Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 310.393
1.
Anal Chim Acta ; 1310: 342716, 2024 Jun 29.
Article En | MEDLINE | ID: mdl-38811135

BACKGROUND: Assembling framework nucleic acid (FNA) nanoarchitectures and tuning luminescent quantum dots (QDs) for fluorescence assays represent a versatile strategy in analytical territory. Rationally, FNA constructs could offer a preferential orientation to efficiently recognize the target and improve detection sensitivity, meanwhile, regulating size-dependent multicolor emissions of QDs in one analytical setting for ratiometric fluorescence assay would greatly simplify operation procedures. Nonetheless, such FNA/QDs-based ratiometric fluorescence nanoprobes remain rarely explored. RESULTS: We designed a sensitive and signal amplification-free fluorescence aptasensor for lead ions (Pb2+) that potentially cause extensive contamination to environment, cosmetic, food and pharmaceuticals. Red and green emission CdTe quantum dots (rQDs and gQDs) were facilely prepared. Moreover, silica nanosphere encapsulating rQDs served as quantitative internal reference and scaffold to anchor a predesigned FNA and DNA sandwich containing Pb2+ binding aptamer and gQD modified DNA signal reporter. On binding of Pb2+, the gQD-DNA signal reporter was set free, resulting in fluorescence quenching at graphene oxide (GO) interface. Owing to the rigid structure of FNA, the fluorescence signal reporter orderly arranged at the silica nanosphere could sensitively respond to Pb2+ stimulation. The dose-dependent fluorescence signal-off mode enabled ratiometric analysis of Pb2+ without cumbersome signal amplification. Linear relationship was established between fluorescence intensity ratio (I555/I720) and Pb2+ concentration from 10 nM to 2 µM, with detection limit of 1.7 nM (0.43 ppb), well addressing the need for Pb2+ routine monitoring. The designed nanoprobe was applied to detection of Pb2+ in soil, cosmetic, milk, drug, and serum samples, with the sensitivity comparable to conventional ICP-MS technique. SIGNIFICANCE: Given the programmable design of FNA and efficient recognition of target, flexible tuning of QDs emission, and signal amplification-free strategy, the present fluorescence nanoprobe could be a technical criterion for other heavy metal ions detection in a straightforward manner.


DNA , Graphite , Lead , Nanospheres , Quantum Dots , Silicon Dioxide , Spectrometry, Fluorescence , Quantum Dots/chemistry , Lead/analysis , Lead/chemistry , Graphite/chemistry , Silicon Dioxide/chemistry , Nanospheres/chemistry , DNA/chemistry , Cadmium Compounds/chemistry , Limit of Detection , Tellurium/chemistry , Aptamers, Nucleotide/chemistry , Fluorescence , Biosensing Techniques/methods
2.
Nat Commun ; 15(1): 4609, 2024 May 30.
Article En | MEDLINE | ID: mdl-38816425

The protection of the replication fork structure under stress conditions is essential for genome maintenance and cancer prevention. A key signaling pathway for fork protection involves TRPV2-mediated Ca2+ release from the ER, which is triggered after the generation of cytosolic DNA and the activation of cGAS/STING. This results in CaMKK2/AMPK activation and subsequent Exo1 phosphorylation, which prevent aberrant fork processing, thereby ensuring genome stability. However, it remains poorly understood how the TRPV2 channel is activated by the presence of cytosolic DNA. Here, through a genome-wide CRISPR-based screen, we identify TRPM8 channel-associated factor 1 (TCAF1) as a key factor promoting TRPV2-mediated Ca2+ release under replication stress or other conditions that activate cGAS/STING. Mechanistically, TCAF1 assists Ca2+ release by facilitating the dissociation of STING from TRPV2, thereby relieving TRPV2 repression. Consistent with this function, TCAF1 is required for fork protection, chromosomal stability, and cell survival after replication stress.


