury was evaluated. The gel permeation chromatography experiments and spectroscopy spectrum showed that PAs is a sulfated polysaccharide with a high molecular mass (6.98 × 105g/mol) and degree of sulfation of 1.23, exhibiting structural characteristic typical of an agar-type polysaccharide. Experimental results demonstrated that PAs reduced the hemorrhagic gastric injury, in a dose-dependent manner. Additionally, PAs reduced the intense gastric oxidative stress, measured by glutathione (GSH) and malondialdehyde (MDA) levels. PAs also prevented the reduction of mucus levels adhered to the gastric mucosa, promoted by the aggressive effect of ethanol. In summary, the sulfated polysaccharide from A. spicifera protected the gastric mucosa through the prevention of lipid peroxidation and enhanced the defense mechanisms of the gastric mucosa, suggesting as a promising functional food as gastroprotective agent.
Subject(s)
Cytoprotection/drug effects , Gastric Mucosa/drug effects , Gastric Mucosa/injuries , Polysaccharides/pharmacology , Rhodophyta/chemistry , Agar/isolation & purification , Agar/pharmacology , Animals , Gastric Mucosa/pathology , Male , Mice , Oxidative Stress/drug effects , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Rhodophyta/metabolism , Stomach/drug effects , Stomach/injuries , Stomach/pathology , Stomach Ulcer/pathology , Stomach Ulcer/prevention & control , Sulfates/chemistry , Sulfates/pharmacologyABSTRACT
BACKGROUD: Melatonin has anti-inflammatory and antioxidative actions at the mitochondrial level. This indole-containing molecule may protect ovarian grafts during the process of cryopreservation. Therefore, we aimed to determine whether melatonin pretreatment improves rat ovarian graft quality. METHODS: Twenty-six female rats were allocated to two study groups of thirteen animals each: 1) control group: ovaries cryopreserved using the standard protocol; and 2) melatonin group: ovaries cryopreserved in a medium with melatonin. Ten rats of each group were submitted to 24-h freezing, and whole ovaries autologous and avascular transplantation with retroperitoneal placement. After postoperative (PO) day 15, daily vaginal smears were obtained for estrous cycle characterization. Between PO days 30 and 35, the animals were euthanized and ovarian grafts were recovered for histological and immunohistochemical (Ki-67, cleaved caspase-3, TUNEL, von Willebrand factor, estrogen, and progesterone receptors) analyses. The ovaries of the three remaining rats from each group were studied immediately after thawing to assess the effects of cryopreservation. ANOVA and Tukey's tests were used and the rejection level of the null hypothesis was set at 0.05 or 5% (p < 0.05). RESULTS: Melatonin promoted faster restart of the estrous cycle and increased the expression of mature follicles, collagen type I, von Willebrand factor, Ki-67, and cleaved caspase-3 on corpora lutea and estrogen receptors in the ovaries as compared to control. There was a reduction in apoptosis by TUNEL on follicles, corpora lutea, and collagen type III. CONCLUSION: Based on the evaluated parameters, melatonin may promote the quality of ovarian grafts. Reproductive function enhancement should be further studied.
Subject(s)
Cryopreservation/methods , Melatonin/pharmacology , Ovary , Animals , Culture Media/pharmacology , Cytoprotection/drug effects , Female , Ovary/drug effects , Ovary/transplantation , Rats , Rats, Wistar , Time FactorsABSTRACT
This study was performed to evaluate the effect of monobutyl phthalate (MBP) on GPR30-activated pathways in Sertoli cells. Additionally, we tested if GIM-1 (Panax ginseng metabolite) modulates MBP action. Human Sertoli cells (HSeC lineage) were exposed to MBP and/or GIM-1 for 30 min, 1, 12, and 48 h. Four experimental treatments were performed: control (DEMEM/F12 medium), MBP, GIM-1, and MBP + GIM-1. The results indicate that MBP activates GPR30, PKA, Src, EGFR, and the ERK1/2 proteins, while GIM-1 inhibits PKA, Src, ERK1/2, and the AKT pathway. MBP also enhances Cofilin expression, decreasing F-actin intensity on the cell surface in a short time. The combined exposure demonstrated a functional antagonism between compounds. Collectively, these data show that MBP activates GPR30 in Sertoli cells, and GIM-1 modulates this response, playing a protective role in Sertoli cells exposed to MBP.
