Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 13 de 13
1.
PLoS One ; 19(5): e0300819, 2024.
Article En | MEDLINE | ID: mdl-38722920

The role of endemic species in global biodiversity is pivotal, and understanding their biology and ecology is imperative for their fitness and long-term survival, particularly in the face of ongoing climatic oscillations. Our primary goal was to investigate the sexual reproduction level of the endangered Western Carpathian endemic Daphne arbuscula (Thymelaeaceae), which inhabits extreme rocky habitats, and to comprehend the influence of specific factors on its reproductive success. We conducted the research across four populations, varying in size and environmental conditions. Over two years, we monitored flower and fruit production, analyzed genetic variability within and among populations, and studied pollination mechanisms. Daphne arbuscula proved to be strictly self-incompatible, with significant variations in flower and fruit production among populations and seasons. The average fruit production percentage consistently remained below 50% across populations, indicating challenges in sexual reproduction. Cold and harsh weather during the reproductive phase had a substantial negative impact on sexual reproduction efficacy, leading to decreased fruit production. Nevertheless, several individuals in sheltered microhabitats displayed significantly higher fruit production, ranging from 60% to 83%, emphasizing the critical role of microhabitat heterogeneity in sustaining sexual reproduction in this species. We found no pronounced differences in genetic diversity within or among populations, suggesting that genetic factors may not critically influence the reproductive success of this endemic species. The implications of our findings might be of paramount importance for the long-term survival of D. arbuscula and offer valuable insights for the development of effective conservation strategies for this species.


Daphne , Flowers , Pollination , Reproduction , Daphne/genetics , Daphne/physiology , Flowers/physiology , Flowers/genetics , Genetic Variation , Ecosystem , Fruit/genetics , Seasons
2.
J Cancer Res Clin Oncol ; 149(11): 8467-8481, 2023 Sep.
Article En | MEDLINE | ID: mdl-37087696

PURPOSE: Esophageal squamous cell carcinoma (ESCC), is a frequent digestive tract malignant carcinoma with a high fatality rate. Daphne altaica (D. altaica), a medicinal plant that is frequently employed in Kazakh traditional medicine, and which has traditionally been used to cure cancer and respiratory conditions, but research on the mechanism is lacking. Therefore, we examined and verified the hub genes and mechanism of D. altaica treating ESCC. METHODS: Active compounds and targets of D. altaica were screened by databases such as TCMSP, and ESCC targets were screened by databases such as GeneCards and constructed the compound-target network and PPI network. Meantime, data sets between tissues and adjacent non-cancerous tissues from GEO database (GSE100942, GPL570) were analyzed to obtain DEGs using the limma package in R. Hub genes were validated using data from the Kaplan-Meier plotter database, TIMER2.0 and GEPIA2 databases. Finally, AutoDock software was used to predict the binding sites through molecular docking. RESULTS: In total, 830 compound targets were obtained from TCMSP and other databases. In addition, 17,710 disease targets were acquired based on GeneCards and other databases. In addition, we constructed the compound-target network and PPI network. Then, 127 DEGs were observed (82 up-regulated and 45 down-regulated genes). Hub genes were screened including TOP2A, NUF2, CDKN2A, BCHE, and NEK2, and had been validated with the help of several publicly available databases. Finally, molecular docking results showed more stable binding between five hub genes and active compounds. CONCLUSIONS: In the present study, five hub genes were screened and validated, and potential mechanisms of action were predicted, which could provide a theoretical understanding of the treatment of ESCC with D. altaica.