Calcium , Cytosol , DNA Replication , Membrane Proteins , TRPV Cation Channels , Humans , TRPV Cation Channels/metabolism , TRPV Cation Channels/genetics , Calcium/metabolism , Cytosol/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , HEK293 Cells , DNA/metabolism , HeLa Cells , Calcium-Calmodulin-Dependent Protein Kinase Kinase/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Kinase/genetics , Phosphorylation , Genomic Instability , DNA Damage , Animals
3.
Article En | MEDLINE | ID: mdl-38821674

Environmental exposure would cause DNA damage and epigenetic modification changes, potentially resulting in physiological dysfunction, thereby triggering diseases and even cancer. DNA damage and epigenetic modifications are thus promising biomarkers for environmental exposures and disease states. Benefiting from its high sensitivity and accuracy, high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) is considered the "gold standard technique" for investigating epigenetic DNA modifications. This review summarizes the recent advancements of UHPLC-MS/MS-based technologies for DNA damage and epigenetic modifications analysis, mainly focusing on the innovative methods developed for UHPLC-MS/MS-related pretreatment technologies containing efficient genomic DNA digestion and effective removal of the inorganic salt matrix, and the new strategies for improving detection sensitivity of liquid chromatography-mass spectrometry. Moreover, we also summarized the novel hyphenated techniques of the advanced UHPLC-MS/MS coupled with other separation and analysis methods for the measurement of DNA damage and epigenetic modification changes in special regions and fragments of chromosomes.


DNA Damage , Epigenesis, Genetic , Tandem Mass Spectrometry , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Humans , DNA Methylation , DNA , Environmental Exposure/analysis , Animals
4.
J Chromatogr A ; 1727: 464990, 2024 Jul 19.
Article En | MEDLINE | ID: mdl-38744188

An approach for the controllable separation and concentration of nucleic acid using a circular nonuniform electric field was proposed and developed. Using six different lengths of DNA molecules as standard samples, the distribution of the gradient electric field was increased from the outer circular electrode to the inner rod-shaped electrode, contributing to the migration of DNA molecules at a velocity gradient towards the region with the strongest inner electric field. The DNA molecules were arranged in a distribution of concentric circles that aligned with the distribution of concentric equipotential lines. The concentration of DNA multiplied with the alternation of radius. As a result, this platform allowed simultaneous DNA separation, achieving a resolution range of 1.17-3.03 through an extended electrophoresis time, resulting in enhanced concentration factors of 1.08-6.27. Moreover, the manipulation of the relative height of the inner and outer electrodes enabled precise control over the distribution and the deflection degree of electric field lines, leading to accurate control over DNA deflection.


DNA , DNA/isolation & purification , DNA/analysis , DNA/chemistry , Electrodes , Electricity , Electrophoresis, Capillary/methods
5.
Cell Rep Methods ; 4(5): 100776, 2024 May 20.
Article En | MEDLINE | ID: mdl-38744287

Continual advancements in genomics have led to an ever-widening disparity between the rate of discovery of genetic variants and our current understanding of their functions and potential roles in disease. Systematic methods for phenotyping DNA variants are required to effectively translate genomics data into improved outcomes for patients with genetic diseases. To make the biggest impact, these approaches must be scalable and accurate, faithfully reflect disease biology, and define complex disease mechanisms. We compare current methods to analyze the function of variants in their endogenous DNA context using genome editing strategies, such as saturation genome editing, base editing and prime editing. We discuss how these technologies can be linked to high-content readouts to gain deep mechanistic insights into variant effects. Finally, we highlight key challenges that need to be addressed to bridge the genotype to phenotype gap, and ultimately improve the diagnosis and treatment of genetic diseases.


Gene Editing , Genetic Variation , Humans , Gene Editing/methods , Genetic Variation/genetics , DNA/genetics , CRISPR-Cas Systems/genetics , Genomics/methods , Animals , Phenotype
6.
Sci Adv ; 10(22): eadn4490, 2024 May 31.
Article En | MEDLINE | ID: mdl-38820146

In recent years, there has been a growing interest in engineering dynamic and autonomous systems with robotic functionalities using biomolecules. Specifically, the ability of molecular motors to convert chemical energy to mechanical forces and the programmability of DNA are regarded as promising components for these systems. However, current systems rely on the manual addition of external stimuli, limiting the potential for autonomous molecular systems. Here, we show that DNA-based cascade reactions can act as a molecular controller that drives the autonomous assembly and disassembly of DNA-functionalized microtubules propelled by kinesins. The DNA controller is designed to produce two different DNA strands that program the interaction between the microtubules. The gliding microtubules integrated with the controller autonomously assemble to bundle-like structures and disassemble into discrete filaments without external stimuli, which is observable by fluorescence microscopy. We believe this approach to be a starting point toward more autonomous behavior of motor protein-based multicomponent systems with robotic functionalities.


DNA , Kinesins , Microtubules , Robotics , DNA/chemistry , DNA/metabolism , Microtubules/metabolism , Microtubules/chemistry , Kinesins/metabolism , Kinesins/chemistry , Molecular Motor Proteins/metabolism , Molecular Motor Proteins/chemistry
7.
Mikrochim Acta ; 191(6): 298, 2024 05 06.
Article En | MEDLINE | ID: mdl-38709403

As a real-time fluid biopsy method, the detection of circulating tumor cells (CTCs) provides important information for the early diagnosis, precise treatment, and prognosis of cancer. However, the low density of CTCs in the peripheral blood hampers their capture and detection with high sensitivity and selectivity using currently available methods. Hence, we designed a sandwich-type electrochemical aptasensor that utilizes holothurian-shaped AuPd nanoparticles (AuPd HSs), tetrahedral DNA nanostructures (TDNs), and CuPdPt nanowire networks (NWs) interwoven with a graphdiyne (GDY) sheet for ultrasensitive non-destructive detection of MCF-7 breast cancer cells. CuPdPt NW-GDY effectively enhanced the electron transfer rate and coupled with the loaded TDNs. The TDNs could capture MCF-7 cells with precision and firmness, and the resulting composite complex was combined with AuPd HSs to form a sandwich-type structure. This novel aptasensor showed a linear range between 10 and 106 cells mL-1 and an ultralow detection limit of 7 cells mL-1. The specificity, stability, and repeatability of the measurements were successfully verified. Moreover, we used benzonase nuclease to achieve non-destructive recovery of cells for further clinical studies. According to the results, our aptasensor was more sensitive measuring the number of CTCs than other approaches because of the employment of TDNs, CuPdPt NW-GDY, and AuPd HSs. We designed a reliable sensor system for the detection of CTCs in the peripheral blood, which could serve as a new approach for cancer diagnosis at an early stage.


Aptamers, Nucleotide , Biosensing Techniques , DNA , Electrochemical Techniques , Gold , Limit of Detection , Metal Nanoparticles , Neoplastic Cells, Circulating , Palladium , Neoplastic Cells, Circulating/pathology , Humans , MCF-7 Cells , Metal Nanoparticles/chemistry , Electrochemical Techniques/methods , Aptamers, Nucleotide/chemistry , Gold/chemistry , DNA/chemistry , Biosensing Techniques/methods , Palladium/chemistry
8.
Chemphyschem ; 25(9): e202400391, 2024 May 02.
Article En | MEDLINE | ID: mdl-38712664

The front cover artwork is provided by Prof. Papadantonakis' group. The image shows a Watson-Crick Guanine-Cytosine pair, and the difference between vertical and adiabatic ionization potentials. Read the full text of the Research Article at 10.1002/cphc.202300946.


Base Pairing , Cytosine , Guanine , Cytosine/chemistry , Guanine/chemistry , DNA/chemistry
9.
Sci Rep ; 14(1): 11522, 2024 05 21.
Article En | MEDLINE | ID: mdl-38769102

Digital PCR (dPCR) is a technique for absolute quantification of nucleic acid molecules. To develop a dPCR technique that enables more accurate nucleic acid detection and quantification, we established a novel dPCR apparatus known as centrifugal force real-time dPCR (crdPCR). This system is efficient than other systems with only 2.14% liquid loss by dispensing samples using centrifugal force. Moreover, we applied a technique for analyzing the real-time graph of the each micro-wells and distinguishing true/false positives using artificial intelligence to mitigate the rain, a persistent issue with dPCR. The limits of detection and quantification were 1.38 and 4.19 copies/µL, respectively, showing a two-fold higher sensitivity than that of other comparable devices. With the integration of this new technology, crdPCR will significantly contribute to research on next-generation PCR targeting absolute micro-analysis.


DNA , Real-Time Polymerase Chain Reaction , Real-Time Polymerase Chain Reaction/methods , DNA/analysis , DNA/genetics , Centrifugation/methods , Limit of Detection
11.
Mikrochim Acta ; 191(6): 334, 2024 05 17.
Article En | MEDLINE | ID: mdl-38758362

Single nucleotide polymorphism (SNP) biosensors are emerging rapidly for their promising applications in human disease prevention diagnosis, treatment, and prognosis. However, it remains a bottleneck in equipping simple and stable biosensors with the traits of high sensitivity, non-enzyme, and low cost. Double base mismatches mediated chain displacement reactions have attracted fascinating advantages of tailorable thermodynamics stability, non-enzyme, and excellent assembly compliance to involvement in SNP identification. As the base mismatch position and amount in DNA sequence can be artificially adjusted, it provides plenty of selectivity and specificity for exploring perfect biosensors. Herein, a biosensor with double base mismatches mediated catalytic hairpin assembly (CHA) is designed via one base mismatch in the toehold domain and the other base mismatch in the stem sequence of hairpin 1 (H1) by triggering CHA reaction to achieve selective amplification of the mutation target (MT) and fluorescence resonance energy transfer (FRET) effect that is composed of Cy3 and Cy5 terminally attached H1 and hairpin 2 (H2). Depending on the rationally designed base mismatch position and toehold length, the fabricated biosensors show superior SNP detection performance, exhibiting a good linearity with high sensitivity of 6.6 fM detection limit and a broad detection abundance of 1%. The proposed biosensor can be used to detect the KRAS mutation gene in real samples and obtain good recoveries between 106 and 116.99%. Remarkably, these extendible designs of base mismatches can be used for more types of SNP detection, providing flexible adjustment based on base mismatch position and toehold length variations, especially for their thermodynamic model for DNA-strand displacement reactions.


Base Pair Mismatch , Biosensing Techniques , Fluorescence Resonance Energy Transfer , Nucleic Acid Amplification Techniques , Polymorphism, Single Nucleotide , Biosensing Techniques/methods , Humans , Fluorescence Resonance Energy Transfer/methods , Nucleic Acid Amplification Techniques/methods , Limit of Detection , Inverted Repeat Sequences , DNA/chemistry , DNA/genetics , Mutation , Proto-Oncogene Proteins p21(ras)/genetics , Catalysis
12.
Sci Rep ; 14(1): 11340, 2024 05 17.
Article En | MEDLINE | ID: mdl-38760358

Genetics studies are used by wildlife managers and researchers to gain inference into a population of a species of interest. To gain these insights, microsatellites have been the primary method; however, there currently is a shift from microsatellites to single nucleotide polymorphisms (SNPs). With the different DNA requirements between microsatellites and SNPs, an investigation into which samples can provide adequate DNA yield is warranted. Using samples that were collected from previous genetic projects from regions in the USA from 2014 to 2021, we investigated the DNA yield of eight sample categories to gain insights into which provided adequate DNA to be used in ddRADseq or already developed high- or medium-density SNP panels. We found seven sample categories that met the DNA requirements for use in all three panels, and one sample category that did not meet any of the three panels requirements; however, DNA integrity was highly variable and not all sample categories that met panel DNA requirements could be considered high quality DNA. Additionally, we used linear random-effects models to determine which covariates would have the greatest influence on DNA yield. We determined that all covariates (tissue type, storage method, preservative, DNA quality, time until DNA extraction and time after DNA extraction) could influence DNA yield.


DNA , Polymorphism, Single Nucleotide , DNA/genetics , DNA/analysis , Animals , Microsatellite Repeats/genetics , Specimen Handling/methods
13.
J Nanobiotechnology ; 22(1): 266, 2024 May 18.
Article En | MEDLINE | ID: mdl-38762451

The detection of carcinoembryonic antigen (CEA) holds significant importance in the early diagnosis of cancer. However, current methods are hindered by limited accessibility and specificity. This study proposes a rapid and convenient Cas12a-based assay for the direct detection of CEA in clinical serum samples, aiming to address these limitations. The protocol involves a rolling machine operation, followed by a 5-min Cas12a-mediated cleavage process. The assay demonstrates the capability to detect human serum with high anti-interference performance and a detection limit as low as 0.2 ng/mL. The entire testing procedure can be accomplished in 75 min without centrifugation steps, and successfully reduced the limit of detection of traditional DNA walking machine by 50 folds. Overall, the testing procedure can be easily implemented in clinical settings.


Biosensing Techniques , CRISPR-Cas Systems , Carcinoembryonic Antigen , DNA , Limit of Detection , Carcinoembryonic Antigen/blood , Humans , Biosensing Techniques/methods , DNA/chemistry , Endodeoxyribonucleases , Nucleic Acid Amplification Techniques/methods , CRISPR-Associated Proteins , Bacterial Proteins/genetics
14.
Brief Bioinform ; 25(3)2024 Mar 27.
Article En | MEDLINE | ID: mdl-38762790

In this review, we provide a comprehensive overview of the different computational tools that have been published for the deconvolution of bulk DNA methylation (DNAm) data. Here, deconvolution refers to the estimation of cell-type proportions that constitute a mixed sample. The paper reviews and compares 25 deconvolution methods (supervised, unsupervised or hybrid) developed between 2012 and 2023 and compares the strengths and limitations of each approach. Moreover, in this study, we describe the impact of the platform used for the generation of methylation data (including microarrays and sequencing), the applied data pre-processing steps and the used reference dataset on the deconvolution performance. Next to reference-based methods, we also examine methods that require only partial reference datasets or require no reference set at all. In this review, we provide guidelines for the use of specific methods dependent on the DNA methylation data type and data availability.


Computational Biology , DNA Methylation , Humans , Computational Biology/methods , DNA/genetics , Algorithms
15.
Clin Chim Acta ; 559: 119715, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38735514

Colorectal cancer, breast cancer, oxidative DNA damage, and viral infections are all significant and major health threats to human health, presenting substantial challenges in early diagnosis. In this regard, a wide range of nucleic acid-based electrochemical platforms have been widely employed as point-of-care diagnostics in health care and biosensing technologies. This review focuses on biosensor design strategies, underlying principles involved in the development of advanced electrochemical genosensing devices, approaches for immobilizing DNA on electrode surfaces, as well as their utility in early disease diagnosis, with a particular emphasis on cancer, leukaemia, oxidative DNA damage, and viral pathogen detection. Notably, the role of biorecognition elements and nanointerfaces employed in the design and development of advanced electrochemical genosensors for recognizing biomarkers related to colorectal cancer, breast cancer, leukaemia, oxidative DNA damage, and viral pathogens has been extensively reviewed. Finally, challenges associated with the fabrication of nucleic acid-based biosensors to achieve high sensitivity, selectivity, a wide detection range, and a low detection limit have been addressed. We believe that this review will provide valuable information for scientists and bioengineers interested in gaining a deeper understanding of the fabrication and functionality of nucleic acid-based electrochemical biosensors for biomedical diagnostic applications.


Biosensing Techniques , Electrochemical Techniques , Nucleic Acids , Biosensing Techniques/methods , Humans , Electrochemical Techniques/methods , Nucleic Acids/analysis , DNA/analysis
16.
J Phys Chem Lett ; 15(20): 5556-5563, 2024 May 23.
Article En | MEDLINE | ID: mdl-38752895

Solid-state nanopores have been extensively explored as single-molecule sensors, bearing the potential for the sequencing of DNA. Although they offer advantages in terms of high mechanical robustness, tunable geometry, and compatibility with existing semiconductor fabrication techniques in comparison with their biological counterparts, efforts to sequence DNA with these nanopores have been hampered by insufficient spatial resolution and high noise in the measured ionic current signal. Here we show that these limitations can be overcome by the use of solid-state nanopores featuring a thin, narrow constriction as the sensing region, inspired by biological protein nanopores that have achieved notable success in DNA sequencing. Our extensive molecular dynamics simulations show that these bio-inspired nanopores can provide high spatial resolution equivalent to 2D material nanopores and, meanwhile, significantly inhibit noise levels. A theoretical model is also provided to assess the performance of the bio-inspired nanopore, which could guide its design and optimization.


Molecular Dynamics Simulation , Nanopores , DNA/chemistry , Sequence Analysis, DNA/methods
17.
Expert Opin Drug Discov ; 19(6): 725-740, 2024 Jun.
Article En | MEDLINE | ID: mdl-38753553

INTRODUCTION: The effectiveness of Fragment-based drug design (FBDD) for targeting challenging therapeutic targets has been hindered by two factors: the small library size and the complexity of the fragment-to-hit optimization process. The DNA-encoded library (DEL) technology offers a compelling and robust high-throughput selection approach to potentially address these limitations. AREA COVERED: In this review, the authors propose the viewpoint that the DEL technology matches perfectly with the concept of FBDD to facilitate hit discovery. They begin by analyzing the technical limitations of FBDD from a medicinal chemistry perspective and explain why DEL may offer potential solutions to these limitations. Subsequently, they elaborate in detail on how the integration of DEL with FBDD works. In addition, they present case studies involving both de novo hit discovery and full ligand discovery, especially for challenging therapeutic targets harboring broad drug-target interfaces. EXPERT OPINION: The future of DEL-based fragment discovery may be promoted by both technical advances and application scopes. From the technical aspect, expanding the chemical diversity of DEL will be essential to achieve success in fragment-based drug discovery. From the application scope side, DEL-based fragment discovery holds promise for tackling a series of challenging targets.


DNA , Drug Design , Drug Discovery , Small Molecule Libraries , Drug Discovery/methods , Humans , Small Molecule Libraries/pharmacology , Ligands , Chemistry, Pharmaceutical/methods , Gene Library , High-Throughput Screening Assays/methods , Molecular Targeted Therapy , Animals
18.
Environ Mol Mutagen ; 65(3-4): 106-115, 2024.
Article En | MEDLINE | ID: mdl-38767089

As final process of every DNA repair pathway, DNA ligation is crucial for maintaining genomic stability and preventing DNA strand breaks to accumulate. Therefore, a method reliably assessing DNA ligation capacity in protein extracts from murine tissues was aimed to establish. To optimize applicability, the use of radioactively labeled substrates was avoided and replaced by fluorescently labeled oligonucleotides. Briefly, tissue extracts were incubated with those complementary oligonucleotides so that in an ensuing gel electrophoresis ligated strands could be separated from unconnected molecules. Originally, the method was intended for use in cerebellum tissue to further elucidate possible mechanisms of neurodegenerative diseases. However, due to its inhomogeneous anatomy, DNA ligation efficiency varied strongly between different cerebellar areas, illuminating the established assay to be suitable only for homogenous organs. Thus, for murine liver tissue sufficient intra- and interday repeatability was shown during validation. In further experiments, the established assay was applied to an animal study comprising young and old (24 and 110 weeks) mice which showed that DNA ligation efficiency was affected by neither sex nor age. Finally, the impact of in vitro addition of the trace elements copper, iron, and zinc on DNA ligation in tissue extracts was investigated. While all three metals inhibited DNA ligation, variations in their potency became evident. In conclusion, the established method can be reliably used for investigation of DNA ligation efficiency in homogenous murine tissues.


DNA , Animals , Mice , Male , Female , Liver/metabolism , Liver/drug effects , Cerebellum/metabolism , Mice, Inbred C57BL , DNA Ligases/metabolism , DNA Repair
19.
J Am Chem Soc ; 146(19): 12925-12932, 2024 May 15.
Article En | MEDLINE | ID: mdl-38691507

Technological breakthroughs in cryo-electron microscopy (cryo-EM) methods open new perspectives for highly detailed structural characterizations of extracellular vesicles (EVs) and synthetic liposome-protein assemblies. Structural characterizations of these vesicles in solution under a nearly native hydrated state are of great importance to decipher cell-to-cell communication and to improve EVs' application as markers in diagnosis and as drug carriers in disease therapy. However, difficulties in preparing holey carbon cryo-EM grids with low vesicle heterogeneities, at low concentration and with kinetic control of the chemical reactions or assembly processes, have limited cryo-EM use in the EV study. We report a straightforward membrane vesicle cryo-EM sample preparation method that assists in circumventing these limitations by using a free-standing DNA-affinity superlattice for covering holey carbon cryo-EM grids. Our approach uses DNA origami to self-assemble to a solution-stable and micrometer-sized ordered molecular template in which structure and functional properties can be rationally controlled. We engineered the template with cholesterol-binding sites to specifically trap membrane vesicles. The advantages of this DNA-cholesterol-affinity lattice (DCAL) include (1) local enrichment of artificial and biological vesicles at low concentration and (2) isolation of heterogeneous cell-derived membrane vesicles (exosomes) from a prepurified pellet of cell culture conditioned medium on the grid.


Cryoelectron Microscopy , DNA , Cryoelectron Microscopy/methods , DNA/chemistry , Extracellular Vesicles/chemistry , Humans , Cholesterol/chemistry , Liposomes/chemistry
20.
J Am Chem Soc ; 146(19): 13126-13132, 2024 May 15.
Article En | MEDLINE | ID: mdl-38696488

Cisplatin, a cornerstone in cancer chemotherapy, is known for its DNA-binding capacity and forms lesions that lead to cancer cell death. However, the repair of these lesions compromises cisplatin's effectiveness. This study investigates how phosphorylation of HMGB1, a nuclear protein, modifies its binding to cisplatin-modified DNA (CP-DNA) and thus protects it from repair. Despite numerous methods for detecting protein-DNA interactions, quantitative approaches for understanding their molecular mechanism remain limited. Here, we applied click chemistry-based single-molecule force spectroscopy, achieving high-precision quantification of the interaction between phosphorylated HMGB1 and CP-DNA. This method utilizes a synergy of click chemistry and enzymatic ligation for precise DNA-protein immobilization and interaction in the system. Our results revealed that HMGB1 binds to CP-DNA with a significantly high rupture force of ∼130 pN, stronger than most natural DNA-protein interactions and varying across different DNA sequences. Moreover, Ser14 is identified as the key phosphorylation site, enhancing the interaction's kinetic stability by 35-fold. This increase in stability is attributed to additional hydrogen bonding suggested by molecular dynamics (MD) simulations. Our findings not only reveal the important role of phosphorylated HMGB1 in potentially improving cisplatin's therapeutic efficacy but also provide a precise method for quantifying protein-DNA interactions.


Cisplatin , Click Chemistry , DNA , HMGB1 Protein , Molecular Dynamics Simulation , HMGB1 Protein/metabolism , HMGB1 Protein/chemistry , Cisplatin/chemistry , Cisplatin/pharmacology , Cisplatin/metabolism , Phosphorylation , DNA/chemistry , DNA/metabolism , Humans , Protein Binding , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology
...