Subject(s)
Cytoprotection/drug effects , Endocrine Disruptors/toxicity , Panax , Phthalic Acids/toxicity , Receptors, Estrogen/metabolism , Receptors, G-Protein-Coupled/metabolism , Sertoli Cells/drug effects , Cell Line , Cyclic AMP-Dependent Protein Kinases/metabolism , Humans , Male , Matrix Metalloproteinase 2/metabolism , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Sertoli Cells/metabolism , src-Family Kinases/metabolismABSTRACT
Nigella sativa (N. sativa) is a medicinal plant used for its therapeutic pharmacological effects such as anti-inflammatory, antioxidant, anticancer, antidiabetic, and immunomodulation. This study explored the anti-cytotoxic and anti-genotoxic effect of N. sativa through a micronucleus test (MNT) of BALB/c mice peripheral blood. Using 6-to-8-week-old healthy male BALB/c mice, four groups were formed: (1) Control (sterile water), single-dose 2 mg/kg/intraperitoneal (i.p); (2) N. sativa oil, 500 mg/kg/24 h/7 days/i.p; (3) Cisplatin (CP), single-dose 2 mg/kg/subcutaneous (s.c); (4) N. sativa + CP with their respective dosage. When evaluating polychromatic erythrocytes (PCE), a biomarker of cytotoxicity, the group treated with N. sativa + CP experienced an increase in the frequency of PCE, which demonstrated the recovery of bone marrow and modulation of cell proliferation. The analysis of micronucleated polychromatic erythrocytes (MNPCE), an acute genotoxicity biomarker, showed similar frequency of MNPCE within the groups except in CP, but, in the N. sativa + CP group, the frequency of MNPCE decreased and then regulated. Finally, the frequency of micronucleated erythrocytes (MNE), a biomarker of genotoxicity, the supplementation of N. sativa oil did not induce genotoxic damage in this model. Thus, we conclude that N. sativa has both cytoprotective, genoprotective effects and modulates cell proliferation in BALB/c mice.
Subject(s)
Cisplatin/toxicity , Cytoprotection/drug effects , Erythroblasts/drug effects , Micronucleus Tests/methods , Nigella sativa/chemistry , Plant Oils/pharmacology , Animals , Bone Marrow Cells/drug effects , Cell Proliferation/drug effects , Cisplatin/administration & dosage , Male , Mice, Inbred BALB C , Plant Oils/administration & dosage , Plant Oils/isolation & purificationABSTRACT
The fruits from the Chilean Podocarpaceae Prumnopitys andina have been consumed since pre-Hispanic times. Little is known about the composition and biological properties of this fruit. The aim of this work was to identify the secondary metabolites of the edible part of P. andina fruits and to assess their antioxidant activity by means of chemical and cell-based assays. Methanol extracts from P. andina fruits were fractionated on a XAD7 resin and the main compounds were isolated by chromatographic means. Antioxidant activity was determined by means of 2,2-diphenyl-1-picrylhydrazyl radical (DPPH), ferric reducing power (FRAP), trolox equivalent antioxidant capacity (TEAC) and oxygen radical absorbance capacity (ORAC) assays. The cytoprotective activity of the extract against oxidative and dicarbonyl stress was evaluated in human gastric epithelial cells (AGS). The total intracellular antioxidant activity (TAA) of the extract was determined in AGS cells. The inhibition of meat lipoperoxidation was evaluated under simulated gastric digestion conditions. Rutin, caffeic acid ß-glucoside and 20-hydroxyecdysone were identified as major components of the fruit extract. Additional compounds were identified by high-performance liquid chromatography diode-array detector mass spectrometry (HPLC-DAD-MSn) and/or co-injection with standards. Extracts showed dose-dependent cytoprotective effects against oxidative and dicarbonyl-induced damage in AGS cells. The TAA increased with the pre-incubation of AGS cells with the extract. This is the first report on the composition and biological activity of this Andean fruit.
