Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters











Publication year range
1.
Phys Chem Chem Phys ; 24(30): 18150-18160, 2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35861154

ABSTRACT

Stacking effects are among the most important effects in DNA. We have recently studied their influence in fragments of DNA through the analysis of NMR magnetic shieldings, firstly in vacuo. As a continuation of this line of research we show here the influence of solvent effects on the shieldings through the application of both explicit and implicit models. We found that the explicit solvent model is more appropriate for consideration due to the results matching better in general with experiments, as well as providing clear knowledge of the electronic origin of the value of the shieldings. Our study is grounded on a recently developed theoretical model of our own, by which we are able to learn about the magnetic effects of given fragments of DNA molecules on selected base pairs. We use the shieldings of the atoms of a central base pair (guanine-cytosine) of a selected fragment of DNA molecules as descriptors of physical effects, like π-stacking and solvent effects. They can be taken separately and altogether. The effect of π-stacking is introduced through the addition of some pairs above and below of the central base pair, and now, the solvent effect is considered including a network of water molecules that consist of two solvation layers, which were fixed in the calculations performed in all fragments. We show that the solvent effects enhance the stacking effects on the magnetic shieldings of atoms that belong to the external N-H bonds. The net effect is of deshielding on both atoms. There is also a deshielding effect on the carbon atoms that belong to CO bonds, for which the oxygen atom has an explicit hydrogen bond (HB) with a solvent water molecule. Solvent effects are found to be no higher than a few percent of the total value of the shieldings (between 1% and 5%) for most atoms, although there are few for which such an effect can be higher. There is one nitrogen atom, the acceptor of the HB between guanine and cytosine, that is more highly shielded (around 15 ppm or 10%) when the explicit solvent is considered. In a similar manner, the most external nitrogen atom of cytosine and the hydrogen atom that is bonded to it are highly deshielded (around 10 ppm for nitrogen and around 3 ppm for hydrogen).


Subject(s)
Cytosine , DNA , Base Pairing , Cytosine/chemistry , DNA/chemistry , Guanine/chemistry , Hydrogen/chemistry , Hydrogen Bonding , Models, Molecular , Nitrogen/chemistry , Solvents , Water/chemistry
2.
J Phys Chem A ; 126(8): 1403-1411, 2022 Mar 03.
Article in English | MEDLINE | ID: mdl-35175052

ABSTRACT

The collision-induced dissociation of the protonated cytosine-guanine pair was studied using tandem mass spectrometry (MS3) coupled to infrared multiple photon dissociation spectroscopy with the free electron laser at Orsay (CLIO) to determine the structure of the CH+ and GH+ ionic fragments. The results were rationalized with the help of electronic structure calculations at the density functional theory level with the B3LYP/6-311++G(3df,2p) method. Several tautomers of each fragment were identified for the first time, some of which were previously predicted by other authors. In addition, two unexpected and minor tautomers were also found: cytosine keto-imino [CKI(1,2,3,4)H+] and guanine keto-amino [GKA(1,3,7)H+]. These results highlight the importance of the DNA base tautomerization assisted by inter- and intramolecular proton or hydrogen transfer within the protonated pairs.


Subject(s)
Cytosine , Guanine , Base Pairing , Cytosine/chemistry , Guanine/chemistry , Protons , Spectrophotometry, Infrared/methods
3.
Curr Mol Med ; 21(2): 151-164, 2021.
Article in English | MEDLINE | ID: mdl-32484108

ABSTRACT

Mitochondrial DNA (mtDNA) methylation has the potential to be used as a biomarker of human development or disease. However, mtDNA methylation procedures are costly and time-consuming. Therefore, we developed a new approach based on an RT-PCR assay for the base site identification of methylated cytosine in the control region of mtDNA through a simple, fast, specific, and low-cost strategy. Total DNA was purified, and methylation was determined by RT-PCR bisulfite sequencing. This procedure included the DNA purification, bisulfite treatment and RT-PCR amplification of the control region divided into three subregions with specific primers. Sequences obtained with and without the bisulfite treatment were compared to identify the methylated cytosine dinucleotides. Furthermore, the efficiency of C to U conversion of cytosines was assessed by including a negative control. Interestingly, mtDNA methylation was observed mainly within non-Cphosphate- G (non-CpG) dinucleotides and mostly in the regions containing regulatory elements, such as OH or CSBI, CSBII, and CSBIII. This new approach will promote the generation of new information regarding mtDNA methylation patterns in samples from patients with different pathologies or that are exposed to a toxic environment in diverse human populations.


