Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.977
Filter
1.
Proc Natl Acad Sci U S A ; 121(28): e2307107121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38959040

ABSTRACT

Despite evolutionary biology's obsession with natural selection, few studies have evaluated multigenerational series of patterns of selection on a genome-wide scale in natural populations. Here, we report on a 10-y population-genomic survey of the microcrustacean Daphnia pulex. The genome sequences of [Formula: see text]800 isolates provide insights into patterns of selection that cannot be obtained from long-term molecular-evolution studies, including the following: the pervasiveness of near quasi-neutrality across the genome (mean net selection coefficients near zero, but with significant temporal variance about the mean, and little evidence of positive covariance of selection across time intervals); the preponderance of weak positive selection operating on minor alleles; and a genome-wide distribution of numerous small linkage islands of observable selection influencing levels of nucleotide diversity. These results suggest that interannual fluctuating selection is a major determinant of standing levels of variation in natural populations, challenge the conventional paradigm for interpreting patterns of nucleotide diversity and divergence, and motivate the need for the further development of theoretical expressions for the interpretation of population-genomic data.


Subject(s)
Daphnia , Genome , Selection, Genetic , Animals , Daphnia/genetics , Genome/genetics , Evolution, Molecular , Genetic Variation , Genetics, Population/methods
2.
Int J Mol Sci ; 25(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39000177

ABSTRACT

Combining commercial antibiotics with adjuvants to lower their minimum inhibitory concentration (MIC) is vital in combating antimicrobial resistance. Evaluating the ecotoxicity of such compounds is crucial due to environmental and health risks. Here, eugenol was assessed as an adjuvant for 7 commercial antibiotics against 14 pathogenic bacteria in vitro, also examining its acute ecotoxicity on various soil and water organisms (microbiota, Vibrio fischeri, Daphnia magna, Eisenia foetida, and Allium cepa). Using microdilution methods, checkerboard assays, and kinetic studies, the MICs for eugenol were determined together with the nature of its combinations with antibiotics against bacteria, some unexposed to eugenol previously. The lethal dose for the non-target organisms was also determined, as well as the Average Well Color Development and the Community-Level Physiological Profiling for soil and water microbiota. Our findings indicate that eugenol significantly reduces MICs by 75 to 98%, which means that it could be a potent adjuvant. Ecotoxicological assessments showed eugenol to be less harmful to water and soil microbiota compared to studied antibiotics. While Vibrio fischeri and Daphnia magna were susceptible, Allium cepa and Eisenia foetida were minimally affected. Given that only 0.1% of eugenol is excreted by humans without metabolism, its environmental risk when used with antibiotics appears minimal.


Subject(s)
Aliivibrio fischeri , Anti-Bacterial Agents , Daphnia , Eugenol , Microbial Sensitivity Tests , Eugenol/pharmacology , Anti-Bacterial Agents/pharmacology , Animals , Daphnia/drug effects , Aliivibrio fischeri/drug effects , Ecotoxicology , Onions/drug effects , Soil Microbiology , Adjuvants, Pharmaceutic/pharmacology , Bacteria/drug effects
3.
Ecotoxicol Environ Saf ; 281: 116606, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38896907

ABSTRACT

Finasteride, a steroid 5-alpha reductase inhibitor, is commonly used for the treatment of benign prostatic hyperplasia and hair loss. However, despite continued use, its environmental implications have not been thoroughly investigated. Thus, we investigated the acute and chronic adverse impacts of finasteride on Daphnia magna, a crucial planktonic crustacean in freshwater ecosystems selected as bioindicator organism for understanding the ecotoxicological effects. Chronic exposure (for 23 days) to finasteride negatively affected development and reproduction, leading to reduced fecundity, delayed first brood, reduced growth, and reduced neonate size. Additionally, acute exposure (< 24 h) caused decreased expression levels of genes crucial for reproduction and development, especially EcR-A/B (ecdysone receptors), Jhe (juvenile hormone esterase), and Vtg2 (vitellogenin), with oxidative stress-related genes. Untargeted lipidomics/metabolomic analyses revealed lipidomic alteration, including 19 upregulated and 4 downregulated enriched lipid ontology categories, and confirmed downregulation of metabolites. Pathway analysis implicated significant effects on metabolic pathways, including the pentose phosphate pathway, histidine metabolism, beta-alanine metabolism, as well as alanine, aspartate, and glutamate metabolism. This comprehensive study unravels the intricate molecular and metabolic responses of D. magna to finasteride exposure, underscoring the multifaceted impacts of this anti-androgenic compound on a keystone species of freshwater ecosystems. The findings emphasize the importance of understanding the environmental repercussions of widely used pharmaceuticals to protect biodiversity in aquatic ecosystems.