Subject(s)
Cytoprotection/drug effects , Epithelial Cells/metabolism , Free Radical Scavengers , Fruit/chemistry , Gastric Mucosa/metabolism , Oxidative Stress/drug effects , Pinales/chemistry , Plant Extracts , Cell Line, Tumor , Free Radical Scavengers/chemistry , Free Radical Scavengers/pharmacokinetics , Free Radical Scavengers/pharmacology , Humans , Plant Extracts/chemistry , Plant Extracts/pharmacokinetics , Plant Extracts/pharmacologyABSTRACT
The OXE receptor is a GPCR activated by eicosanoids produced by the action of 5-lipoxygenase. We previously found that this membrane receptor participates in the regulation of cAMP-dependent and -independent steroidogenesis in human H295R adrenocortical carcinoma cells. In this study we analyzed the effects of the OXE receptor physiological activator 5-oxo-ETE on the growth and migration of H259R cells. While 5-oxo-ETE did not affect the growth of H295R cells, overexpression of OXE receptor caused an increase in cell proliferation, which was further increased by 5-oxo-ETE and blocked by 5-lipoxygenase inhibition. 5-oxo-ETE increased the migratory capacity of H295R cells in wound healing assays, but it did not induce the production of metalloproteases MMP-1, MMP-2, MMP-9 and MMP-10. The pro-migratory effect of 5-oxo-ETE was reduced by pharmacological inhibition of the MEK/ERK1/2, p38 and PKC pathways. 5-oxo-ETE caused significant activation of ERK and p38. ERK activation by the eicosanoid was reduced by the "pan" PKC inhibitor GF109203X but not by the classical PKC inhibitor Gö6976, suggesting the involvement of novel PKCs in this effect. Although H295R cells display detectable phosphorylation of Ser299 in PKCδ, a readout for the activation of this novel PKC, treatment with 5-oxo-ETE per se was unable to induce additional PKCδ activation. Our results revealed signaling effectors activated by 5-oxo-ETE in H295R cells and may have significant implications for our understanding of OXE receptor in adrenocortical cell pathophysiology.
Subject(s)
Adrenal Cortex/cytology , Arachidonic Acids/pharmacology , Cell Movement/drug effects , MAP Kinase Signaling System/drug effects , Mitogen-Activated Protein Kinases/metabolism , Protein Kinase C/metabolism , Cell Line , Cytoprotection/drug effects , Enzyme Activation/drug effects , Humans , Metalloproteases/metabolism , Receptors, Eicosanoid/metabolismABSTRACT
Alendronate is a bisphosphonate widely used for the treatment of osteoporosis; however, one of its main adverse reactions is gastric ulcer. Metformin is an oral antihyperglycemic agent that has several beneficial effects, including healing, gastroprotective and anti-tumoral action. This study aimed to evaluate the gastroprotective activity of metformin in alendronate-induced gastric damage in normoglycemic and hyperglycemic rats. The treatment with 100â¯mg/kg of metformin showed a significant gastroprotective effect in damage induced by alendronate (50â¯mg/kg) in macroscopic analysis and the analysis of light microscopy and atomic force microscopy. The results suggested metformin decreased the inflammatory response by reducing the expression of proinflammatory cytokines (TNF-α, IL-1ß and IL-6), myeloperoxidase activity, and malondialdehyde levels. Also, the results suggested that metformin induces the maintenance of basal levels of collagen and increase the production of mucus. Interestingly, with the presence of the AMPK inhibitor (Compound C), metformin presented impairment of its gastroprotective action. The gastroprotective effect of metformin might be related to the activation of the AMPK pathway. These findings revealed that metformin has a gastroprotective action and may be considered a therapeutic potential for the prevention and treatment of gastric lesions induced by alendronate.
Subject(s)
Alendronate/adverse effects , Blood Glucose/metabolism , Cytoprotection/drug effects , Hyperglycemia/pathology , Metformin/pharmacology , Stomach/drug effects , Stomach/pathology , Alendronate/antagonists & inhibitors , Animals , Collagen/metabolism , Cytokines/metabolism , Gastric Mucosa/drug effects , Gastric Mucosa/metabolism , Malondialdehyde/metabolism , Peroxidase/metabolism , Rats , Rats, WistarABSTRACT
Acute Kidney Injury (AKI) is associated with high morbidity and mortality. Ischemia and reperfusion (I/R) are events that lead to AKI through hypoxia, reactive oxygen species (ROS) production, oxidative stress and apoptosis. We aimed to evaluate the mechanism of nephroprotection mediated by Bisabolol in human tubular kidney cells after injury by I/R in vitro. HK2 cells were exposed to I/R and treated with Bisabolol. Cell viability was accessed by MTT assay. Cells were submitted to flow cytometry to evaluate necrotic/apoptotic cells, reactive oxygen species production and mitochondrial transmembrane depolarization. TBARS and GSH were used as parameters of redox balance. Also, KIM-1 supernatant levels were measured. In order to identify an interaction between bisabolol and NOX4, molecular docking and enzymatic assays were performed. Expression of isoform NOX4 on treated cells was examined by western-blot. Finally, cells were visualized by scanning electron microscopy. Bisabolol improved cell viability and prevented cell death by apoptosis, indicated also by the decreased levels of KIM-1. It was observed a decrease on reactive oxygen species production and mitochondrial depolarization, with antioxidant regulation by increased GSH and decreased lipid peroxidation. It was also demonstrated that bisabolol treatment can inhibit NOX4. Finally, SEM images showed that bisabolol reduced I/R-induced cell damage. Bisabolol treatment protects HK2 cells against oxidative damage occasioned by I/R. This effect is related to inhibition of apoptosis, decrease on KIM-1 release, reactive oxygen species accumulation and mitochondrial dysfunction. Bisabolol inhibited NOX4 activity in the tubular cells, impairing reactive oxygen species synthesis.