Subject(s)
CpG Islands , Cytosine/chemistry , DNA Methylation , DNA, Mitochondrial/analysis , DNA, Mitochondrial/genetics , Polymerase Chain Reaction/methods , Sequence Analysis, DNA/methods , DNA, Mitochondrial/chemistry , Humans , Sulfites/chemistry
4.
Phys Chem Chem Phys ; 22(46): 27053-27059, 2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33215614

ABSTRACT

The realization of nanopores in atom-thick materials may pave the way towards electrical detection of single biomolecules in a stable and scalable manner. In this work, we theoretically study the potential of different phases of MoS2 nanogaps to act as all-electronic DNA sequencing devices. We carry out simulations based on density functional theory and the non-equilibrium Green's function formalism to investigate the electronic transport across the device. Our results suggest that the 1T'-MoS2 nanogap structure is energetically more favorable than its 2H counterpart. At zero bias, the changes in the conductance of the 1T'-MoS2 device can be well distinguished, making possible the selectivity of the DNA nucleobases. Although the conductance fluctuates around the resonances, the overall results suggest that it is possible to distinguish the four DNA bases for energies close to the Fermi level.


Subject(s)
DNA/chemistry , Disulfides/chemistry , Molybdenum/chemistry , Nanopores , Adenine/chemistry , Cytosine/chemistry , Density Functional Theory , Electronics , Guanine/chemistry , Models, Chemical , Sequence Analysis, DNA/instrumentation , Thymine/chemistry
5.
Phys Chem Chem Phys ; 19(40): 27817-27827, 2017 Oct 18.
Article in English | MEDLINE | ID: mdl-28990030

ABSTRACT

The influence of pi-stacking on the magnetic properties of atoms that belong to adenine-thymine and guanine-cytosine pairs in sequences of three and five layers of DNA base pairs was analysed. As probes we used NMR spectroscopic parameters, which are among the most useful tools to learn about the transmission of magnetic interactions in molecules. Four DFT functionals were employed: B3LYP, BHANDLYP, KT2 and KT3, together with the SOPPA method. Besides, given that the number of non-hydrogen atoms of the supramolecular systems studied here is larger than 50 we applied a locally dense basis set scheme. Our results show that the piling up of a few Watson-Crick base pairs above and below a given pair modifies its NMR spectroscopic parameters by an amount that may be measurable and the percentage of variation does not depend on dispersion. We found that magnetic shieldings are more sensitive than J-couplings, and also that some atoms are more sensitive than others. Stacking affects the shielding of non-hydrogen atoms like nitrogens, that are donors in hydrogen bonds, HBs, and the carbons bonded to them. The amount of variation of these shieldings was found to be from 2% to 5% when the pairs are considered first as isolated, and then, placed in the middle of a sequence of three layers of base pairs. Such a variation becomes vanishingly small when the sequence contains more than three layers, showing that the stacking effect on NMR spectroscopic parameters has a local nature. We have also found a pattern for shieldings. First, equivalent atoms of similar monomers (thymine and adenine, or guanine and cytosine) have similar values of absolute shieldings in isolated pairs, and the amount of variation from isolated pairs to aggregates of a few pairs is also similar, meaning that equivalent atoms are affected in a similar manner by pi-stacking. Second, the hydrogen atoms which belong to hydrogen bonds are more sensitive to the piling up than the non-hydrogen atoms.


