Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Science ; 385(6711): 898-904, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39172834

ABSTRACT

At the core of molecular biology lies the intricate interplay between sequence, structure, and function. Single-molecule techniques provide in-depth dynamic insights into structure and function, but laborious assays impede functional screening of large sequence libraries. We introduce high-throughput Single-molecule Parallel Analysis for Rapid eXploration of Sequence space (SPARXS), integrating single-molecule fluorescence with next-generation sequencing. We applied SPARXS to study the sequence-dependent kinetics of the Holliday junction, a critical intermediate in homologous recombination. By examining the dynamics of millions of Holliday junctions, covering thousands of distinct sequences, we demonstrated the ability of SPARXS to uncover sequence patterns, evaluate sequence motifs, and construct thermodynamic models. SPARXS emerges as a versatile tool for untangling the mechanisms that underlie sequence-specific processes at the molecular scale.


Subject(s)
DNA, Cruciform , High-Throughput Nucleotide Sequencing , Single Molecule Imaging , Thermodynamics , Kinetics , DNA, Cruciform/chemistry , Single Molecule Imaging/methods , Homologous Recombination , Nucleotide Motifs , Base Sequence
2.
Nat Commun ; 15(1): 5140, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886375

ABSTRACT

Holliday junction resolution is a crucial process in homologous recombination and DNA double-strand break repair. Complete Holliday junction resolution requires two stepwise incisions across the center of the junction, but the precise mechanism of metal ion-catalyzed Holliday junction cleavage remains elusive. Here, we perform a metal ion-triggered catalysis in crystals to investigate the mechanism of Holliday junction cleavage by MOC1. We capture the structures of MOC1 in complex with a nicked Holliday junction at various catalytic states, including the ground state, the one-metal ion binding state, and the two-metal ion binding state. Moreover, we also identify a third metal ion that may aid in the nucleophilic attack on the scissile phosphate. Further structural and biochemical analyses reveal a metal ion-mediated allosteric regulation between the two active sites, contributing to the enhancement of the second strand cleavage following the first strand cleavage, as well as the precise symmetric cleavage across the Holliday junction. Our work provides insights into the mechanism of metal ion-catalyzed Holliday junction resolution by MOC1, with implications for understanding how cells preserve genome integrity during the Holliday junction resolution phase.


Subject(s)
DNA, Cruciform , DNA, Cruciform/metabolism , DNA, Cruciform/chemistry , DNA, Cruciform/genetics , Metals/metabolism , Metals/chemistry , Holliday Junction Resolvases/metabolism , Holliday Junction Resolvases/chemistry , Catalytic Domain , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Crystallography, X-Ray , Ions/metabolism , DNA Breaks, Double-Stranded , Models, Molecular , Allosteric Regulation
3.
J Phys Chem B ; 128(23): 5642-5657, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38812070

ABSTRACT

The integration host factor (IHF) in Escherichia coli is a nucleoid-associated protein with multifaceted roles that encompass DNA packaging, viral DNA integration, and recombination. IHF binds to double-stranded DNA featuring a 13-base pair (bp) consensus sequence with high affinity, causing a substantial bend of approximately 160° upon binding. Although wild-type IHF (WtIHF) is principally involved in DNA bending to facilitate foreign DNA integration into the host genome, its engineered counterpart, single-chain IHF (ScIHF), was specifically designed for genetic engineering and biotechnological applications. Our study delves into the interactions of both IHF variants with Holliday junctions (HJs), pivotal intermediates in DNA repair, and homologous recombination. HJs are dynamic structures capable of adopting open or stacked conformations, with the open conformation facilitating processes such as branch migration and strand exchange. Using microscale thermophoresis, we quantitatively assessed the binding of IHF to four-way DNA junctions that harbor specific binding sequences H' and H1. Our findings demonstrate that both IHF variants exhibit a strong affinity for HJs, signifying a structure-based recognition mechanism. Circular dichroism (CD) experiments unveiled the impact of the protein on the junction's conformation. Furthermore, single-molecule Förster resonance energy transfer (smFRET) confirmed the influence of IHF on the junction's dynamicity. Intriguingly, our results revealed that WtIHF and ScIHF binding shifts the population toward the open conformation of the junction and stabilizes it in that state. In summary, our findings underscore the robust affinity of the IHF for HJs and its capacity to stabilize the open conformation of these junctions.