Carcinoma , Daphne , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Esophageal Squamous Cell Carcinoma/drug therapy , Esophageal Squamous Cell Carcinoma/genetics , Daphne/genetics , Network Pharmacology , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/genetics , Molecular Docking Simulation , Computational Biology , NIMA-Related Kinases
3.
Arch Virol ; 168(5): 141, 2023 Apr 16.
Article En | MEDLINE | ID: mdl-37062005

A novel cytorhabdovirus was identified in Daphne odora in South Korea using high-throughput sequencing. The virus, tentatively named "daphne virus 1" (DV1), has a full-length genome sequence of 13,206 nucleotides with a genome organization comparable to that of unsegmented plant rhabdoviruses and contains seven antisense putative genes in the order 3'-leader-N-P'-P-P3-M-G-L-5'-trailer. The coding region of the genome is flanked by a 3' leader and a 5' trailer sequence, 261 and 151 nucleotides long, respectively. The DV1 genome shares 33.74%-57.44% nucleotide sequence identity with other cytorhabdoviruses. The DV1-encoded proteins share the highest amino acid sequence identity with homologues from Asclepias syriaca virus 1. Phylogenetic analysis showed that DV1 clustered with representative cytorhabdoviruses. We propose classifying DV1 in a new species within the genus Cytorhabdovirus, family Rhabdoviridae.


Daphne , Rhabdoviridae , Daphne/genetics , Phylogeny , RNA, Viral/genetics , Rhabdoviridae/genetics , Genome, Viral , Viral Proteins/genetics , Open Reading Frames , Nucleotides , Plant Diseases
5.
Plant Biol (Stuttg) ; 24(6): 1022-1030, 2022 Oct.
Article En | MEDLINE | ID: mdl-35924404

Gynodioecy is assumed to be an evolutionary transition from hermaphroditism to dioecy. However, if hermaphrodites can better flexibly regulate seed production depending on resource availability than females, i.e. sex-differential plasticity (SDP), gynodioecy can be a stable state. In the gynodioecious shrub Daphne jezoensis, hermaphrodites generally exhibit low seed fertility and largely act as males. We examined the SDP hypothesis and the cost of fruit production to clarify why D. jezoensis did not evolve into unisexual morphs. We evaluated the size and resource dependency of reproduction in field experiments by manipulating soil nutrient and light conditions. We compared the plant size and pollen production among females, fruiting hermaphrodites and non-fruiting hermaphrodites. We then analysed the effect of current fruit production on subsequent flower production, i.e. the cost of fruit production. The fruiting ability was independent of plant size and resource availability in both sexual phenotypes, indicating the absence of SDP in D. jezoensis. Hermaphrodites produced larger-sized pollen and allocated more resources to pollen production in the non-fruiting year than in the fruiting year. In contrast, the cost of fruit production was not revealed for either sexual phenotype, even in the absence of pollen limitation, and even when fruit production was maximized. SDP could not explain the maintenance of hermaphrodites in D. jezoensis. Alternatively, the lower cost of fruit production in hermaphrodites due to their potentially low fruiting ability may hinder the evolutionary shift to dioecy.


Daphne , Disorders of Sex Development , Daphne/genetics , Fertility , Plants , Reproduction/physiology , Seeds/physiology , Soil
6.
Proc Natl Acad Sci U S A ; 117(14): 7888-7896, 2020 04 07.
Article En | MEDLINE | ID: mdl-32213581

Introgressive hybridization can affect the evolution of populations in several important ways. It may retard or reverse divergence of species, enable the development of novel traits, enhance the potential for future evolution by elevating levels of standing variation, create new species, and alleviate inbreeding depression in small populations. Most of what is known of contemporary hybridization in nature comes from the study of pairs of species, either coexisting in the same habitat or distributed parapatrically and separated by a hybrid zone. More rarely, three species form an interbreeding complex (triad), reported in vertebrates, insects, and plants. Often, one species acts as a genetic link or conduit for the passage of genes (alleles) between two others that rarely, if ever, hybridize. Demographic and genetic consequences are unknown. Here we report results of a long-term study of interbreeding Darwin's finches on Daphne Major island, Galápagos. Geospiza fortis acted as a conduit for the passage of genes between two others that have never been observed to interbreed on Daphne: Geospiza fuliginosa, a rare immigrant, and Geospiza scandens, a resident. Microsatellite gene flow from G. fortis into G. scandens increased in frequency during 30 y of favorable ecological conditions, resulting in genetic and morphological convergence. G. fortis, G. scandens, and the derived dihybrids and trihybrids experienced approximately equal fitness. Especially relevant to young adaptive radiations, where species differ principally in ecology and behavior, these findings illustrate how new combinations of genes created by hybridization among three species can enhance the potential for evolutionary change.