Subject(s)
Kidney Tubules/drug effects , Kidney Tubules/pathology , Monocyclic Sesquiterpenes/pharmacology , NADPH Oxidases/metabolism , Oxygen/metabolism , Reperfusion Injury/prevention & control , Apoptosis/drug effects , Cell Line , Cell Survival/drug effects , Cytoprotection/drug effects , Glutathione/metabolism , Hepatitis A Virus Cellular Receptor 1/metabolism , Humans , Kidney Tubules/metabolism , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Reperfusion Injury/metabolism , Thiobarbituric Acid Reactive Substances/metabolismABSTRACT
BACKGROUND: Polysaccharides from various sources have been used in traditional medicine for centuries. The beneficial pharmacological effects of plant-derived polysaccharides include anti-tumor activity. METHODS: Here, we evaluated the anti-cancer effect of the MSAGM:VO complex under hypoxic conditions (1% oxygen). MSAGM:VO is a complex of the hydrolysate of galactomannan (MSAGM) from Schizolobium amazonicum with oxovanadium (IV/V). The hepatocellular carcinoma (HCC) cell line HepG2 was selected as HCC are one of the most hypoxic solid tumors. RESULTS: Our results showed that the strong apoptotic activity of MSAGM:VO observed in HepG2 cells under normoxic conditions was completely lost under hypoxic conditions. We found a dynamic balance between the pro- and anti-apoptotic members of the Bcl-2 protein family. The expressions of anti-apoptotic Mcl-1 and Bcl-XL increased in hypoxia, whereas the expression of pro-apoptotic Bax decreased. MSAGM:VO strongly induced autophagy, which was previously characterized as a pro-survival mechanism in hypoxia. These results demonstrate total elimination of the anti-cancer activity of MSAGM:VO with activation of autophagy under conditions of hypoxia. CONCLUSION: Although this study is a proof-of-concept of the impact of hypoxia on the potential of polysaccharides, further study is encouraged. The anti-tumor activity of polysaccharides could be achieved in normoxia or through raising the activity of the immune system. In addition, combination strategies for therapy with anti-autophagic drugs could be proposed.
Subject(s)
Cytoprotection/drug effects , Mannans/pharmacology , Vanadates/pharmacology , Cell Death/drug effects , Cell Hypoxia/drug effects , Galactose/analogs & derivatives , Hep G2 Cells , HumansABSTRACT
This study evaluated oxidative stress markers in Human Sertoli cells cultivated on Geltrex® and exposed to Monobutyl Phthalate (MBP), and the potential cytoprotective role of GIM-1 on the antioxidant response. Exposure was performed at 30 min, 1, 12 and 48 h into 4 groups: control, MBP (10µM), GIM-1 (0,05µM) and MBP + GIM-1. Morphology was evaluated. Antioxidant enzymes were analyzed by colorimetric method; NRF-2, SIRT-1, 8- OHdG and Cleaved Caspase-3 by Western Blot. Larger spaces between cells were shown in MBP treatment; GIM-1 was similar to Control and MBP + GIM-1 showed an intermediate aspect. MBP reduced enzymatic activity of all enzymes and NRF-2 expression, increasing cleaved Caspase-3 expression; while GIM-1 increased antioxidants markers alone and attenuated MPB effects in MBP + GIM-1. MBP induced deleterious effects on Sertoli cells, increasing the oxidative stress, apoptosis and modifying their distribution in culture; however, GIM-1 acted as an important cytoprotective agent reversing our attenuating MBP effects.