Subject(s)
Base Pairing , DNA/chemistry , Hydrogen Bonding , Adenine/chemistry , Cytosine/chemistry , Guanine/chemistry , Magnetic Resonance Spectroscopy , Physical Phenomena , Thymine/chemistry
6.
J Chem Phys ; 146(24): 244314, 2017 Jun 28.
Article in English | MEDLINE | ID: mdl-28668047

ABSTRACT

Epigenetic modifications of cytosine have been found to influence differently in many processes in biological systems. In order to investigate the differences in electron attachment to different epigenetic modifications of cytosine, we reported the A″ component of the integral cross section of electron scattering by cytosine (C) and its epigenetic modifications 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). Our results were obtained with the Schwinger multichannel method with pseudopotentials in the static-exchange (SE) and static-exchange plus polarization (SEP) approximations. In addition to the scattering results, we present electron attachment energies obtained through an empirical scaling relation for the five molecules. We observed three π* resonances for C, 5mC, and 5hmC and four for 5fC and 5caC, in both SE and SEP approximations. The cross sections show that the π* resonances of 5mC and 5hmC are located at higher energies than the resonances of C, while the resonances of 5fC and 5caC are located at lower energies. In order to investigate this shift in the resonances' positions, we analyzed the π* lowest-lying orbitals and the electronic density over the molecules. Using the inductive and mesomeric effects, we were able to analyze the influence of each substituent over the molecule and on the resonances' positions.


Subject(s)
Cytosine/chemistry , Electrons , Epigenesis, Genetic , Cytosine/analogs & derivatives , Quantum Theory
7.
J Phys Chem A ; 121(15): 2960-2970, 2017 Apr 20.
Article in English | MEDLINE | ID: mdl-28350166

ABSTRACT

The IPPP-CLOPPA method is applied to investigate the influence of a methyl group on the energy of the hydrogen bonds and the potential energy curve of the bridge protons in model compounds, which mimic the methylated and unmethylated cytosine-guanine base pairs. On the same grounds, this influence on the polarizability of the intermolecular hydrogen bonds of these compounds is also addressed, in order to determine whether this linear response property provides a significant proof of the electronic mechanisms that affect the stabilization of the hydrogen bonds. Results obtained show that the methyl electronic system delocalizes on the hydrogen bond region, and changes of these intermolecular hydrogen bonds are due to this effect of delocalization.


Subject(s)
Cytosine/chemistry , Guanine/chemistry , Quantum Theory , Base Pairing , Hydrogen Bonding , Methylation
8.
Phys Chem Chem Phys ; 19(8): 5888-5894, 2017 Feb 22.
Article in English | MEDLINE | ID: mdl-28176998

ABSTRACT

The gas phase relaxation dynamics of photoexcited 5-azacytosine has been investigated by means of SHARC (surface-hopping including arbitrary couplings) molecular dynamics, based on accurate multireference electronic structure computations. Both singlet and triplet states were included in the simulations in order to investigate the different internal conversion and intersystem crossing pathways of this molecule. It was found that after excitation, 5-azacytosine undergoes ultrafast relaxation to the electronic ground state with a time constant of about 1 picosecond. Two important conical intersections have been identified as the funnel responsible for this deactivation mechanism. The very low intersystem crossing yield of 5-azacytosine has been explained by the size of the relevant spin-orbit coupling matrix elements, which are significantly smaller than in related molecules like cytosine or 6-azauracil. This difference is due to the fact that in 5-azacytosine the lowest singlet state is of nNπ* nature, whereas in cytosine and 6-azauracil it is of nOπ* character.


Subject(s)
Cytosine/analogs & derivatives , Cytosine/chemistry , Electronics , Molecular Dynamics Simulation
9.
J Mol Model ; 22(6): 145, 2016 06.
Article in English | MEDLINE | ID: mdl-27256316

ABSTRACT

Proton transfer reactions present a key step in many biological and chemical processes. Here, we focused on the electronic changes in the proton transfer reactions of the four DNA bases. In combination with the previous structural analysis the reaction electronic flux together with local descriptors as the Hirshfeld-I charges allow us to identify chemical events and rationalize the underlying reaction mechanism. Our results show that imine-enamine in adenine and citosyne, and keto-enol tautomerizations in thymine and guanine have different reaction mechanisms. The former involve net structural rearrangements driven by favoured electrostatic interactions between the proton and the acceptor atom whereas the keto-enol tautomerizations require electronic changes reflected in the reaction electronic flux and changes in the NBO bond orders which favour the proton transfer reaction.