Biological Evolution , Finches/genetics , Hybridization, Genetic , Microsatellite Repeats/genetics , Alleles , Animals , Beak/growth & development , Breeding , Daphne/genetics , Vertebrates/genetics
7.
PLoS One ; 13(8): e0201711, 2018.
Article En | MEDLINE | ID: mdl-30071090

In order to well identify the 93 wild Cortex Daphnes samples from different species and habitats in western China and develop a standard operating procedure (SOP) for the authentication and quality of them in the future, a comprehensive and efficient identification system based on DNA barcoding and HPLC fingerprint technologies has been developed. The result showed that only 17 samples (18%) were Daphne giraldii Nitsche (DG), which is recorded in Chinese Pharmacopeia, while the others (82%) might have safety hazards. Additionally, the result of HPLC fingerprint analysis indicated that samples in the same species origins and wild distributions could be clustered together, which was consistent with DNA barcoding analysis. The study can provide a significant system for the authentication and quality of commercial Cortex Daphnes herbs. Undoubtedly, this study undoubtedly confirmed that the chemical compositions of Cortex Daphnes herbs were affected by both species origins and ecological environments, which is required more in-depth research.


DNA Barcoding, Taxonomic , Daphne/chemistry , Daphne/classification , Chromatography, High Pressure Liquid , Daphne/genetics , Ecosystem
8.
J Plant Res ; 131(2): 245-254, 2018 Mar.
Article En | MEDLINE | ID: mdl-28936793

Gynodioecy is the coexistence of hermaphrodites and females in a population. It is supposed to be an intermediate stage in the evolutionary pathway from hermaphroditism to dioecy in angiosperm. Hermaphrodites gain fitness through both seed and pollen production whereas females gain fitness only through seed production. As females spread in a gynodioecious population, sexual selection prompts hermaphrodites to invest in male function and male-biased hermaphrodites prevail. In the gynodioecious shrub Daphne jezoensis (Thymelaeaceae), female frequency is stably around 50% in most populations, and fruit-set rate of hermaphrodites is commonly low. Therefore, D. jezoensis is likely at a later stage in the evolutionary pathway. Female function of hermaphrodites (fruit-set rate, selfing rate, seed size, and germination rate) was assessed in three populations under natural conditions. In order to evaluate the potential seed fertility and inbreeding depression by selfing in hermaphrodites, hand pollination treatments were also performed. Over a 2-year period under natural conditions, 18-29% of hermaphrodites and 69-81% of females set fruit. Across all three populations, the mean fruit-set rate ranged 9.5-49.2% in females and only 3.9-10.2% in hermaphrodites. Even with artificial outcross-pollination, 59-91% of hermaphrodites failed to set any fruit. When self-pollination was performed in hermaphrodites, both of fruit-set and germination rates were decreased, indicating early-acting inbreeding depression. In addition, more than half of the hermaphrodite seeds were produced by selfing under natural pollination, but pollinator service was still required. Totally, hermaphrodites performed poorly as seed producers because of the intrinsically-low fruiting ability and a combination of autogamous selfing and strong inbreeding depression, indicating the absence of reproductive assurance. These results indicate that the mating system of D. jezoensis is functionally close to dioecy.