Subject(s)
Panax , Phthalic Acids/toxicity , Protective Agents/pharmacology , Sertoli Cells/drug effects , 8-Hydroxy-2'-Deoxyguanosine/metabolism , Apoptosis/drug effects , Caspase 3/metabolism , Catalase/metabolism , Cell Line , Cytoprotection/drug effects , Glutathione Peroxidase/metabolism , Humans , Male , NF-E2-Related Factor 2/metabolism , Oxidative Stress/drug effects , Sertoli Cells/metabolism , Sirtuin 1/metabolism , Superoxide Dismutase/metabolismABSTRACT
Sulfated polysaccharides (PLS) extracted from the marine algae of the genus Gracilaria showed biological activity in different inflammatory models, except for periodontitis. Thus, this study aimed to evaluate the effectiveness of the treatment with PLS from Gracilaria caudata in ligature-induced periodontitis. 40 animals distributed into 5 groups were used (the control group (unligated), the ligated untreated group, and the ligated groups treated with 2.5, 5.0 and 10.0â¯mg/kg of PLS with intraperitoneal injection, respectively). After 20â¯days of treatment, the animals were killed and the following parameters were evaluated: Gingival Bleeding Index (GBI), Probing Pocket Depth (PPD), Myeloperoxidase (MPO) activity, Alveolar Bone Loss (ABL) for periodontal tissues; histopathological examination of gingival and liver tissues (Steatosis score); glutathione and malondialdehyde concentrations in the liver, serum levels of alanine aminotransferase and aspartate aminotransferase. The data revealed that treatment with 2.5â¯mg/kg of PLS showed the best anti-inflammatory effects with reduction of GBI, PPD and MPO activity, as well as oxidative stress and steatosis in liver. Our results indicated that the adjunct treatment with PLS from Gracilaria caudata could prevent the periodontal and hepatic tissue alteration caused by periodontitis.
Subject(s)
Gracilaria/chemistry , Periodontitis/pathology , Polysaccharides/chemistry , Polysaccharides/pharmacology , Sulfates/chemistry , Animals , Biomarkers/metabolism , Cytoprotection/drug effects , Female , Ligation/adverse effects , Liver/drug effects , Liver/pathology , Malondialdehyde/metabolism , Organ Size/drug effects , Oxidative Stress/drug effects , Periodontitis/etiology , Periodontitis/metabolism , Rats , Rats, WistarABSTRACT
Chronic UVB exposure promotes oxidative stress, directly causes molecular damage, and induces aging-related signal transduction, leading to skin photoaging. Dihydrocaffeic acid (DHCA) is a phenolic compound with potential antioxidant capacity and is thus a promising compound for the prevention of UVB-induced skin photodamage. The aim of this study was to evaluate the antioxidant and protective effect of DHCA against oxidative stress, apoptosis, and matrix metalloproteinase (MMP) expression via the mitogen-activated protein kinase (MAPK) signaling pathway on L929 fibroblasts irradiated with UVB. DHCA exhibited high antioxidant capacity on 2,2-diphenyl-1-picrylhydrazyl (DPPHâ¢), 2,2-azinobis-3-ethylbenzothiazoline-6-sulphonic acid (ABTSâ¢+), and xanthine/luminol/xanthine oxidase (XOD) assays and reduced UVB-induced cell death in the neutral red assay. DHCA also modulated oxidative stress by decreasing intracellular reactive oxygen species (ROS) and extracellular hydrogen peroxide (H2O2) production, enhancing catalase (CAT) and superoxide dismutase (SOD) activities and reduced glutathione (GSH) levels. Hence, cellular damage was attenuated by DHCA, including lipid peroxidation, apoptosis/necrosis and its markers (loss of mitochondria membrane potential, DNA condensation, and cleaved caspase 9 expression), and MMP-1 expression. Furthermore, DHCA reduced the phosphorylation of MAPK p38. These findings suggest that DHCA can be used in the development of skin care products to prevent UVB-induced skin damage.