Subject(s)
DNA, Cruciform , Integration Host Factors , DNA, Cruciform/chemistry , DNA, Cruciform/metabolism , Integration Host Factors/metabolism , Integration Host Factors/chemistry , Escherichia coli/metabolism , Nucleic Acid Conformation , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Protein Binding
4.
Biochem Pharmacol ; 225: 116310, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38788960

ABSTRACT

Targeting the DNA damage response (DDR) is a promising strategy in oncotherapy, as most tumor cells are sensitive to excess damage due to their repair defects. Ataxia telangiectasia mutated and RAD3-related protein (ATR) is a damage response signal transduction sensor, and its therapeutic potential in tumor cells needs to be precisely investigated. Herein, we identified a new axis that could be targeted by ATR inhibitors to decrease the DNA-dependent protein kinase catalytic subunit (DNAPKcs), downregulate the expression of the retinoblastoma (RB), and drive G1/S-phase transition. Four-way DNA Holliday junctions (FJs) assembled in this process could trigger S-phase arrest and induce lethal chromosome damage in RB-positive triple-negative breast cancer (TNBC) cells. Furthermore, these unrepaired junctions also exerted toxic effects to RB-deficient TNBC cells when the homologous recombination repair (HRR) was inhibited. This study proposes a precise strategy for treating TNBC by targeting the DDR and extends our understanding of ATR and HJ in tumor treatment.


Subject(s)
Ataxia Telangiectasia Mutated Proteins , DNA, Cruciform , Triple Negative Breast Neoplasms , Ataxia Telangiectasia Mutated Proteins/metabolism , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Ataxia Telangiectasia Mutated Proteins/genetics , Humans , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/drug therapy , Cell Line, Tumor , DNA, Cruciform/metabolism , DNA, Cruciform/genetics , Retinoblastoma Protein/metabolism , Retinoblastoma Protein/genetics , Female , S Phase/drug effects , S Phase/physiology , Animals , Antineoplastic Agents/pharmacology , DNA Damage/physiology , DNA Damage/drug effects
5.
Langmuir ; 40(19): 10195-10207, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38690801

ABSTRACT

With recent advances in DNA-templated dye aggregation for leveraging and engineering molecular excitons, a need exists for minimizing structural heterogeneity. Holliday Junction complexes (HJ) are commonly used to covalently template dye aggregates on their core; however, the global conformation of HJ is detrimentally dynamic. Here, the global conformation of the HJ is selectively tuned by restricting its position and orientation by using a sheet-like DNA origami construct (DOC) physisorbed on glass. The HJ arms are fixed with four different designed interduplex angles (IDAs). Atomic force microscopy confirmed that the HJs are bound to the surface of DOC with tuned IDAs. Dye orientation distributions were determined by combining dipole imaging and super-resolution microscopy. All IDAs led to dye orientations having dispersed distributions along planes perpendicular to the HJ plane, suggesting that stacking occurred between the dye and the neighboring DNA bases. The dye-base stacking interpretation was supported by increasing the size of the core cavity. The narrowest IDA minimizes structural heterogeneity and suggests dye intercalation. A strong correlation is found between the IDA and the orientation of the dye along the HJ plane. These results show that the HJ imposes restrictions on the dye and that the dye-DNA interactions are always present regardless of global conformation. The implications of our results are discussed for the scalability of dye aggregates using DNA self-assembly. Our methodology provides an avenue for the solid-supported single-molecule characterization of molecular assemblies templated on biomolecules─such as DNA and protein templates involved in light-harvesting and catalysis─with tuned conformations and restricted in position and orientation.


Subject(s)
DNA, Cruciform , Nucleic Acid Conformation , DNA, Cruciform/chemistry , DNA/chemistry , Coloring Agents/chemistry , Microscopy, Atomic Force
6.
J Mol Biol ; 436(10): 168550, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38575054

ABSTRACT

The class 2 CRISPR-Cas9 and CRISPR-Cas12a systems, originally described as adaptive immune systems of bacteria and archaea, have emerged as versatile tools for genome-editing, with applications in biotechnology and medicine. However, significantly less is known about their substrate specificity, but such knowledge may provide instructive insights into their off-target cleavage and previously unrecognized mechanism of action. Here, we document that the Acidaminococcus sp. Cas12a (AsCas12a) binds preferentially, and independently of crRNA, to a suite of branched DNA structures, such as the Holliday junction (HJ), replication fork and D-loops, compared with single- or double-stranded DNA, and promotes their degradation. Further, our study revealed that AsCas12a binds to the HJ, specifically at the crossover region, protects it from DNase I cleavage and renders a pair of thymine residues in the HJ homologous core hypersensitive to KMnO4 oxidation, suggesting DNA melting and/or distortion. Notably, these structural changes enabled AsCas12a to resolve HJ into nonligatable intermediates, and subsequently their complete degradation. We further demonstrate that crRNA impedes HJ cleavage by AsCas12a, and that of Lachnospiraceae bacterium Cas12a, without affecting their DNA-binding ability. We identified a separation-of-function variant, which uncouples DNA-binding and DNA cleavage activities of AsCas12a. Importantly, we found robust evidence that AsCas12a endonuclease also has 3'-to-5' and 5'-to-3' exonuclease activity, and that these two activities synergistically promote degradation of DNA, yielding di- and mononucleotides. Collectively, this study significantly advances knowledge about the substrate specificity of AsCas12a and provides important insights into the degradation of different types of DNA substrates.