Daphne/physiology , Genetic Fitness , Germination , Hermaphroditic Organisms/physiology , Daphne/genetics , Daphne/growth & development , Fertility , Hermaphroditic Organisms/genetics , Hermaphroditic Organisms/growth & development , Japan , Phenotype , Seeds/physiology
9.
Plant Biol (Stuttg) ; 18(5): 859-67, 2016 Sep.
Article En | MEDLINE | ID: mdl-27090773

Gynodioecy, a state where female and hermaphrodite plants coexist in populations, has been widely proposed an intermediate stage in the evolutionary pathway from hermaphroditism to dioecy. In the gynodioecy-dioecy pathway, hermaphrodites may gain most of their fitness through male function once females invade populations. To test this prediction, comprehensive studies on sex ratio variation across populations and reproductive characteristics of hermaphrodite and female phenotypes are necessary. This study examined the variation in sex ratio, sex expression, flower and fruit production and sexual dimorphism of morphological traits in a gynodioecious shrub, Daphne jezoensis, over multiple populations and years. Population sex ratio (hermaphrodite:female) was close to 1:1 or slightly hermaphrodite-biased. Sex type of individual plants was largely fixed, but 15% of plants changed their sex during a 6-year census. Hermaphrodite plants produced larger flowers and invested 2.5 times more resources in flower production than female plants, but they exhibited remarkably low fruit set (proportion of flowers setting fruits). Female plants produced six times more fruits than hermaphrodite plants. Low fruiting ability of hermaphrodite plants was retained even when hand-pollination was performed. Fruit production of female plants was restricted by pollen limitation under natural conditions, irrespective of high potential fecundity, and this minimised the difference in resources allocated to reproduction between the sexes. Negative effects of previous flower and fruit production on current reproduction were not apparent in both sexes. This study suggests that gynodioecy in this species is functionally close to a dioecious mating system: smaller flower production with larger fruiting ability in female plants, and larger flower production with little fruiting ability in hermaphrodite plants.


Daphne/physiology , Hermaphroditic Organisms/physiology , Biological Evolution , Daphne/anatomy & histology , Daphne/genetics , Fertility , Flowers/anatomy & histology , Flowers/genetics , Flowers/physiology , Fruit/anatomy & histology , Fruit/genetics , Fruit/physiology , Geography , Japan , Phenotype , Pollen/anatomy & histology , Pollen/genetics , Pollen/physiology , Pollination , Reproduction , Seeds/anatomy & histology , Seeds/genetics , Seeds/physiology , Sex Ratio
10.
Plant Biol (Stuttg) ; 14(3): 515-24, 2012 May.
Article En | MEDLINE | ID: mdl-22188205

Distribution margins constitute areas particularly prone to random and/or adaptive intraspecific differentiation in plants. This trend may be particularly marked in species discontinuously distributed across mountain ranges, where sharp geographic isolation gradients and habitat boundaries will enhance genetic isolation among populations. In this study, we analysed the level of neutral genetic differentiation among populations of the long-lived shrub Daphne laureola (Thymelaeaceae) across the Baetic Ranges, a glacial refugium and biodiversity hotspot in the western Mediterranean Basin. Within this area, core and marginal populations of D. laureola were compared with regard to their spatial isolation, size, genetic diversity and differentiation. A spatially explicit analysis conducted on the vast majority of the species' known populations in the study area (N = 111) showed that marginal populations (western and eastern) present larger spatial isolation than core populations, but are not smaller. We compared genetic diversity and differentiation between core and marginal populations using a subsample of 15 populations and 225 amplified fragment length polymorphism (AFLP) markers. Core and marginal populations did not differ in genetic diversity, probably because of the occurrence of large populations on the local margins. Western populations were strongly differentiated from the other populations. In addition, spatial and genetic differentiation among populations was larger on the western margin. Eastern populations constituted a genetically homogeneous group closely related to core populations, despite their greater spatial isolation. Results suggest that studies on phenotypic differentiation between core and marginal populations of D. laureola, and presumably other species having discontinuous distributions across the Baetic ranges, should take into account geographical differences in levels of genetic differentiation between the different distribution borders.