Subject(s)
Apoptosis/drug effects , Caffeic Acids/pharmacology , MAP Kinase Signaling System/drug effects , Matrix Metalloproteinase 1/metabolism , Oxidative Stress/drug effects , Ultraviolet Rays , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Antioxidants/pharmacology , Apoptosis/radiation effects , Caffeic Acids/chemistry , Cell Line , Cell Survival/drug effects , Cell Survival/radiation effects , Cytoprotection/drug effects , Cytoprotection/radiation effects , Lipid Peroxidation/drug effects , Lipid Peroxidation/radiation effects , MAP Kinase Signaling System/radiation effects , Membrane Potential, Mitochondrial/drug effects , Membrane Potential, Mitochondrial/radiation effects , Mice , Oxidative Stress/radiation effects , Phosphorylation/drug effects , Phosphorylation/radiation effects , Reactive Oxygen Species/metabolismABSTRACT
Alzheimer's disease (AD) is the most common form of dementia and has no cure. Therapeutic strategies focusing on the reduction of oxidative stress, modulation of amyloid-beta (Aß) toxicity and inhibition of tau protein hyperphosphorylation are warranted to avoid the development and progression of AD. The aim of this study was to screen the crude extracts (CEs) and ethyl-acetate fractions (EAFs) of Guazuma ulmifolia, Limonium brasiliense, Paullinia cupana, Poincianella pluviosa, Stryphnodendron adstringens and Trichilia catigua using preliminary in vitro bioassays (acetylcholinesterase inhibition, antioxidant activity and total polyphenol content) to select extracts/fractions and assess their protective effects against Aß25-35 toxicity in SH-SY5Y cells. The effect of the EAF of S. adstringens on mitochondrial membrane potential, lipid peroxidation, superoxide production and mRNA expression of 10 genes related to AD was also evaluated and the electropherogram fingerprints of EAFs were established by capillary electrophoresis. Chemometric tools were used to correlate the in vitro activities of the samples with their potential to be evaluated against AD and to divide extracts/fractions into four clusters. Pretreatment with the EAFs grouped in cluster 1 (S. adstringens, P. pluviosa and L. brasiliense) protected SH-SY5Y cells from Aß25-35-induced toxicity. The EAF of S. adstringens at 15.62 µg/mL was able completely to inhibit the mitochondrial depolarization (69%), superoxide production (49%) and Aß25-35-induced lipid peroxidation (35%). With respect to mRNA expression, the EAF of S. adstringens also prevented the MAPT mRNA overexpression (expression ratio of 2.387x) induced by Aß25-35, which may be related to tau protein hyperphosphorylation. This is the first time that the neuroprotective effects of these fractions have been demonstrated and that the electropherogram fingerprints for the EAFs of G. ulmifolia, L. brasiliense, P. cupana, P. pluviosa and S. adstringens have been established. The study expands knowledge of the in vitro protective effects and quality control of the evaluated fractions.
Subject(s)
Amyloid beta-Peptides/toxicity , Antioxidants/pharmacology , Cholinesterase Inhibitors/pharmacology , Neuroblastoma/pathology , Neuroprotective Agents/pharmacology , Plant Extracts/pharmacology , Acetylcholinesterase/metabolism , Cell Line, Tumor , Cytoprotection/drug effects , Gene Expression Regulation/drug effects , Humans , Lipid Peroxidation/drug effects , Membrane Potential, Mitochondrial/drug effects , Polyphenols/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reactive Oxygen Species/metabolismABSTRACT
The link between mitochondrial dysfunction, redox impairment, and inflammation leads to increased rates of brain cells loss in neurodegenerative diseases and in affective disorders. Carvacrol (CAR) is a component of essential oils found in Labiatae. CAR exerts antioxidant and anti-inflammatory effects in different cell types, as assessed in both in vitro and in vivo experimental designs. Nonetheless, it was not previously investigated whether and how CAR would prevent mitochondrial impairment in human cells exposed to a pro-oxidant challenge. Therefore, we analyzed here whether a pretreatment (for 4 h) with CAR (10-1000 µM) would promote mitochondrial protection in the human neuroblastoma cells SH-SY5Y exposed to hydrogen peroxide (H2O2). We found that CAR at 100 µM prevented the H2O2-induced decline in the activity of the complexes I and V, as well as on the levels of adenosine triphosphate (ATP). CAR also prevented the H2O2-elicited decrease in the activity of the mitochondrial enzymes aconitase, α-ketoglutarate dehydrogenase, and succinate dehydrogenase. Moreover, CAR induced an antioxidant action by decreasing the levels of lipid peroxidation, protein carbonylation, and protein nitration in the mitochondrial membranes. Interestingly, CAR prevented the pro-inflammatory action of H2O2 by downregulating the transcription factor nuclear factor-κB (NF-κB). The inhibition of the heme oxygenase-1 (HO-1) enzyme by zinc protoporphyrin IX (ZnPP IX, 10 µM) suppressed the preventive effects caused by CAR regarding mitochondrial function and inflammation. Thus, it is suggested that CAR caused cytoprotective effects by an HO-1-dependent manner in SH-SY5Y cells exposed to H2O2.