Subject(s)
5-alpha Reductase Inhibitors , Daphnia , Finasteride , Lipid Metabolism , Water Pollutants, Chemical , Animals , Finasteride/toxicity , Daphnia/drug effects , 5-alpha Reductase Inhibitors/toxicity , Water Pollutants, Chemical/toxicity , Lipid Metabolism/drug effects , Endocrine Disruptors/toxicity , Reproduction/drug effects , Lipidomics , Daphnia magna
4.
J Agric Food Chem ; 72(27): 15151-15163, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38941616

ABSTRACT

Flupyradifurone (FPF) is considered the latest generation of neonicotinoid insecticides. Here, we investigated the toxicity and ecological risk of FPF and its aerobic transformation products (TPs) to aquatic species using the method of prediction. We found that FPF exhibited moderate or high toxicity to some aquatic species. The 5% hazardous concentration of FPF was 3.84 µg/L for aquatic organisms. We obtained 91 aerobic TPs for FPF, and almost half of FPF TPs exhibited toxicity to fish or Daphnia. Eleven of the TPs of FPF exhibited a high or moderate risk to aquatic ecosystems. All FPF TPs with high and moderate risks contained a 6-chloropyridine ring structure, indicating that the derivant of a pyridine ring exhibits potential risks to aquatic ecosystems. Our results provide insight into the potential risk of FPF to aquatic ecosystems and could be used to help set criteria to control pollution caused by FPF.


Subject(s)
Daphnia , Fishes , Insecticides , Water Pollutants, Chemical , Animals , Daphnia/drug effects , Insecticides/chemistry , Insecticides/toxicity , Water Pollutants, Chemical/chemistry , Ecosystem , Pyridines/chemistry , Pyridines/toxicity , Aquatic Organisms/chemistry , Aquatic Organisms/drug effects
5.
Sci Total Environ ; 945: 173817, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38880139

ABSTRACT

Tioxazafen (TXF) is the first 1,2,4-oxadiazole nematicide. In the present study, the aqueous degradation of TXF was investigated in terms of hydrolysis and photolysis. Under the irradiation of simulated sunlight, TXF degraded very fast in ultrapure water and buffers with half-lives (t1/2s) <8.3 min. A sole photoproduct (PP) PP228a was isolated, and identified by spectroscopic means (UV, IR, HRMS, and 1H NMR) to be the thiophen-3-yl isomer converted from its thiophen-2-yl parent. Comparing with TXF, PP228a had quite extended t1/2s ranging from 6.9 to 7.9 d. The photolysis kinetics of TXF and PP228a showed no pH-dependence, and varied for each individual compound as affected by nitrate, fulvic acid, and humic acid. Besides, both compounds were hydrolytically stable. 6 PPs of PP228a were identified, with two of them being its isomers. The mechanisms involved in the process included the biradical photosensitization, photoinduced electron transfer, and ring contraction-ring expansion reactions. The 48 h-EC50 to Daphnia magna was 0.808 mg/L for PP228a comparing to >1.12 mg/L for TXF, while the results of Vibrio fischeri assays indicated that one or more PPs of PP228a might have higher toxicity.


Subject(s)
Photolysis , Water Pollutants, Chemical , Kinetics , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/chemistry , Oxadiazoles/chemistry , Oxadiazoles/toxicity , Daphnia/drug effects , Animals
6.
Sci Total Environ ; 945: 174114, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38906280