Adaptation, Biological/genetics , Daphne/genetics , Ecosystem , Gene Flow , Genes, Plant , Genetic Variation , Geography , Mediterranean Region , Polymorphism, Genetic
11.
Evolution ; 65(6): 1680-92, 2011 Jun.
Article En | MEDLINE | ID: mdl-21644956

Recent phylogenetic analyses of sexual reproductive systems supported the evolutionary pathway from hermaphroditism to dioecy via gynodioecy in different groups of angiosperms. In this study, we explore the evolution of sexual reproductive systems in Daphne laureola L. (Thymelaeaceae), a species with variation in reproductive system among population. Sequences from the ITS region of the nuclear ribosomal cistron and two plastid markers (psbA-trnH and ndhF) were analyzed and used to map the population reproductive system along the molecular phylogeny. Our results support D. laureola as a monophyletic lineage with three different clades within the Iberian Peninsula. The hermaphroditic populations belong to two different clades, whereas gynodioecy is ubiquitous but characteristic of the third clade, which grouped together all the North-Western Iberian populations sampled, including the apparently oldest haplotype sampled. Gynodioecy appears as the most likely basal condition of the 13 analyzed populations, but different evolutionary transitions in reproductive sexual system were traced within each D. laureola clade. Both ecological conditions and (meta)population dynamics may help explain plant reproductive system evolution at the microevolutionary scale. Phylogenetic studies in which the historical relationships between populations differing in reproductive system can be ascertained will help to clarify the process.


Daphne/genetics , Evolution, Molecular , Reproduction , Cell Nucleus/genetics , Daphne/physiology , Ecosystem , Phylogeny , Plastids/genetics , Population Dynamics , Ribosomes/genetics , Spain
12.
J Plant Res ; 124(2): 277-87, 2011 Mar.
Article En | MEDLINE | ID: mdl-20820845

Taxonomically related species can differ in a number of reproductive traits, which may translate into a differential mating system and pollination success. Here we compare two hermaphroditic insect-pollinated Daphne species (D. rodriguezii and D. gnidium) which differ in distribution (island endemic vs. mediterranean) and floral traits (long- vs. short-tube corolla). We investigated their mating system and pollen limitation by means of hand-pollination experiments and quantified the diversity and abundance of flower visitors by direct observations. Plant size and five reproductive traits (flower production, proportion of viable anthers, pollen production, flower tube length and tepal area) were studied to assess how they contribute to reproductive success, measured as proportion of pollen grains germinated per stigma and fruit set. Selfing was very low and pollen limitation existed in both species, though was higher in D. rodriguezii probably due to the scarcity of flower visitors. The low fruit set in both species suggests that most of the pollen grains found on stigmas are self-pollen. Pollinators appeared to favour some floral traits (specifically, flower tube length or tepal area) in both species, although flower crop in D. rodriguezii was the only reproductive trait influencing fruit set. In both species, the highest variability in reproductive traits and pollination success was within individuals. Our findings suggest that despite both species showed similar mating system, dependency on outcrossing pollen and selection of floral traits, pollen limitation was higher in D. rodriguezii, probably as a higher proportion of self-pollen arrives to its stigmas.


Daphne/genetics , Insecta/physiology , Pollination/genetics , Animals , Daphne/anatomy & histology , Daphne/physiology , Flowers/anatomy & histology , Flowers/genetics , Fruit/physiology , Mediterranean Islands , Phenotype , Reproduction/genetics , Species Specificity
13.
Heredity (Edinb) ; 94(1): 37-43, 2005 Jan.
Article En | MEDLINE | ID: mdl-15292912

Although in gynodioecious populations male steriles require a fecundity advantage to compensate for their gametic disadvantage, southern Spanish populations of the long-lived shrub Daphne laureola do not show any fecundity advantage over hermaphrodites in terms of seed production and early seedling establishment. By using allozyme markers, we assess the mating system of this species in five populations differing in sex ratio, and infer levels of inbreeding depression over the whole life cycle by comparing the inbreeding coefficients at the seed and adult plant stages. Extremely low outcrossing rates (0.001

Biological Evolution , Breeding , Daphne/growth & development , Daphne/genetics , Genetic Variation , Reproduction/genetics , Seeds/growth & development , Seeds/genetics
...