Subject(s)
Acidaminococcus , Bacterial Proteins , CRISPR-Associated Proteins , CRISPR-Cas Systems , Endodeoxyribonucleases , Acidaminococcus/enzymology , Acidaminococcus/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , CRISPR-Associated Proteins/chemistry , CRISPR-Associated Proteins/genetics , DNA, Cruciform/chemistry , Endodeoxyribonucleases/metabolism , Endodeoxyribonucleases/chemistry , Endodeoxyribonucleases/genetics , Substrate Specificity
7.
Anal Chim Acta ; 1302: 342492, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38580406

ABSTRACT

The rational design of DNA tracks is an effective pathway to guide the autonomous movement and high-efficiency recognition in DNA walkers, showing outstanding advantages for the cascade signal amplification of electrochemical biosensors. However, the uncontrolled distance between two adjacent tracks on the electrode could increase the risk of derailment and interruption of the reaction. Hence, a novel four-way balanced cruciform-shaped DNA track (C-DNT) was designed as a structured pathway to improve the effectiveness and stability of the reaction in DNA walkers. In this work, two kinds of cruciform-shaped DNA were interconnected as a robust structure that could avoid the invalid movement of the designed DNA walker on the electrode. When hairpin H2 was introduced onto the electrode, the strand displacement reaction (SDR) effectively triggered movements of the DNA walker along the cruciform-shaped track while leaving ferrocene (Fc) on the electrode, leading to a significant enhancement of the electrochemical signal. This design enabled the walker to move in an excellent organized and controllable manner, thus enhancing the reaction speed and walking efficiency. Compared to other walkers moving on random tracks, the reaction time of the C-DNT-based DNA walker could be reduced to 20 min. Lead ion (Pb2+) was used as a model target to evaluate the analytical performance of this biosensor, which exhibited a low detection limit of 0.033 pM along with a wide detection ranging from 0.1 pM to 500 nM. This strategy presented a novel concept for designing a high-performance DNA walker-based sensing platform for the detection of contaminants.


Subject(s)
Biosensing Techniques , Lead , DNA, Cruciform , Limit of Detection , DNA/chemistry , Electrochemical Techniques
8.
Biochem Pharmacol ; 222: 116051, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38354956

ABSTRACT

Holliday junction (HJ) is a four-way structured DNA intermediate in processes of homologous recombination and DNA double-stranded break (DSB) repair. In bacteria, HJs are processed via either the RuvABC or RecG-dependent pathways. In addition, RecG also plays a critical role in the reactivation of stalled replication forks, making it an attractive target for antibacterial drug development. Here, we conducted a high-throughput screening targeting the RecG helicase from a common opportunistic pathogen Pseudomonas aeruginosa (Pa). From a library containing 7920 compounds, we identified Ebselen and TPI-1 (2',5'-Dichloro-[1,1'-biphenyl]-2,5-dione) as two potent PaRecG inhibitors, with IC50 values of 0.31 ± 0.02 µM and 1.16 ± 0.06 µM, respectively. Further biochemical analyses suggested that both Ebselen and TPI-1 inhibited the ATPase activity of PaRecG, and hindered its binding to HJ DNA with high selectivity. These compounds, when combined with our previously reported RuvAB inhibitors, resulted in more severe DNA repair defects than the individual treatment, and potently enhanced the susceptibility of P. aeruginosa to the DNA damage agents. This work reports novel small molecule inhibitors of RecG, offering valuable chemical tools for advancing our understanding of RecG's function and mechanism. Additionally, these inhibitors might be further developed as promising antibacterial agents in the fight against P. aeruginosa infections.