Subject(s)
Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Heme Oxygenase-1/metabolism , Hydrogen Peroxide/toxicity , Mitochondria/enzymology , Monoterpenes/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/physiology , Cymenes , Cytoprotection/drug effects , Cytoprotection/physiology , Dose-Response Relationship, Drug , Humans , Mitochondria/drug effectsABSTRACT
Mitochondria are double-membrane organelles involved in the transduction of energy from different metabolic substrates into adenosine triphosphate (ATP) in mammalian cells. The oxidative phosphorylation system is comprised by the activity of the respiratory chain and the complex V (ATP synthase/ATPase). This system is dependent on oxygen gas (O2) in order to maintain a flux of electrons in the respiratory chain, since O2 is the final acceptor of these electrons. Electron leakage from this complex system leads to the continuous generation of reactive species in the cells. The mammalian cells exhibit certain mechanisms to attenuate the consequences originated from the constant exposure to these reactive species. In this context, the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) and one of the enzymes whose expression is modulated by Nrf2, heme oxygenase-1 (HO-1), take a central role in inducing cytoprotection in humans. Mitochondrial abnormalities are observed during intoxication and in certain diseases, including neurodegeneration. Mitochondrial protection promoted by natural compounds has attracted the attention of researchers due to the promising effects these agents induce experimentally. In this regard, we examined here whether and how gastrodin (GAS), a phenolic glucoside, would prevent the paraquat (PQ)-induced mitochondrial impairment in the SH-SY5Y cells. The cells were exposed to GAS (25 µM) for 4 h prior to the challenge with PQ at 100 µM for additional 24 h. The silencing of Nrf2 by siRNA or the inhibition of HO-1 by ZnPP IX suppressed the GAS-elicited cytoprotection. Therefore, GAS promoted mitochondrial protection by an Nrf2/HO-1-dependent manner.
Subject(s)
Benzyl Alcohols/pharmacology , Glucosides/pharmacology , Heme Oxygenase-1/metabolism , Herbicides/pharmacology , Mitochondria/drug effects , NF-E2-Related Factor 2/metabolism , Paraquat/pharmacology , Cell Line, Tumor , Cytoprotection/drug effects , Humans , Membrane Potential, Mitochondrial/drug effects , Mitochondria/metabolism , Neuroblastoma/metabolism , Reactive Oxygen Species/metabolismABSTRACT
RMEL3 is a recently identified lncRNA associated with BRAFV600E mutation and melanoma cell survival. Here, we demonstrate strong and moderate RMEL3 upregulation in BRAF and NRAS mutant melanoma cells, respectively, compared to melanocytes. High expression is also more frequent in cutaneous than in acral/mucosal melanomas, and analysis of an ICGC melanoma dataset showed that mutations in RMEL3 locus are preponderantly C > T substitutions at dipyrimidine sites including CC > TT, typical of UV signature. RMEL3 mutation does not correlate with RMEL3 levels, but does with poor patient survival, in TCGA melanoma dataset. Accordingly, RMEL3 lncRNA levels were significantly reduced in BRAFV600E melanoma cells upon treatment with BRAF or MEK inhibitors, supporting the notion that BRAF-MEK-ERK pathway plays a role to activate RMEL3 gene transcription. RMEL3 overexpression, in immortalized fibroblasts and melanoma cells, increased proliferation and survival under serum starvation, clonogenic ability, and xenografted melanoma tumor growth. Although future studies will be needed to elucidate the mechanistic activities of RMEL3, our data demonstrate that its overexpression bypasses the need of mitogen activation to sustain proliferation/survival of non-transformed cells and suggest an oncogenic role for RMEL3.
Subject(s)
Cytoprotection , Melanoma/genetics , Melanoma/pathology , RNA, Long Noncoding/metabolism , Serum/metabolism , Animals , Apoptosis/drug effects , Carcinogenesis/drug effects , Carcinogenesis/genetics , Carcinogenesis/pathology , Cell Line, Transformed , Cell Line, Tumor , Cell Proliferation/drug effects , Clone Cells , Cytoprotection/drug effects , Fibroblasts/drug effects , Fibroblasts/pathology , GTP Phosphohydrolases/genetics , Gene Expression Regulation, Neoplastic/drug effects , Humans , Membrane Proteins/genetics , Mice , Mitogen-Activated Protein Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinases/metabolism , NIH 3T3 Cells , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins B-raf/genetics , RNA, Long Noncoding/geneticsABSTRACT
Astrocytes are specialized cells capable of regulating inflammatory responses in neurodegenerative diseases or traumatic brain injury. In addition to playing an important role in neuroinflammation, these cells regulate essential functions for the preservation of brain tissue. Therefore, the search for therapeutic alternatives to preserve these cells and maintain their functions contributes in some way to counteract the progress of the injury and maintain neuronal survival in various brain pathologies. Among these strategies, the conditioned medium from human adipose-derived mesenchymal stem cells (CM-hMSCA) has been reported with a potential beneficial effect against several neuropathologies. In this study, we evaluated the potential effect of CM-hMSCA in a model of human astrocytes (T98G cells) subjected to scratch injury. Our findings demonstrated that CM-hMSCA regulates the cytokines IL-2, IL-6, IL-8, IL-10, GM-CSF, and TNF-α, downregulates calcium at the cytoplasmic level, and regulates mitochondrial dynamics and the respiratory chain. These actions are accompanied by modulation of the expression of different proteins involved in signaling pathways such as AKT/pAKT and ERK1/2/pERK, and may mediate the localization of neuroglobin (Ngb) at the cellular level. We also confirmed that Ngb mediated the protective effects of CM-hMSCA through regulation of proteins involved in survival pathways and oxidative stress. In conclusion, regulation of brain inflammation combined with the recovery of fundamental cellular aspects in the face of injury makes CM-hMSCA a promising candidate for the protection of astrocytes in brain pathologies.