Subject(s)
Algorithms , DNA/chemistry , Electrons , Models, Chemical , Protons , Adenine/chemistry , Cytosine/chemistry , Guanine/chemistry , Imines/chemistry , Isomerism , Models, Molecular , Molecular Structure , Static Electricity , Thymine/chemistry
10.
J Chem Phys ; 143(4): 041103, 2015 Jul 28.
Article in English | MEDLINE | ID: mdl-26233098

ABSTRACT

The photo-induced damages of DNA in interaction with metal cations, which are found in various environments, still remain to be characterized. In this paper, we show how the complexation of a DNA base (cytosine (Cyt)) with a metal cation (Ag(+)) changes its electronic properties. By means of UV photofragment spectroscopy of cold ions, it was found that the photoexcitation of the CytAg(+) complex at low energy (315-282) nm efficiently leads to ionized cytosine (Cyt(+)) as the single product. This occurs through a charge transfer state in which an electron from the p orbital of Cyt is promoted to Ag(+), as confirmed by ab initio calculations at the TD-DFT/B3LYP and RI-ADC(2) theory level using the SV(P) basis set. The low ionization energy of Cyt in the presence of Ag(+) could have important implications as point mutation of DNA upon sunlight exposition.


Subject(s)
Cytosine/chemistry , DNA/chemistry , Metals/chemistry , Silver/chemistry , DNA/radiation effects , Electrons , Point Mutation/radiation effects , Quantum Theory , Sunlight/adverse effects , Thermodynamics
11.
Rev. chil. pediatr ; 86(4): 279-282, ago. 2015. graf
Article in Spanish | LILACS | ID: lil-764085

ABSTRACT

Introducción: La rabdomiólisis es una enfermedad poco frecuente en pediatría. El objetivo es presentar un paciente en el que se desarrolló secundario a una deshidratación hipernatrémica grave tras una diarrea aguda. Caso clínico: Lactante de 11 meses que consultó por fiebre, vómitos, diarrea y anuria. Presentó convulsión tónico-clónica autolimitada. Ingresó en mal estado general, severamente deshidratado, con escasa reactividad. En las pruebas complementarias destacó acidosis metabólica grave, hipernatremia e insuficiencia renal prerrenal. Al tercer día apreció leve hipotonía axial y elevación de creatín fosfokinasa 75.076 UI/l, interpretado como rabdomiólisis. Se inició hiperhidratación y alcalinización sistémica, con buena respuesta clínica y bioquímica, siendo dado de alta sin secuelas motoras. Conclusiones: La hipernatremia grave está descrita como causa rara de rabdomiólisis e insuficiencia renal. En pacientes críticos es importante un alto índice de sospecha de rabdomiólisis y determinación seriada de la creatín fosfokinasa para su detección y tratamiento precoz.


Introduction: Rhabdomyolysis is a rare paediatric condition. The case is presented of a patient in whom this developed secondary to severe hypernatraemic dehydration following acute diarrhoea. Case report: Infant 11 months of age who presented with vomiting, fever, diarrhoea and anuria for 15 hours. Parents reported adequate preparation of artificial formula and oral rehydration solution. He was admitted with malaise, severe dehydration signs and symptoms, cyanosis, and low reactivity. The laboratory tests highlighted severe metabolic acidosis, hypernatraemia and pre-renal kidney failure (Sodium [Na] plasma 181 mEq/L, urine density> 1030). He was managed in Intensive Care Unit with gradual clinical and renal function improvement. On the third day, slight axial hypotonia and elevated cell lysis enzymes (creatine phosphokinase 75,076 IU/L) were observed, interpreted as rhabdomyolysis. He was treated with intravenous rehydration up to 1.5 times the basal requirements, and he showed a good clinical and biochemical response, being discharged 12 days after admission without motor sequelae. Conclusions: Severe hypernatraemia is described as a rare cause of rhabdomyolysis and renal failure. In critically ill patients, it is important to have a high index of suspicion for rhabdomyolysis and performing serial determinations of creatine phosphokinase for early detection and treatment.