Subject(s)
Escherichia coli Proteins , Isoindoles , Organoselenium Compounds , Pseudomonas aeruginosa , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Bacterial Proteins , DNA Helicases/metabolism , DNA Repair , DNA Damage , DNA, Cruciform , DNA Replication
9.
J Biotechnol ; 385: 23-29, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38408644

ABSTRACT

The recently identified novel Holliday junction-resolving enzyme, termed Hjc_15-6, activity investigation results imply DNA cleavage by Hjc_15-6 in a manner that potentially enhances the molecular self-assembly that may be exploited for creating DNA-networks and nanostructures. The study also demonstrates Pwo DNA polymerase acting in combination with Hjc_15-6 capability to produce large amounts of DNA that transforms into large DNA-network structures even without DNA template and primers. Furthermore, it is demonstrated that Hjc_15-6 prefers Holliday junction oligonucleotides as compared to Y-shaped oligonucleotides as well as efficiently cleaves typical branched products from isothermal DNA amplification of both linear and circular DNA templates amplified by phi29-like DNA polymerase. The assembly of large DNA network structures was observed in real time, by transmission electron microscopy, on negative stained grids that were freshly prepared, and also on the same grids after incubation for 4 days under constant cooling. Hence, Hjc_15-6 is a promising molecular tool for efficient production of various DNA origamis that may be implemented for a wide range of applications such as within medical biomaterials, catalytic materials, molecular devices and biosensors.


Subject(s)
DNA, Cruciform , Holliday Junction Resolvases , DNA, Cruciform/genetics , Holliday Junction Resolvases/chemistry , Holliday Junction Resolvases/genetics , Holliday Junction Resolvases/metabolism , Endodeoxyribonucleases/chemistry , Endodeoxyribonucleases/genetics , Endodeoxyribonucleases/metabolism , DNA/genetics , Oligonucleotides , Digestion , Nucleic Acid Conformation
10.
Bioconjug Chem ; 35(2): 214-222, 2024 02 21.
Article in English | MEDLINE | ID: mdl-38231391

ABSTRACT

Combinatorial properties such as long-circulation and site- and cell-specific engagement need to be built into the design of advanced drug delivery systems to maximize drug payload efficacy. This work introduces a four-stranded oligonucleotide Holliday Junction (HJ) motif bearing functional moieties covalently conjugated to recombinant human albumin (rHA) to give a "plug-and-play" rHA-HJ multifunctional biomolecular assembly with extended circulation. Electrophoretic gel-shift assays show successful functionalization and purity of the individual high-performance liquid chromatography-purified modules as well as efficient assembly of the rHA-HJ construct. Inclusion of an epidermal growth factor receptor (EGFR)-targeting nanobody module facilitates specific binding to EGFR-expressing cells resulting in approximately 150-fold increased fluorescence intensity determined by flow cytometric analysis compared to assemblies absent of nanobody inclusion. A cellular recycling assay demonstrated retained albumin-neonatal Fc receptor (FcRn) binding affinity and accompanying FcRn-driven cellular recycling. This translated to a 4-fold circulatory half-life extension (2.2 and 0.55 h, for the rHA-HJ and HJ, respectively) in a double transgenic humanized FcRn/albumin mouse. This work introduces a novel biomolecular albumin-nucleic acid construct with extended circulatory half-life and programmable multifunctionality due to its modular design.


Subject(s)
DNA, Cruciform , Serum Albumin, Human , Mice , Animals , Infant, Newborn , Humans , Serum Albumin, Human/metabolism , Mice, Transgenic , ErbB Receptors/metabolism , Half-Life
11.
Mol Cell ; 84(4): 640-658.e10, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38266639

ABSTRACT

The Bloom syndrome helicase BLM interacts with topoisomerase IIIα (TOP3A), RMI1, and RMI2 to form the BTR complex, which dissolves double Holliday junctions and DNA replication intermediates to promote sister chromatid disjunction before cell division. In its absence, structure-specific nucleases like the SMX complex (comprising SLX1-SLX4, MUS81-EME1, and XPF-ERCC1) can cleave joint DNA molecules instead, but cells deficient in both BTR and SMX are not viable. Here, we identify a negative genetic interaction between BLM loss and deficiency in the BRCA1-BARD1 tumor suppressor complex. We show that this is due to a previously overlooked role for BARD1 in recruiting SLX4 to resolve DNA intermediates left unprocessed by BLM in the preceding interphase. Consequently, cells with defective BLM and BRCA1-BARD1 accumulate catastrophic levels of chromosome breakage and micronucleation, leading to cell death. Thus, we reveal mechanistic insights into SLX4 recruitment to DNA lesions, with potential clinical implications for treating BRCA1-deficient tumors.