Subject(s)
Astrocytes/metabolism , Culture Media, Conditioned/pharmacology , Cytoprotection/physiology , Mesenchymal Stem Cells/metabolism , Mitochondria/metabolism , Neuroglobin/metabolism , Adipose Tissue/chemistry , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Astrocytes/chemistry , Astrocytes/drug effects , Cells, Cultured , Cytoprotection/drug effects , Humans , Mesenchymal Stem Cells/chemistry , Mesenchymal Stem Cells/drug effects , Mitochondria/chemistry , Mitochondria/drug effects , Neuroglobin/analysis , Oxidative Stress/drug effects , Oxidative Stress/physiologyABSTRACT
Abstract Purpose: To investigate the role of atenolol in the gene expression of caspase 1 (Casp1) and Bcl2L1 on vascular endothelium of rat intestine after ischemia and reperfusion (IR). Methods: Eighteen adult male Wistar rats were randomly divided into 3 groups (n=6): SG (Sham group): no clamping of the superior mesenteric artery; IRG: IR plus saline group: IRG+At: IR plus Atenolol group. Rats from IRG and IRG+At were subjected to 60 min of intestinal ischemia and 120 min of reperfusion. Atenolol (2mg/kg) or saline were injected in the femoral vein 5 min before ischemia, 5 min and 55 min after reperfusion. Thereafter, intestinal segments were appropriately removed and processed for Endothelial Cell Biology Rat RT2 Profiler PCR Array. Results: the anti-apoptotic Bcl2L1 gene expression was significantly down-regulated (-1.10) in the IRG and significantly up-regulated in the IRG+At (+14.15). Meanwhile, despite Casp1 gene expression was upregulated in both groups, it was significantly higher in the IRG (+35.06) than the IRG+At (+6.68). Conclusions: Atenolol presents antiapoptotic effects on rat intestine subjected to IR partly by the up-regulation of the anti-apoptotic Bcl2L1 gene expression. Moreover, atenolol can mitigate the pro-apoptotic and pro-inflammatory effects of Casp1 gene on rat intestine after IR.
Subject(s)
Animals , Male , Atenolol/pharmacology , Reperfusion Injury/prevention & control , Gene Expression/drug effects , Protective Agents/pharmacology , Caspase 1/drug effects , bcl-X Protein/drug effects , Intestine, Small/blood supply , Time Factors , Endothelium, Vascular , Random Allocation , Down-Regulation/drug effects , Up-Regulation/drug effects , Polymerase Chain Reaction , Reproducibility of Results , Treatment Outcome , Rats, Wistar , Mesenteric Artery, Superior , Apoptosis/drug effects , Constriction , Cytoprotection/drug effects , Caspase 1/genetics , bcl-X Protein/genetics , Mesenteric Ischemia/prevention & controlABSTRACT
Silymarin (SM), a standardized extract derived from Silybum marianum (L.) Gaertn, is primarily composed of flavonolignans, with silibinin (SB) as its major active constituent. The present study aimed to evaluate the antigenotoxic activities of SM and SB using the alkaline comet assay in whole blood cells and to assess their effects on the expression of genes associated with carcinogenesis and chemopreventive processes. Different concentrations of SM or SB (1.0, 2.5, 5.0, and 7.5 mg/ml) were used in combination with the DNA damage-inducing agent methyl methanesulfonate (MMS, 800 µM) to evaluate their genoprotective potential. To investigate the role of SM and SB in modulating gene expression, we performed quantitative real-time PCR (qRT-PCR) analysis of five genes that are known to be involved in DNA damage, carcinogenesis, and/or chemopreventive mechanisms. Treatment with SM or SB was found to significantly reduce the genotoxicity of MMS, upregulate the expression of PTEN and BCL2, and downregulate the expression of BAX and ABL1. We observed no significant changes in ETV6 expression levels following treatment with SM or SB. In conclusion, both SM and SB exerted antigenotoxic activities and modulated the expression of genes related to cell protection against DNA damage.