Subject(s)
Animals , Guinea Pigs , Rabbits , Cytosine/analogs & derivatives , Delayed-Action Preparations/administration & dosage , Delayed-Action Preparations/chemistry , Organophosphonates/administration & dosage , Organophosphonates/chemistry , Vitreous Body/drug effects , Antiviral Agents/administration & dosage , Antiviral Agents/chemistry , Chemistry, Pharmaceutical/methods , Cytosine/administration & dosage , Cytosine/chemistry , Drug Delivery Systems/methods , Half-Life , Herpes Simplex/drug therapy , Herpesvirus 1, Human/drug effects , Intravitreal Injections/methods , Micelles , Prodrugs/administration & dosage , Prodrugs/chemistry , Retina/drug effects , Retina/virology , Vitreous Body/virology
12.
Epigenetics ; 10(7): 607-21, 2015.
Article in English | MEDLINE | ID: mdl-26046694

ABSTRACT

Prenatal exposure to neurotoxicants such as lead (Pb) may cause stable changes in the DNA methylation (5mC) profile of the fetal genome. However, few studies have examined its effect on the DNA de-methylation pathway, specifically the dynamic changes of the 5-hydroxymethylcytosine (5hmC) profile. Therefore, in this study, we investigate the relationship between Pb exposure and 5mC and 5hmC modifications during early development. To study the changes in the 5hmC profile, we use a novel modification of the Infinium™ HumanMethylation450 assay (Illumina, Inc.), which we named HMeDIP-450K assay, in an in vitro human embryonic stem cell model of Pb exposure. We model Pb exposure-associated 5hmC changes as clusters of correlated, adjacent CpG sites, which are co-responding to Pb. We further extend our study to look at Pb-dependent changes in high density 5hmC regions in umbilical cord blood DNA from 48 mother-infant pairs from the Early Life Exposure in Mexico to Environmental Toxicants (ELEMENT) cohort. For our study, we randomly selected umbilical cord blood from 24 male and 24 female children from the 1st and 4th quartiles of Pb levels. Our data show that Pb-associated changes in the 5hmC and 5mC profiles can be divided into sex-dependent and sex-independent categories. Interestingly, differential 5mC sites are better markers of Pb-associated sex-dependent changes compared to differential 5hmC sites. In this study we identified several 5hmC and 5mC genomic loci, which we believe might have some potential as early biomarkers of prenatal Pb exposure.


Subject(s)
CpG Islands/drug effects , Cytosine/analogs & derivatives , Environmental Exposure/adverse effects , Human Embryonic Stem Cells/drug effects , Lead/adverse effects , Umbilical Cord/drug effects , 5-Methylcytosine/analogs & derivatives , Cell Line , Cytosine/chemistry , Cytosine/metabolism , DNA Methylation/drug effects , Fetal Blood/drug effects , Humans , Mexico , Sequence Analysis, DNA , Sex Factors
13.
Phys Chem Chem Phys ; 17(39): 25915-24, 2015 Oct 21.
Article in English | MEDLINE | ID: mdl-26068183

ABSTRACT

The gas-phase structures of cytosine-Ag(+) [CAg](+) and cytosine-Ag(+)-H2O [CAg-H2O](+) complexes have been studied by mass-selected infrared multiphoton dissociation (IRMPD) spectroscopy in the 900-1800 cm(-1) spectral region using the Free Electron Laser facility in Orsay (CLIO). The IRMPD experimental spectra have been compared with the calculated IR absorption spectra of the different low-lying isomers (computed at the DFT level using the B3LYP functional and the 6-311G++(d,p) basis set for C, H, N and O atoms and the Stuttgart effective core potential for Ag). For the [CAg](+) complex, only one isomer with cytosine in the keto-amino (KA) tautomeric form and Ag(+) interacting simultaneously with the C(2)[double bond, length as m-dash]O(7) group and N(3) of cytosine was observed. However, the mono-hydration of the complex in the gas phase leads to the stabilization of a two quasi-isoenergetic structure of the [CAg-H2O](+) complex, in which Ag(+) interacts with the O atom of the water molecule and with the N(3) or C(2)[double bond, length as m-dash]O(7) group of cytosine. The relative populations of the two isomers determined from the IRMPD kinetics plot are in good agreement with the calculated values. Comparison of these results with those of protonated cytosine [CH](+) and its mono-hydrated complex [CH-H2O](+) shows some interesting differences between H(+) and Ag(+). In particular, while a single water molecule catalyzes the isomerization reaction in the case of [CH-H2O](+), it is found that in the case of [CAg-H2O](+) the addition of water leads to the stabilization of two isomers separated by small energy barrier (0.05 eV).