Subject(s)
DNA-Binding Proteins , Recombinases , Humans , DNA/genetics , DNA Repair , DNA Replication , DNA, Cruciform , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Recombinases/genetics , RecQ Helicases/genetics , RecQ Helicases/metabolism
12.
Genetics ; 226(3)2024 03 06.
Article in English | MEDLINE | ID: mdl-38124392

ABSTRACT

Meiotic crossovers are initiated from programmed DNA double-strand breaks. The Msh4-Msh5 heterodimer is an evolutionarily conserved mismatch repair-related protein complex that promotes meiotic crossovers by stabilizing strand invasion intermediates and joint molecule structures such as Holliday junctions. In vivo studies using homozygous strains of the baker's yeast Saccharomyces cerevisiae (SK1) show that the Msh4-Msh5 complex associates with double-strand break hotspots, chromosome axes, and centromeres. Many organisms have heterozygous genomes that can affect the stability of strand invasion intermediates through heteroduplex rejection of mismatch-containing sequences. To examine Msh4-Msh5 function in a heterozygous context, we performed chromatin immunoprecipitation and sequencing (ChIP-seq) analysis in a rapidly sporulating hybrid S. cerevisiae strain (S288c-sp/YJM789, containing sporulation-enhancing QTLs from SK1), using SNP information to distinguish reads from homologous chromosomes. Overall, Msh5 localization in this hybrid strain was similar to that determined in the homozygous strain (SK1). However, relative Msh5 levels were reduced in regions of high heterozygosity, suggesting that high mismatch densities reduce levels of recombination intermediates to which Msh4-Msh5 binds. Msh5 peaks were also wider in the hybrid background compared to the homozygous strain (SK1). We determined regions containing heteroduplex DNA by detecting chimeric sequence reads with SNPs from both parents. Msh5-bound double-strand break hotspots overlap with regions that have chimeric DNA, consistent with Msh5 binding to heteroduplex-containing recombination intermediates.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Chromosomes , Crossing Over, Genetic , DNA, Cruciform/metabolism , Meiosis/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism
13.
Nanoscale ; 16(3): 1206-1222, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38113123

ABSTRACT

Molecular aggregates exhibit emergent properties, including the collective sharing of electronic excitation energy known as exciton delocalization, that can be leveraged in applications such as quantum computing, optical information processing, and light harvesting. In a previous study, we found unexpectedly large excitonic interactions (quantified by the excitonic hopping parameter Jm,n) in DNA-templated aggregates of squaraine (SQ) dyes with hydrophilic-imparting sulfo and butylsulfo substituents. Here, we characterize DNA Holliday junction (DNA-HJ) templated aggregates of an expanded set of SQs and evaluate their optical properties in the context of structural heterogeneity. Specifically, we characterized the orientation of and Jm,n between dyes in dimer aggregates of non-chlorinated and chlorinated SQs. Three new chlorinated SQs that feature a varying number of butylsulfo substituents were synthesized and attached to a DNA-HJ via a covalent linker to form adjacent and transverse dimers. Various characteristics of the dye, including its hydrophilicity (in terms of log Po/w) and surface area, and of the substituents, including their local bulkiness and electron withdrawing capacity, were quantified computationally. The orientation of and Jm,n between the dyes were estimated using a model based on Kühn-Renger-May theory to fit the absorption and circular dichroism spectra. The results suggested that adjacent dimer aggregates of all the non-chlorinated and of the most hydrophilic chlorinated SQ dyes exhibit heterogeneity; that is, they form a mixture of dimers subpopulations. A key finding of this work is that dyes with a higher hydrophilicity (lower log Po/w) formed dimers with smaller Jm,n and large center-to-center dye distance (Rm,n). Also, the results revealed that the position of the dye in the DNA-HJ template, that is, adjacent or transverse, impacted Jm,n. Lastly, we found that Jm,n between symmetrically substituted dyes was reduced by increasing the local bulkiness of the substituent. This work provides insights into how to maintain strong excitonic coupling and identifies challenges associated with heterogeneity, which will help to improve control of these dye aggregates and move forward their potential application as quantum information systems.


Subject(s)
Cyclobutanes , DNA, Cruciform , Fluorescent Dyes , Phenols , Fluorescent Dyes/chemistry , Computing Methodologies , Quantum Theory , DNA/chemistry , Hydrophobic and Hydrophilic Interactions
SELECTION OF CITATIONS
SEARCH DETAIL