ABSTRACT

As an emerging organic pollutant, tributyl phosphate (TnBP) can be easily adsorbed by microplastics, resulting in compound toxic effects. In the present work, the effects of polystyrene microplastics (PS-MPs) and TnBP on the survival, growth, reproduction and oxidative stress of Daphnia magna (D. magna) have been evaluated through multigenerational test. Compared with the alone exposure groups, the somatic growth rate and the expression values of growth related genes rpa1, mre11, rnha, and rfc3_5 in the F1 generation of the combined exposure groups were significantly lower (p < 0.05), indicating synergistic effect of PS-MPs and TnBP on the growth toxicity and transgenerational effects. In addition, compared with the PS-MPs groups, significantly lower average number of offspring and expression values of reproduction related genes ccnb, mcm2, sgrap, and ptch1 were observed in the combined exposure group and TnBP group (p < 0.05), indicating TnBP might be the major factor causing reproductive toxicity to D. magna. Although PS-MPs and TnBP alone or in combination also had toxic impacts on the growth, survival and reproduction of D. magna in generations F0 and F2, the effects were less than F1 generation. Regarding oxidative stress, the activity of SOD, CAT and GSH-Px and MDA content in the generations F0 and F1 of combined exposure groups were higher than the TnBP group but lower than the PS-MPs groups, suggesting that PS-MPs might be the dominant cause of the oxidative damage in D. magna and the presence of TnBP would alleviate oxidative stress by reducing the bioaccumulation of PS-MPs. The present work will provide a theoretical basis for further understanding of the toxic effects and ecological risks of combined TnBP and microplastic pollution on aquatic organisms.


Subject(s)
Daphnia , Microplastics , Oxidative Stress , Polystyrenes , Water Pollutants, Chemical , Animals , Daphnia/physiology , Daphnia/drug effects , Microplastics/toxicity , Water Pollutants, Chemical/toxicity , Polystyrenes/toxicity , Oxidative Stress/drug effects , Organophosphates/toxicity , Reproduction/drug effects , Daphnia magna
7.
Environ Sci Technol ; 58(26): 11615-11624, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38887928

ABSTRACT

Nanoplastics (nP) pose hazards to aquatic animals once they are ingested. Significant knowledge gaps exist regarding the nP translocation across the animal intestine, which is the first barrier between the ingested nP and the animal body. We examined the intestinal barrier crossing behavior of nP in an aquatic animal model (Daphnia magna) and determined the translocation mechanism with the help of model "core-shell" polystyrene nanoplastics (nPS) and confocal surface-enhanced Raman spectroscopy (SERS). The Raman reporter (4-mercaptobenzoic acid)-tagged gold "core" of the model nPS enables sensitive and reliable particle imaging by confocal SERS. This method detected SERS signals of model nPS concentration as low as 4.1 × 109 particles/L (equivalent to 0.27 µg/L PS "shell" concentration). The translocation was observed with the help of multilayer stacked Raman maps of SERS signals of the model nPS. With a higher concentration or longer exposure time of the model nPS, uptake and translocation of the plastic particles increased. In addition, we demonstrated that clathrin-dependent endocytosis and macropinocytosis were two major mechanisms underlying the translocation. This study contributes to a mechanistic understanding of nP translocation by using the pioneering model nPS and an analytical toolkit, which undergird further investigations into nP behavior and health effects in aquatic species.


Subject(s)
Daphnia , Spectrum Analysis, Raman , Animals , Daphnia/metabolism , Intestines , Polystyrenes , Plastics , Daphnia magna
8.
Environ Sci Pollut Res Int ; 31(29): 41964-41979, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38856856

ABSTRACT

Potential toxicity of treated effluents of selected natural rubber processing industries was evaluated by integrating physicochemical analysis with Daphnia magna and Poecilia reticulata bioassays as ecotoxicity tools. Further, the efficacy of the constructed wetland treatments practiced by the industries for reducing the ecotoxicity of the final effluents reaching the receiving water course was assessed. Even after passing through the constructed wetlands, some of the measured physicochemical parameters of the final effluents did not comply with the stipulated rubber processing effluent regulatory limits. Acute toxicity data of treated effluents demonstrated greater susceptibility of D. magna compared to P. reticulata. Erythrocytic abnormality tests with P. reticulata revealed that rubber industry effluents contained cytogenotoxic contaminations which had not been completely eliminated by the treatment processes. Wetland treatment technique was not effective in reducing the cytogenotoxic effects of final effluents reaching the receiving water course. The use of ecotoxicity tools for optimization of rubber industry effluent treatment processes would help to reduce potential toxic/cytogenotoxic effects of effluent receiving waterbodies considering sustainable development goals focusing on ecosystem safety.


Subject(s)
Daphnia , Rubber , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/toxicity , Daphnia/drug effects , Wetlands , Industrial Waste , Waste Disposal, Fluid , Poecilia , Ecotoxicology
9.
Nat Commun ; 15(1): 5333, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38909039

ABSTRACT

Balancing selection is an evolutionary process that maintains genetic polymorphisms at selected loci and strongly reduces the likelihood of allele fixation. When allelic polymorphisms that predate speciation events are maintained independently in the resulting lineages, a pattern of trans-species polymorphisms may occur. Trans-species polymorphisms have been identified for loci related to mating systems and the MHC, but they are generally rare. Trans-species polymorphisms in disease loci are believed to be a consequence of long-term host-parasite coevolution by balancing selection, the so-called Red Queen dynamics. Here we scan the genomes of three crustaceans with a divergence of over 15 million years and identify 11 genes containing identical-by-descent trans-species polymorphisms with the same polymorphisms in all three species. Four of these genes display molecular footprints of balancing selection and have a function related to immunity. Three of them are located in or close to loci involved in resistance to a virulent bacterial pathogen, Pasteuria, with which the Daphnia host is known to coevolve. This provides rare evidence of trans-species polymorphisms for loci known to be functionally relevant in interactions with a widespread and highly specific parasite. These findings support the theory that specific antagonistic coevolution is able to maintain genetic diversity over millions of years.


Subject(s)
Daphnia , Polymorphism, Genetic , Selection, Genetic , Animals , Daphnia/genetics , Daphnia/microbiology , Daphnia/immunology , Pasteuria/genetics , Pasteuria/pathogenicity , Disease Resistance/genetics , Crustacea/genetics , Crustacea/microbiology , Crustacea/immunology , Evolution, Molecular , Genome/genetics , Phylogeny , Alleles
10.
J Hazard Mater ; 474: 134793, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38850954

ABSTRACT

Progress in the development of biodegradable or biobased ionic liquids (ILs) has led to the design of green compounds for several applications. Herein, four biocompatible dicationic ionic liquids (DILs) with ammonium-phosphonium cations and amino acid anions were synthesized and investigated their environmental impact. The structures of the DILs were confirmed by spectral analyses (1H, 13C and 31P NMR). Furthermore, physicochemical properties such as density, viscosity and refractive index were determined. Water content, bromide content and solubility were thereafter determined as the parameters needed for further studies. Subsequently, their antifeedant activity towards economically important pests of grain in storage warehouses: the granary weevil, the confused flour beetle, and the khapra beetle was examined, showing the dependence on structure. Moreover, selected DILs were investigated for toxicity towards white mustard, Daphnia magna, and Artemia franciscana to specify the environmental impact. These studies were complemented by understand the biodegradation of DILs by bacterial communities derived from soil at the agricultural land. The result was DILs with limited environmental footprints that have great potential for further application studies.


Subject(s)
Amino Acids , Artemia , Daphnia , Ionic Liquids , Ionic Liquids/toxicity , Ionic Liquids/chemistry , Animals , Amino Acids/chemistry , Amino Acids/analysis , Daphnia/drug effects , Artemia/drug effects , Ammonium Compounds/chemistry , Organophosphorus Compounds/chemistry , Cations , Anions/chemistry , Environment , Biodegradation, Environmental , Coleoptera/drug effects
11.
Ecology ; 105(7): e4359, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38877760

ABSTRACT

An understanding of thermal limits and variation across geographic regions is central to predicting how any population may respond to global change. Latitudinal clines, in particular, have been used to demonstrate that populations can be locally adapted to their own thermal environment and, as a result, not all populations will be equally impacted by an increase in temperature. But how robust are these signals of thermal adaptation to the other ecological challenges that animals commonly face in the wild? Seasonal changes in population density, food availability, or photoperiod are common ecological challenges that could disrupt patterns of thermal tolerance along a cline if each population differentially used these signals to anticipate future temperatures and adjust their thermal tolerances accordingly. In this study, we aimed to test the robustness of a cline in thermal tolerance to simulated signals of seasonal heterogeneity. Experimental animals were derived from clones of the Australian water flea, Daphnia carinata, sampled from nine distinct populations along a latitudinal transect in Eastern Australia. We then factorially combined summer (18 h light, 6 h dark) and winter (6 h light, 18 h dark) photoperiods with high (5 million algal cells individual-1 day-1) and low (1 million algal cells individual-1 day-1) food availabilities, before performing static heat shock assays to measure thermal tolerance. We found that the thermal tolerances of the clonal populations were sensitive to both measures of seasonal change. In general, higher food availability led to an increase in thermal tolerances, with the magnitude of the increase varying by clone. In contrast, a switch in photoperiod led to rank-order changes in thermal tolerances, with heat resistance increasing for some clones, and decreasing for others. Heat resistance, however, still declined with increasing latitude, irrespective of the manipulation of seasonal signals, with clones from northern populations always showing greater thermal resistance, most likely driven by adaptation to winter thermal conditions. While photoperiod and food availability can clearly shape thermal tolerances for specific populations, they are unlikely to overwhelm overarching signals of thermal adaptation, and thus, observed clines in heat resistance will likely have remained robust to these forms of seasonal heterogeneity.


Subject(s)
Daphnia , Seasons , Animals , Daphnia/physiology , Climate Change , Hot Temperature , Thermotolerance , Demography , Models, Biological
12.
Environ Monit Assess ; 196(7): 628, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888677

ABSTRACT

Pit lakes are currently being investigated as a way to store and reclaim waste materials in the Alberta Oil Sands (AOS) region, Canada. Lake Miwasin (LM) is a pilot-scale pit lake consisting of treated fine tailings overlayed with oil sands process-affected water (OSPW) blended with fresh surface water. In October 2021, the surface water contained a mean concentration of 1.33 ± 0.04 µg/L dissolved selenium (Se), slightly above the Canadian Council of Ministers of Environment water quality guideline for long-term protection of aquatic life (1 µg Se/L). This study assessed the bioaccumulation of Se by the cladoceran Daphnia pulex under laboratory conditions through both aqueous and dietary exposure routes for comparison to field-collected specimens. In 12-day semi-static tests, lab-cultured D.pulex were exposed to water, and algae grown in media spiked with selenate. Results showed that Se bioaccumulation by lab-cultured D. pulex increased in all exposure treatments from days 5 to 12, with maximum Se concentrations of 3.08-3.47 µg/g dry weight (dw) observed within the exposure range tested. Interestingly, lower Se bioaccumulation concentrations (1.26-1.58 µg/g dw) were observed in the highest dissolved Se and dietary Se treatments, suggesting potential internal regulatory mechanisms. In addition, native D. pulex (LM) collected from Lake Miwasin and cultured in-house were exposed in 8-day semi-static tests to Lake Miwasin surface water and algae cultured in Lake Miwasin surface water. Selenium bioaccumulation in native D. pulex (LM) ranged from 2.00 to 2.04 µg/g dw at day 8 and was not significantly different (p > 0.05) compared to Se concentrations in D. pulex collected from Lake Miwasin (2.15 ± 0.28 µg/g) in summer 2022.


Subject(s)
Bioaccumulation , Daphnia , Dietary Exposure , Environmental Monitoring , Lakes , Selenium , Water Pollutants, Chemical , Animals , Daphnia/metabolism , Selenium/metabolism , Selenium/analysis , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/analysis , Lakes/chemistry , Alberta , Daphnia pulex
13.
Mol Biol Evol ; 41(7)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38935572

ABSTRACT

Two important characteristics of metapopulations are extinction-(re)colonization dynamics and gene flow between subpopulations. These processes can cause strong shifts in genome-wide allele frequencies that are generally not observed in "classical" (large, stable, and panmictic) populations. Subpopulations founded by one or a few individuals, the so-called propagule model, are initially expected to show intermediate allele frequencies at polymorphic sites until natural selection and genetic drift drive allele frequencies toward a mutation-selection-drift equilibrium characterized by a negative exponential-like distribution of the site frequency spectrum. We followed changes in site frequency spectrum distribution in a natural metapopulation of the cyclically parthenogenetic pond-dwelling microcrustacean Daphnia magna using biannual pool-seq samples collected over a 5-yr period from 118 ponds occupied by subpopulations of known age. As expected under the propagule model, site frequency spectra in newly founded subpopulations trended toward intermediate allele frequencies and shifted toward right-skewed distributions as the populations aged. Immigration and subsequent hybrid vigor altered this dynamic. We show that the analysis of site frequency spectrum dynamics is a powerful approach to understand evolution in metapopulations. It allowed us to disentangle evolutionary processes occurring in a natural metapopulation, where many subpopulations evolve in parallel. Thereby, stochastic processes like founder and immigration events lead to a pattern of subpopulation divergence, while genetic drift leads to converging site frequency spectrum distributions in the persisting subpopulations. The observed processes are well explained by the propagule model and highlight that metapopulations evolve differently from classical populations.


Subject(s)
Daphnia , Gene Frequency , Genetic Drift , Selection, Genetic , Animals , Daphnia/genetics , Gene Flow , Models, Genetic , Genetics, Population/methods , Population Dynamics , Genome , Biological Evolution , Evolution, Molecular
14.
Glob Chang Biol ; 30(6): e17341, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38837568

ABSTRACT

Thermal acclimation can provide an essential buffer against heat stress for host populations, while acting simultaneously on various life-history traits that determine population growth. In turn, the ability of a pathogen to invade a host population is intimately linked to these changes via the supply of new susceptible hosts, as well as the impact of warming on its immediate infection dynamics. Acclimation therefore has consequences for hosts and pathogens that extend beyond simply coping with heat stress-governing both population growth trajectories and, as a result, an inherent propensity for a disease outbreak to occur. The impact of thermal acclimation on heat tolerances, however, is rarely considered simultaneously with metrics of both host and pathogen population growth, and ultimately fitness. Using the host Daphnia magna and its bacterial pathogen, we investigated how thermal acclimation impacts host and pathogen performance at both the individual and population scales. We first tested the effect of maternal and direct thermal acclimation on the life-history traits of infected and uninfected individuals, such as heat tolerance, fecundity, and lifespan, as well as pathogen infection success and spore production. We then predicted the effects of each acclimation treatment on rates of host and pathogen population increase by deriving a host's intrinsic growth rate (rm) and a pathogen's basic reproductive number (R0). We found that direct acclimation to warming enhanced a host's heat tolerance and rate of population growth, despite a decline in life-history traits such as lifetime fecundity and lifespan. In contrast, pathogen performance was consistently worse under warming, with within-host pathogen success, and ultimately the potential for disease spread, severely hampered at higher temperatures. Our results suggest that hosts could benefit more from warming than their pathogens, but only by linking multiple individual traits to population processes can the full impact of higher temperatures on host and pathogen population dynamics be realised.


Subject(s)
Acclimatization , Daphnia , Host-Pathogen Interactions , Hot Temperature , Animals , Daphnia/microbiology , Daphnia/physiology , Heat-Shock Response , Fertility , Thermotolerance , Longevity
15.
Curr Protoc ; 4(6): e1064, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38837737

ABSTRACT

Caloric restriction has been found to extend the lifespan of many organisms including mammals and other vertebrates. With lifespans exceeding months to years, age-related experiments involving fish and mammals can be overtly costly, both in terms of time and funding. The freshwater crustacean, Daphnia, has a relatively short lifespan (∼50 to 100 days), which makes it a cost-effective alternative animal model for longevity and aging studies. Besides age-specific mortality, there are a suite of physiological responses connected to "healthspan" that can be tracked as these animals age including growth, reproduction, and metabolic rates. These responses can be complemented by assessment of molecular and cellular processes connected to aging and health. Lifespan and metabolism of this model organism is responsive to long studied modulators of aging, such as rearing temperature and nutritional manipulation, but also pharmacological agents that target aging, e.g., rapamycin, which adds to its usefulness as a model organism. Here we describe how to culture Daphnia for aging experiments including maintaining laboratory populations of Daphnia mothers, growing algal food, and manipulating nutrition of these animals. In addition, we provide methods for tracking common physiological and longevity responses of Daphnia. This protocol provides researchers planning to use this model organism with methods to establish and maintain Daphnia populations and to standardize their experimental approaches. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Culturing algae for Daphnia food Basic Protocol 2: General methods for culturing Daphnia Basic Protocol 3: Standardizing and controlling nutrition for experimental Daphnia Basic Protocol 4: Monitoring Daphnia lifespan Basic Protocol 5: Evaluating Daphnia health: Heart rate and respiration, body mass and growth rates, and reproduction.


Subject(s)
Daphnia , Longevity , Animals , Daphnia/physiology , Daphnia/growth & development , Life History Traits , Animal Nutritional Physiological Phenomena , Reproduction/physiology , Aging/physiology
16.
Pestic Biochem Physiol ; 202: 105945, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38879302

ABSTRACT

With the widespread utilization of the sanitizing product benzethonium chloride (BEC) throughout the coronavirus pandemic, concerns have emerged regarding its potential hazards. Nevertheless, the long-term and multigenerational toxic effects of BEC on aquatic organisms remains unexplored. This study investigates acute and chronic toxicity, oxidative stress, mitochondrial membrane potential, ATP concentrations, and gene expression using Daphnia carinata as the model organism. Meanwhile, hierarchical clustering analysis was utilized to investigate phenotypic effects among different treatment groups. The integrated biomarker response index version 2 (IBRv2) was employed to estimate the deviation in toxic effects over two generations. These results indicated that D. carinata in the second generation exhibited higher survival rate and lower levels of oxidative stress than the first generation. However, the higher sublethal effects were found in the second generation as follows, the weakened growth performance, mitochondrial membrane potential depolarization, reduced ATP concentrations, and down-regulated gene expression. The mitochondrial toxicity induced by BEC may account for the distinct toxic effects exhibited in two generations. The findings here can assist with the evaluation of potential risk for BEC on aquatic organisms, and provide new insight into the cross-generational toxicity mechanisms of pollutants in aquatic ecosystems.


Subject(s)
Daphnia , Membrane Potential, Mitochondrial , Oxidative Stress , Animals , Daphnia/drug effects , Daphnia/genetics , Membrane Potential, Mitochondrial/drug effects , Oxidative Stress/drug effects , Adenosine Triphosphate/metabolism , Water Pollutants, Chemical/toxicity
17.
Harmful Algae ; 136: 102657, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38876528

ABSTRACT

The bloom-forming species Microcystis wesenbergii and M. aeruginosa occur in many lakes globally, and may exhibit alternating blooms both spatially and temporally. As environmental changes increase, cyanobacteria bloom in more and more lakes and are often dominated by M. wesenbergii. The adverse impact of M. aeruginosa on co-existing organisms including zooplanktonic species has been well-studied, whereas studies of M. wesenbergii are limited. To compare effects of these two species on zooplankton, we explored effects of exudates from different strains of microcystin-producing M. aeruginosa (Ma905 and Ma526) and non-microcystin-producing M. wesenbergii (Mw908 and Mw929), on reproduction by the model zooplankter Daphnia magna in both chronic and acute exposure experiments. Specifically, we tested physiological, biochemical, molecular and transcriptomic characteristics of D. magna exposed to Microcystis exudates. We observed that body length and egg and offspring number of the daphnid increased in all treatments. Among the four strains tested, Ma526 enhanced the size of the first brood, as well as total egg and offspring number. Microcystis exudates stimulated expression of specific genes that induced ecdysone, juvenile hormone, triacylglycerol and vitellogenin biosynthesis, which, in turn, enhanced egg and offspring production of D. magna. Even though all strains of Microcystis affected growth and reproduction, large numbers of downregulated genes involving many essential pathways indicated that the Ma905 strain might contemporaneously induce damage in D. magna. Our study highlights the necessity of including M. wesenbergii into the ecological risk evaluation of cyanobacteria blooms, and emphasizes that consequences to zooplankton may not be clear-cut when assessments are based upon production of microcystins alone.


Subject(s)
Daphnia , Microcystis , Reproduction , Microcystis/physiology , Microcystis/growth & development , Animals , Daphnia/physiology , Daphnia/growth & development , Microcystins/metabolism , Zooplankton/physiology , Harmful Algal Bloom , Lakes/microbiology
18.
Harmful Algae ; 135: 102635, 2024 May.
Article in English | MEDLINE | ID: mdl-38830716

ABSTRACT

Ongoing research on cyanotoxins, driven by the socioeconomic impact of harmful algal blooms, emphasizes the critical necessity of elucidating the toxicological profiles of algal cell extracts and pure toxins. This study comprehensively compares Raphidiopsis raciborskii dissolved extract (RDE) and cylindrospermopsin (CYN) based on Daphnia magna assays. Both RDE and CYN target vital organs and disrupt reproduction, development, and digestion, thereby causing acute and chronic toxicity. Disturbances in locomotion, reduced behavioral activity, and weakened swimming capability in D. magna have also been reported for both RDE and CYN, indicating the insufficiency of conventional toxicity evaluation parameters for distinguishing between the toxic effects of algal extracts and pure cyanotoxins. Additionally, chemical profiling revealed the presence of highly active tryptophan-, humic acid-, and fulvic acid-like fluorescence compounds in the RDE, along with the active constituents of CYN, within a 15-day period, demonstrating the chemical complexity and dynamics of the RDE. Transcriptomics was used to further elucidate the distinct molecular mechanisms of RDE and CYN. They act diversely in terms of cytotoxicity, involving oxidative stress and response, protein content, and energy metabolism, and demonstrate distinct modes of action in neurofunctions. In essence, this study underscores the distinct toxicity mechanisms of RDE and CYN and emphasizes the necessity for context- and objective-specific toxicity assessments, advocating nuanced approaches to evaluate the ecological and health implications of cyanotoxins, thereby contributing to the precision of environmental risk assessments.


Subject(s)
Alkaloids , Bacterial Toxins , Cyanobacteria Toxins , Cyanobacteria , Daphnia , Animals , Bacterial Toxins/toxicity , Daphnia/drug effects , Alkaloids/toxicity , Cyanobacteria/chemistry , Uracil/analogs & derivatives , Uracil/toxicity , Cell Extracts/chemistry , Cell Extracts/pharmacology , Harmful Algal Bloom
19.
Environ Sci Pollut Res Int ; 31(26): 38485-38499, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38806980

ABSTRACT

Urban road dust (URD) is one of the most important non-point sources of pollution in agglomerations. The aim of this study was to assess the seasonal toxic effects of URD runoff in two regions of Poland. The concentrations of elements in URD and leachate were studied. The impact of pollutants in URD runoff on water organisms was evaluated using Daphtoxkit F and Rotoxkit F (LC50). The acute toxicity tests for crustaceans and rotifers were selected as the response of these taxa reflects the impact on zooplankton, a key component of aquatic ecosystem and the basis of most food webs. The concentrations of elements were found to vary depending on the site, although URD samples collected in Katowice agglomeration (Upper Silesia) had higher values of elements (Mn, Cu, Zn, As) compared to Wroclaw (Lower Silesia). The concentrations of Mn, Zn, As, Cr, and Mg in water-soluble fraction of URD were higher in summer and winter in the Upper Silesia region due to rainwater runoff resulting from traffic, industries, post-industrial waste, and the presence of old heating systems. When comparing the content of elements in the water-soluble fraction between seasons, Zn, As, Cr, and Al concentrations were slightly higher in winter. The highest mortality of Daphnia magna and Brachiouns calyciflorus was observed in URD from both agglomerations in winter. However, the mortality is likely due to the concentration of elements or/and the coexistence of an unknown compound or a synergistic effect of the studied elements. This study highlights the alarming seasonal sources of elements in URD runoff, which will directly enter the food chain and affect the entire ecosystem, and human health.


Subject(s)
Dust , Environmental Monitoring , Seasons , Water Pollutants, Chemical , Poland , Dust/analysis , Water Pollutants, Chemical/analysis , Animals , Daphnia/drug effects
20.
J Anim Ecol ; 93(7): 906-917, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38807348

ABSTRACT

Predators can strongly influence prey populations not only through consumptive effects (CE) but also through non-consumptive effects (NCE) imposed by predation risk. Yet, the impact of NCE on bioenergetic and stoichiometric body contents of prey, traits that are shaping life histories, population and food web dynamics, is largely unknown. Moreover, the degree to which NCE can evolve and can drive evolution in prey populations is rarely studied. A 6-week outdoor mesocosm experiment with Caged-Fish (NCE) and Free-Ranging-Fish (CE and NCE) treatments was conducted to quantify and compare the effects of CE and NCE on population densities, bioenergetic and stoichiometric body contents of Daphnia magna, a keystone species in freshwater ecosystems. We tested for evolution of CE and NCE by using experimental populations consisting of D. magna clones from two periods of a resurrected natural pond population: a pre-fish period without fish and a high-fish period with high predation pressure. Both Caged-Fish and Free-Ranging-Fish treatments decreased the body size and population densities, especially in Daphnia from the high-fish period. Only the Free-Ranging-Fish treatment affected bioenergetic variables, while both the Caged-Fish and Free-Ranging-Fish treatments shaped body stoichiometry. The effects of CE and NCE were different between both periods indicating their rapid evolution in the natural resurrected population. Both the Caged-Fish and Free-Ranging-Fish treatments changed the clonal frequencies of the experimental Daphnia populations of the pre-fish as well as the high-fish period, indicating that not only CE but also NCE induced clonal sorting, hence rapid evolution during the mesocosm experiment in both periods. Our results demonstrate that CE as well as NCE have the potential to change not only the body size and population density but also the bioenergetic and stoichiometric characteristics of prey populations. Moreover, we show that these responses not only evolved in the studied resurrected population, but that CE and NCE also caused differential rapid evolution in a time frame of 6 weeks (ca. four to six generations). As NCE can evolve as well as can drive evolution, they may play an important role in shaping eco-evolutionary dynamics in predator-prey interactions.


Subject(s)
Daphnia , Energy Metabolism , Food Chain , Population Density , Predatory Behavior , Animals , Daphnia/physiology , Biological Evolution
SELECTION OF CITATIONS
SEARCH DETAIL
...