Subject(s)
Coordination Complexes/chemistry , Cytosine/chemistry , Silver/chemistry , Cations, Monovalent/chemistry , Mass Spectrometry , Models, Molecular , Spectrophotometry, Infrared , Thermodynamics , Water/chemistry
14.
Eur J Med Chem ; 91: 72-90, 2015 Feb 16.
Article in English | MEDLINE | ID: mdl-25458183

ABSTRACT

Recently we constructed a homology model of the enzyme thymidylate kinase from Variola virus (VarTMPK) and proposed it as a new target to the drug design against smallpox. In the present work, we used the antivirals cidofovir and acyclovir as reference compounds to choose eleven compounds as leads to the drug design of inhibitors for VarTMPK. Docking and molecular dynamics (MD) studies of the interactions of these compounds inside VarTMPK and human TMPK (HssTMPK) suggest that they compete for the binding region of the substrate and were used to propose the structures of ten new inhibitors for VarTMPK. Further docking and MD simulations of these compounds, inside VarTMPK and HssTMPK, suggest that nine among ten are potential selective inhibitors of VarTMPK.


Subject(s)
Acyclovir/analogs & derivatives , Antiviral Agents/chemistry , Nucleoside-Phosphate Kinase/antagonists & inhibitors , Small Molecule Libraries/chemistry , Variola virus/chemistry , Viral Proteins/antagonists & inhibitors , Catalytic Domain , Cidofovir , Cytosine/analogs & derivatives , Cytosine/chemistry , Drug Design , Humans , Kinetics , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Mutation , Nucleoside-Phosphate Kinase/chemistry , Nucleoside-Phosphate Kinase/genetics , Organophosphonates/chemistry , Smallpox/drug therapy , Smallpox/virology , Species Specificity , Structure-Activity Relationship , Thermodynamics , Variola virus/enzymology , Variola virus/genetics , Viral Proteins/chemistry , Viral Proteins/genetics
15.
J Biotechnol ; 189: 143-9, 2014 Nov 10.
Article in English | MEDLINE | ID: mdl-25238723

ABSTRACT

5'-Cy5-labelled PCR amplicons containing the analogue base, N(4)-methylcytosine, instead of cytosines were compared in microarray hybridisation experiments with the corresponding amplicons containing the canonical set of bases, with respect to the intensity of the fluorescence signal obtained, and cross hybridisation to non-corresponding probes. In general, higher hybridisation temperatures resulted in reduced signal intensities, particularly in the case of the N(4)-methylcytosine containing amplicons. At the lower hybridisation temperatures tested (40 °C, 30 °C), these modified amplicons gave about equal or stronger fluorescence signal than the corresponding regular amplicons. With the two GC-richest amplicons tested, in one instance the N(4)-methylated target gave a dramatically higher signal intensity than the unmodified amplicon, interpreted as reflecting the reduced formation of hairpin structures in the target sequence, due to the lower thermodynamic stability of the G:N(4)-methylC base pair, making the target more accessible, while in the other case no hybridisation was observed with either version of the amplicon, probably due to interference from a G-tetrad structure. Both for the regular and the N(4)-methylated amplicons, no significant cross hybridisation was seen in these experiments.


Subject(s)
Cytosine/analogs & derivatives , Oligonucleotide Array Sequence Analysis/methods , Cytosine/chemistry , Nucleic Acid Hybridization
16.
Biochemistry ; 53(21): 3446-56, 2014 Jun 03.
Article in English | MEDLINE | ID: mdl-24801145

ABSTRACT

In this work, perturbed angular correlation (PAC) spectroscopy is used to study differences in the nuclear quadrupole interactions of Cd probes in DNA molecules of mice infected with the Y-strain of Trypanosoma cruzi. The possibility of investigating the local genetic alterations in DNA, which occur along generations of mice infected with T. cruzi, using hyperfine interactions obtained from PAC measurements and density functional theory (DFT) calculations in DNA bases is discussed. A comparison of DFT calculations with PAC measurements could determine the type of Cd coordination in the studied molecules. To the best of our knowledge, this is the first attempt to use DFT calculations and PAC measurements to investigate the local environment of Cd ions bound to DNA bases in mice infected with Chagas disease. The obtained results also allowed the detection of local changes occurring in the DNA molecules of different generations of mice infected with T. cruzi, opening the possibility of using this technique as a complementary tool in the characterization of complicated biological systems.


Subject(s)
Cadmium/chemistry , Chagas Disease/genetics , DNA/chemistry , Trypanosoma cruzi , Adenine/chemistry , Animals , Cations, Divalent , Coordination Complexes/chemistry , Cytosine/chemistry , Guanine/chemistry , Mice , Species Specificity , Thymine/chemistry
17.
J Mol Model ; 19(2): 811-24, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23053008

ABSTRACT

In this work we investigated the outside binding mode between a cationic porphyrin and a nucleotide pair of DNA, adenine-thymine and guanine-cytosine, in a supramolecular assembly. We used two structural models (semi-extended, extended) that differ in the size of porphyrin, two kinds of theoretical methods: a three layer ONIOM (B3LYP/6-31G(d)/PM3/UFF), and DFT B3LYP/6-31G(d,p), and three cationic porphyrins. ONIOM method was first tested on the semi-extended model that was calculated in four environments: gas phase, solution phase using an explicit solvent model (H(2)O), in the presence of a sodium cation (Na(+)) and in both (H(2)O + Na(+)). From interaction energy results, we found that the affinity of the cationic substituent by the adenine nucleotide is favored upon the thymine nucleotide. The extended model that considers the whole porphyrin was applied in the gas phase to the four nucleotides. All the cationic porphyrins showed affinity by the nucleotides in the order adenine > guanine > thymine > cytosine. The interaction energy values for outside binding showed a strong porphyrin-nucleotide interaction (≈-90 kcal mol(-1)), that slightly varies between the nucleotides suggesting that this kind of cationic porphyrin has a little selectivity for some of them. We also found that the effect of the nature of the cationic substituent (chain length) in the porphyrin on the outside binding is small (≈2-13 kcal mol(-1)). Coherence between the results showed that ONIOM is a useful tool to get a reasonable molecular geometry to be used as a starting point in calculations of density functional theory.


Subject(s)
Adenine/chemistry , Cytosine/chemistry , DNA/chemistry , Guanine/chemistry , Porphyrins/chemistry , Thymine/chemistry , Base Pairing , Binding Sites , Cations, Monovalent , Gases , Models, Chemical , Models, Molecular , Quantum Theory , Sodium/chemistry , Solutions , Thermodynamics , Water/chemistry
18.
Anal Chem ; 83(20): 7999-8005, 2011 Oct 15.
Article in English | MEDLINE | ID: mdl-21905673

ABSTRACT

In eukaryotes, actual DNA methylation patterns provide biologically important information, for which both, genome-wide and locus-specific methylation at cytosine residues have been extensively studied. The original contribution of this work relies on the selective derivatization of cytosine moieties with 2-bromoacetophenone for the determination of global DNA methylation by reversed phase high performance liquid chromatography with spectrofluorimetric detection. The important features of the proposed procedure are as follows: (1) no need for the elimination of RNA, (2) detection limits for cytidine, 2'-deoxycytidine, 5-methylcytidine, and 5-methyl-2'-deoxycytidine in the range of 14.4-22.7 fmol, (3) feasibility for the detection of 0.06% of methylation in a low amount of DNA (80 ng), (4) potential viability for the evaluation of RNA methylation, and (5) relative simplicity in terms of analytical instrumentation and personnel training. The results obtained in the analysis of salmon testes DNA and nucleic acids from plant, human blood, and earthworms demonstrate the utility of the proposed procedure in biological studies and, in particular, for evaluation of the potential effect of environmental factors on actual DNA methylation in different types of living organisms.


Subject(s)
5-Methylcytosine/chemistry , Chromatography, High Pressure Liquid , Chromatography, Reverse-Phase , Cytosine/chemistry , DNA Methylation , Fluorometry , Acetophenones/chemistry , Animals , Cytidine/analogs & derivatives , Cytidine/analysis , Deoxycytidine/analogs & derivatives , Deoxycytidine/analysis , Humans , Lepidium sativum/genetics , Oligochaeta/genetics , Salmon/genetics
19.
Orig Life Evol Biosph ; 41(5): 453-68, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21717172

ABSTRACT

In the present work the interactions of nucleic acid bases with and adsorption on clays were studied at two pHs (2.00, 7.00) using different techniques. As shown by Mössbauer and EPR spectroscopies and X-ray diffractometry, the most important finding of this work is that nucleic acid bases penetrate into the interlayer of the clays and oxidize Fe(2+) to Fe(3+), thus, this interaction cannot be regarded as a simple physical adsorption. For the two pHs the order of the adsorption of nucleic acid bases on the clays was: adenine ≈ cytosine > thymine > uracil. The adsorption of adenine and cytosine on clays increased with decreasing of the pH. For unaltered montmorillonite this result could be explained by electrostatic forces between adenine/cytosine positively charged and clay negatively charged. However for montmorillonite modified with Na(2)S, probably van der Waals forces also play an important role since both adenine/cytosine and clay were positively charged. FT-IR spectra showed that the interaction between nucleic acid bases and clays was through NH(+) or NH (2) (+) groups. X-ray diffractograms showed that nucleic acid bases adsorbed on clays were distributed into the interlayer surface, edge sites and external surface functional groups (aluminol, silanol) EPR spectra showed that the intensity of the line g ≈ 2 increased probably because the oxidation of Fe(2+) to Fe(3+) by nucleic acid bases and intensity of the line g = 4.1 increased due to the interaction of Fe(3+) with nucleic acid bases. Mössbauer spectra showed a large decreased on the Fe(2+) doublet area of the clays due to the reaction of nucleic acid bases with Fe(2+).


Subject(s)
Adenine/chemistry , Bentonite/chemistry , Cytosine/chemistry , Thymine/chemistry , Uracil/chemistry , Adsorption , Earth, Planet , Electron Spin Resonance Spectroscopy , Hydrogen-Ion Concentration , Kinetics , Manganese Compounds , Oxidation-Reduction , Oxides , Spectroscopy, Fourier Transform Infrared , Sulfides/chemistry , X-Ray Diffraction
20.
J Chem Phys ; 134(17): 175101, 2011 May 07.
Article in English | MEDLINE | ID: mdl-21548706

ABSTRACT

We present the structural, electronic, and optical properties of anhydrous crystals of DNA nucleobases (guanine, adenine, cytosine, and thymine) found after DFT (Density Functional Theory) calculations within the local density approximation, as well as experimental measurements of optical absorption for powders of these crystals. Guanine and cytosine (adenine and thymine) anhydrous crystals are predicted from the DFT simulations to be direct (indirect) band gap semiconductors, with values 2.68 eV and 3.30 eV (2.83 eV and 3.22 eV), respectively, while the experimentally estimated band gaps we have measured are 3.83 eV and 3.84 eV (3.89 eV and 4.07 eV), in the same order. The electronic effective masses we have obtained at band extremes show that, at low temperatures, these crystals behave like wide gap semiconductors for electrons moving along the nucleobases stacking direction, while the hole transport are somewhat limited. Lastly, the calculated electronic dielectric functions of DNA nucleobases crystals in the parallel and perpendicular directions to the stacking planes exhibit a high degree of anisotropy (except cytosine), in agreement with published experimental results.


Subject(s)
Adenine/chemistry , Cytosine/chemistry , Guanine/chemistry , Semiconductors , Thymine/chemistry , Crystallization , DNA/chemistry , Models, Molecular , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL