Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 392
1.
Oncotarget ; 15: 361-373, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38829622

Histone deacetylase inhibitors (HDACi) can modulate the acetylation status of proteins, influencing the genomic instability exhibited by cancer cells. Poly (ADP ribose) polymerase (PARP) inhibitors (PARPi) have a direct effect on protein poly (ADP-ribosyl)ation, which is important for DNA repair. Decitabine is a nucleoside cytidine analogue, which when phosphorylated gets incorporated into the growing DNA strand, inhibiting methylation and inducing DNA damage by inactivating and trapping DNA methyltransferase on the DNA, thereby activating transcriptionally silenced DNA loci. We explored various combinations of HDACi and PARPi +/- decitabine (hypomethylating agent) in pancreatic cancer cell lines BxPC-3 and PL45 (wild-type BRCA1 and BRCA2) and Capan-1 (mutated BRCA2). The combination of HDACi (panobinostat or vorinostat) with PARPi (talazoparib or olaparib) resulted in synergistic cytotoxicity in all cell lines tested. The addition of decitabine further increased the synergistic cytotoxicity noted with HDACi and PARPi, triggering apoptosis (evidenced by increased cleavage of caspase 3 and PARP1). The 3-drug combination treatments (vorinostat, talazoparib, and decitabine; vorinostat, olaparib, and decitabine; panobinostat, talazoparib, and decitabine; panobinostat, olaparib, and decitabine) induced more DNA damage (increased phosphorylation of histone 2AX) than the individual drugs and impaired the DNA repair pathways (decreased levels of ATM, BRCA1, and ATRX proteins). The 3-drug combinations also altered the epigenetic regulation of gene expression (NuRD complex subunits, reduced levels). This is the first study to demonstrate synergistic interactions between the aforementioned agents in pancreatic cancer cell lines and provides preclinical data to design individualized therapeutic approaches with the potential to improve pancreatic cancer treatment outcomes.


Azacitidine , Decitabine , Drug Synergism , Histone Deacetylase Inhibitors , Pancreatic Neoplasms , Poly(ADP-ribose) Polymerase Inhibitors , Humans , Decitabine/pharmacology , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Cell Line, Tumor , Histone Deacetylase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Azacitidine/pharmacology , Azacitidine/analogs & derivatives , Apoptosis/drug effects , Antineoplastic Combined Chemotherapy Protocols/pharmacology
2.
Clin Epigenetics ; 16(1): 63, 2024 May 09.
Article En | MEDLINE | ID: mdl-38725010

BACKGROUND: Decitabine (DAC), a DNA methyltransferase inhibitor, has shown efficacy combined with chemotherapy for relapsed or refractory (R/R) acute myeloid leukemia (AML) in adults, but less is known about its efficacy in children. Accordingly, we conducted a study which involved a priming regimen consisting of DAC with cladribine, cytarabine, and granulocyte-stimulating factor (DAC-CLAG) and compared the efficacy and safety of this regimen with CLAG alone. METHODS: A total of 39 R/R AML children who received the CLAG or DAC-CLAG regimen in Shanghai Children's Hospital were retrospectively enrolled in this non-randomized study. These regimens were studied sequentially over time. Twenty-two patients received CLAG from 2015, while 17 patients were administered epigenetic priming with DAC before CLAG from 2020. Patients were subsequently bridged to stem cell transplantation (SCT) or consolidation chemotherapy. Complete remission (CR) and adverse effects were analyzed by Fisher's exact test, and survival was analyzed by the Kaplan-Meier method. RESULTS: DAC-CLAG conferred a numerically higher CR compared to CLAG (70.59% vs 63.64%; P = 0.740). High CR rates occurred in patients with good cytogenetics (P = 0.029) and prior induction without cladribine (P = 0.099). The 1-year event-free survival (EFS) was 64.71% ± 11.59% and 63.31% ± 10.35% in the DAC-CLAG and CLAG group (P = 0.595), and 1-year overall survival (OS) was 81.45% ± 9.72% and 77.01% ± 9.04%, respectively (P = 0.265). The 1-year OS and EFS after SCT were higher in the DAC-CLAG than in the CLAG cohort (100% vs 92.31% ± 7.39%, P = 0.072; 92.31% ± 7.39% vs 85.71% ± 9.35%, P = 0.158). Univariate analysis revealed that a good prognosis included good cytogenetics (P = 0.002), non-complex karyotype (P = 0.056), CR on reinduction (P < 0.0001), and bridging to SCT (P = 0.0007). Use of a hypomethylating agent (P = 0.049) and bridging to SCT (P = 0.011) were independent prognostic factors. Grade 3/4 hematologic toxicity and infection were the main adverse events. CONCLUSIONS: DAC prior to the CLAG regimen improved remission in pediatric R/R AML, and was feasible and well tolerated. CLAG ± DAC as a salvage therapy prior to SCT induced improved survival.


Antineoplastic Combined Chemotherapy Protocols , Cladribine , Cytarabine , Decitabine , Epigenesis, Genetic , Leukemia, Myeloid, Acute , Humans , Decitabine/therapeutic use , Decitabine/administration & dosage , Decitabine/pharmacology , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Male , Female , Child , Child, Preschool , Cladribine/therapeutic use , Cladribine/administration & dosage , Retrospective Studies , Cytarabine/therapeutic use , Cytarabine/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Adolescent , Epigenesis, Genetic/drug effects , Granulocyte Colony-Stimulating Factor/administration & dosage , Granulocyte Colony-Stimulating Factor/therapeutic use , Infant , Treatment Outcome , Remission Induction/methods
3.
Sci Rep ; 14(1): 11595, 2024 05 21.
Article En | MEDLINE | ID: mdl-38773164

Despite growing evidence implicating the calcium-activated chloride channel anoctamin1 (ANO1) in cancer metastasis, its direct impact on the metastatic potential of prostate cancer and the possible significance of epigenetic alteration in this process are not fully understood. Here, we show that ANO1 is minimally expressed in LNCap and DU145 prostate cancer cell lines with low metastatic potential but overexpressed in high metastatic PC3 prostate cancer cell line. The treatment of LNCap and DU145 cells with DNMT inhibitor 5-aza-2'-deoxycytidine (5-Aza-CdR) potentiates ANO1 expression, suggesting that DNA methylation is one of the mechanisms controlling ANO1 expression. Consistent with this notion, hypermethylation was detected at the CpG island of ANO1 promoter region in LNCap and DU145 cells, and 5-Aza-CdR treatment resulted in a drastic demethylation at promoter CpG methylation sites. Upon 5-Aza-CdR treatment, metastatic indexes, such as cell motility, invasion, and metastasis-related gene expression, were significantly altered in LNCap and DU145 cells. These 5-Aza-CdR-induced metastatic hallmarks were, however, almost completely ablated by stable knockdown of ANO1. These in vitro discoveries were further supported by our in vivo observation that ANO1 expression in xenograft mouse models enhances the metastatic dissemination of prostate cancer cells into tibial bone and the development of osteolytic lesions. Collectively, our results help elucidate the critical role of ANO1 expression in prostate cancer bone metastases, which is epigenetically modulated by promoter CpG methylation.


Anoctamin-1 , Bone Neoplasms , DNA Methylation , Gene Expression Regulation, Neoplastic , Neoplasm Proteins , Promoter Regions, Genetic , Prostatic Neoplasms , Male , Anoctamin-1/metabolism , Anoctamin-1/genetics , Humans , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Animals , Cell Line, Tumor , Bone Neoplasms/secondary , Bone Neoplasms/genetics , Bone Neoplasms/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Mice , CpG Islands , Decitabine/pharmacology , Cell Movement/genetics , Epigenesis, Genetic , Azacitidine/pharmacology
4.
Methods Cell Biol ; 186: 131-150, 2024.
Article En | MEDLINE | ID: mdl-38705597

Hypomethylating therapies using decitabine or azacitidine are actively investigated to treat acute myeloid leukemia, myelodysplastic syndromes, as maintenance therapy after allogenic stem cell transplant and hemoglobinopathies. The therapeutic mechanism is to de-repress genes that have been turned off through oncogenesis or development via methylation. The therapy can be non-cytotoxic at low dosage, sparing healthy stem cells and operating on committed precursors. Because the methods of determining maximum tolerated dose are not well suited to this paradigm, and because the mechanism of action, which is depletion of DNA methylase 1 (DNMT1), is complex and dependent on passing through a cell cycle, a pharmacodynamic assay that measures DNMT1 can inform clinical trials aimed at establishing and improving therapy. Herein, we provide an assay that measures DNMT1 relative levels in circulating T cells of peripheral blood.


Azacitidine , DNA (Cytosine-5-)-Methyltransferase 1 , DNA Methylation , Decitabine , Azacitidine/pharmacology , Humans , Decitabine/pharmacology , DNA Methylation/drug effects , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , DNA (Cytosine-5-)-Methyltransferase 1/genetics , Antimetabolites, Antineoplastic/pharmacology , Antimetabolites, Antineoplastic/therapeutic use , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA (Cytosine-5-)-Methyltransferases/genetics , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/metabolism
5.
Viruses ; 16(5)2024 05 08.
Article En | MEDLINE | ID: mdl-38793627

Equid herpesvirus 4 (EHV-4) is a common respiratory pathogen in horses. It sporadically induces abortion or neonatal death. Although its contribution in neurological disorders is not clearly demonstrated, there is a strong suspicion of its involvement. Despite preventive treatments using vaccines against EHV-1/EHV-4, the resurgence of alpha-EHV infection still constitutes an important threat to the horse industry. Yet very few studies have been conducted on the search for antiviral molecules against EHV-4. A screening of 42 antiviral compounds was performed in vitro on equine fibroblast cells infected with the EHV-4 405/76 reference strain (VR2230). The formation of cytopathic effects was monitored by real-time cell analysis (RTCA), and the viral load was quantified by quantitative PCR. Aciclovir, the most widely used antiviral against alpha-herpesviruses in vivo, does not appear to be effective against EHV-4 in vitro. Potential antiviral activities were confirmed for eight molecules (idoxuridine, vidarabine, pritelivir, cidofovir, valganciclovir, ganciclovir, aphidicolin, and decitabine). Decitabine demonstrates the highest efficacy against EHV-4 in vitro. Transcriptomic analysis revealed the up-regulation of various genes implicated in interferon (IFN) response, suggesting that decitabine triggers the immune antiviral pathway.


Antiviral Agents , Decitabine , Herpesvirus 4, Equid , Immunity, Innate , Animals , Antiviral Agents/pharmacology , Horses , Decitabine/pharmacology , Immunity, Innate/drug effects , Herpesvirus 4, Equid/drug effects , Fibroblasts/drug effects , Fibroblasts/virology , Herpesviridae Infections/drug therapy , Herpesviridae Infections/virology , Herpesviridae Infections/veterinary , Herpesviridae Infections/immunology , Horse Diseases/virology , Horse Diseases/drug therapy , Horse Diseases/immunology , Viral Load/drug effects , Cell Line , Virus Replication/drug effects , Drug Evaluation, Preclinical
6.
Anticancer Res ; 44(6): 2459-2470, 2024 Jun.
Article En | MEDLINE | ID: mdl-38821592

BACKGROUND/AIM: Gastric cancer, with its high global incidence and mortality rates, poses a significant challenge due to the rapid decline in patient survival upon metastasis. Understanding and combating metastasis are crucial in improving outcomes. The metastasis suppressor gene CD82 has demonstrated efficacy in inhibiting metastasis across various carcinomas but is frequently down-regulated. However, its role and regulatory mechanisms in gastric cancer remain elusive. MATERIALS AND METHODS: Utilizing public data, we assessed patient survival in relation to CD82 expression. CD82 expression in gastric cancer cell lines was evaluated via western blotting, and its impact on cell mobility was assessed through wound healing and Transwell assays. The demethylation of CD82 was induced using 5-aza-deoxycytidine, while methylation levels were detected via methylation-specific PCR. RESULTS: Low CD82 expression correlated with poor prognosis in patients, and down-regulation and over-expression of CD82 significantly affected cell mobility. Treatment with 5-aza-deoxycytidine restored CD82 expression in low-expressing cell lines, highlighting its methylation-dependent regulation. CONCLUSION: CD82 serves as a pivotal regulator of cell mobility in gastric cancer by suppressing metastasis. Its expression is attenuated in gastric cancer cells through promoter hypermethylation.


Cell Movement , DNA Methylation , Gene Expression Regulation, Neoplastic , Kangai-1 Protein , Stomach Neoplasms , Humans , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Stomach Neoplasms/metabolism , Kangai-1 Protein/genetics , Kangai-1 Protein/metabolism , Cell Line, Tumor , Cell Movement/genetics , Promoter Regions, Genetic , Prognosis , Decitabine/pharmacology , Neoplasm Metastasis , Down-Regulation , Genes, Tumor Suppressor
7.
Med Oncol ; 41(7): 165, 2024 May 31.
Article En | MEDLINE | ID: mdl-38819590

Myeloid-derived suppressor cells (MDSCs) play a crucial role in promoting melanoma metastasis. Reprogramming MDSCs into mature M1 macrophages has emerged as a strategy to inhibit metastasis. Decitabine (Dec) is known to eradicate MDSCs and suppress tumor growth. In this study, we provide evidence that Dec not only reduces the MDSC population by inducing apoptosis, arresting cell cycle, and impairing recruitment, but also suppresses their immunosuppressive function by downregulating related genes and facilitating differentiation into M1 macrophages. Transcriptomic analysis of Dec-treated MDSCs revealed a marked downregulation of immunosuppressive genes including S100a9, S100a8, Vegf, Cxcr2, and Nos2. Meanwhile, M1 macrophage-associated genes involved in immune activation were upregulated, such as Ddx58, Isg15, Tap1, Ccl5, Cxcl9, and Cxcl10. Further bioinformatic analysis indicated that Dec promotes MDSC-to-M1 macrophage differentiation and activates innate immune pathways including NOD-like signaling to enhance anti-tumor immunity. Time-course studies implied that Dec upregulates myeloid transcription factor Irf7 to initiate MDSC differentiation and orchestrate the anti-tumor immune response. Collectively, our study unveils a novel dual-functional mechanism of Dec as both a cytotoxic agent reducing MDSCs and an inducer of their differentiation into M1 macrophages, thereby alleviating immunosuppression. This highlights Dec's potential for clinical melanoma metastasis suppression.


Decitabine , Melanoma , Myeloid-Derived Suppressor Cells , Myeloid-Derived Suppressor Cells/drug effects , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism , Animals , Decitabine/pharmacology , Mice , Melanoma/drug therapy , Melanoma/pathology , Melanoma/immunology , Humans , Mice, Inbred C57BL , Cell Differentiation/drug effects , Antimetabolites, Antineoplastic/pharmacology , Cell Line, Tumor , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Apoptosis/drug effects , Immune Tolerance/drug effects
8.
Eur J Med Chem ; 272: 116447, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38714044

Histone deacetylase 6 (HDAC6) is an emerging drug target to treat oncological and non-oncological conditions. Since highly selective HDAC6 inhibitors display limited anticancer activity when used as single agent, they usually require combination therapies with other chemotherapeutics. In this work, we synthesized a mini library of analogues of the preferential HDAC6 inhibitor HPOB in only two steps via an Ugi four-component reaction as the key step. Biochemical HDAC inhibition and cell viability assays led to the identification of 1g (highest antileukemic activity) and 2b (highest HDAC6 inhibition) as hit compounds. In subsequent combination screens, both 1g and especially 2b showed synergy with DNA methyltransferase inhibitor decitabine in acute myeloid leukemia (AML). Our findings highlight the potential of combining HDAC6 inhibitors with DNA methyltransferase inhibitors as a strategy to improve AML treatment outcomes.


Antineoplastic Agents , Decitabine , Drug Screening Assays, Antitumor , Drug Synergism , Histone Deacetylase 6 , Histone Deacetylase Inhibitors , Leukemia, Myeloid, Acute , Humans , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase Inhibitors/chemical synthesis , Histone Deacetylase 6/antagonists & inhibitors , Histone Deacetylase 6/metabolism , Decitabine/pharmacology , Decitabine/chemistry , Structure-Activity Relationship , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/metabolism , Molecular Structure , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Cell Survival/drug effects , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Cell Line, Tumor , Peptoids/chemistry , Peptoids/pharmacology , Peptoids/chemical synthesis , Aminopyridines , Benzamides
9.
J Nanobiotechnology ; 22(1): 174, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38609922

Photothermal therapy is favored by cancer researchers due to its advantages such as controllable initiation, direct killing and immune promotion. However, the low enrichment efficiency of photosensitizer in tumor site and the limited effect of single use limits the further development of photothermal therapy. Herein, a photo-responsive multifunctional nanosystem was designed for cancer therapy, in which myeloid-derived suppressor cell (MDSC) membrane vesicle encapsulated decitabine-loaded black phosphorous (BP) nanosheets (BP@ Decitabine @MDSCs, named BDM). The BDM demonstrated excellent biosafety and biochemical characteristics, providing a suitable microenvironment for cancer cell killing. First, the BDM achieves the ability to be highly enriched at tumor sites by inheriting the ability of MDSCs to actively target tumor microenvironment. And then, BP nanosheets achieves hyperthermia and induces mitochondrial damage by its photothermal and photodynamic properties, which enhancing anti-tumor immunity mediated by immunogenic cell death (ICD). Meanwhile, intra-tumoral release of decitabine induced G2/M cell cycle arrest, further promoting tumor cell apoptosis. In vivo, the BMD showed significant inhibition of tumor growth with down-regulation of PCNA expression and increased expression of high mobility group B1 (HMGB1), calreticulin (CRT) and caspase 3. Flow cytometry revealed significantly decreased infiltration of MDSCs and M2-macrophages along with an increased proportion of CD4+, CD8+ T cells as well as CD103+ DCs, suggesting a potentiated anti-tumor immune response. In summary, BDM realizes photothermal therapy/photodynamic therapy synergized chemotherapy for cancer.


Myeloid-Derived Suppressor Cells , Neoplasms , Photochemotherapy , Biomimetics , CD8-Positive T-Lymphocytes , Decitabine/pharmacology , Photothermal Therapy , Neoplasms/drug therapy
11.
Drug Metab Dispos ; 52(6): 555-564, 2024 May 16.
Article En | MEDLINE | ID: mdl-38565301

Cytochrome P450 1A2 (CYP1A2) is a known tumor suppressor in hepatocellular carcinoma (HCC), but its expression is repressed in HCC and the underlying mechanism is unclear. In this study, we investigated the epigenetic mechanisms of CYP1A2 repression and potential therapeutic implications. In HCC tumor tissues, the methylation rates of CYP1A2 CpG island (CGI) and DNA methyltransferase (DNMT) 3A protein levels were significantly higher, and there was a clear negative correlation between DNMT3A and CYP1A2 protein expression. Knockdown of DNMT3A by siRNA significantly increased CYP1A2 expression in HCC cells. Additionally, treating HCC cells with decitabine (DAC) resulted in a dose-dependent upregulation of CYP1A2 expression by reducing the methylation level of CYP1A2 CGI. Furthermore, we observed a decreased enrichment of H3K27Ac in the promoter region of CYP1A2 in HCC tissues. Treatment with the trichostatin A (TSA) restored CYP1A2 expression in HCC cells by increasing H3K27Ac levels in the CYP1A2 promoter region. Importantly, combination treatment of sorafenib with DAC or TSA resulted in a leftward shift of the dose-response curve, lower IC50 values, and reduced colony numbers in HCC cells. Our findings suggest that hypermethylation of the CGI at the promoter, mediated by the high expression of DNMT3A, and hypoacetylation of H3K27 in the CYP1A2 promoter region, leads to CYP1A2 repression in HCC. Epigenetic drugs DAC and TSA increase HCC cell sensitivity to sorafenib by restoring CYP1A2 expression. Our study provides new insights into the epigenetic regulation of CYP1A2 in HCC and highlights the potential of epigenetic drugs as a therapeutic approach for HCC. SIGNIFICANCE STATEMENT: This study marks the first exploration of the epigenetic mechanisms underlying cytochrome P450 (CYP) 1A2 suppression in hepatocellular carcinoma (HCC). Our findings reveal that heightened DNA methyltransferase expression induces hypermethylation of the CpG island at the promoter, coupled with diminished H3K27Ac levels, resulting in the repression of CYP1A2 in HCC. The use of epigenetic drugs such as decitabine and trichostatin A emerges as a novel therapeutic avenue, demonstrating their potential to restore CYP1A2 expression and enhance sorafenib sensitivity in HCC cells.


Carcinoma, Hepatocellular , Cytochrome P-450 CYP1A2 , DNA Methylation , Epigenesis, Genetic , Liver Neoplasms , Sorafenib , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Humans , Sorafenib/pharmacology , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Epigenesis, Genetic/drug effects , Epigenesis, Genetic/genetics , DNA Methylation/drug effects , Cell Line, Tumor , Cytochrome P-450 CYP1A2/genetics , Cytochrome P-450 CYP1A2/metabolism , DNA Methyltransferase 3A , Antineoplastic Agents/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , Decitabine/pharmacology , CpG Islands/genetics , Hydroxamic Acids/pharmacology , Promoter Regions, Genetic/genetics , Promoter Regions, Genetic/drug effects
13.
Biochim Biophys Acta Gen Subj ; 1868(6): 130602, 2024 Jun.
Article En | MEDLINE | ID: mdl-38513927

BACKGROUND: High methylation of the DFNA5 gene results in the absence of GSDME, a key protein that mediates pyroptosis, while decitabine demethylates the DFNA5 gene, resulting in high expression of the GSDME protein. Cold atmospheric plasma (CAP) is a novel anti-cancer method that induces tumor cell death. METHODS: The pyroptosis induced by decitabine in combination with CAP in Ovcar5 cells was evaluated. In particular, mitochondrial membrane potential was estimated by JC-1 staining, dehydrogenase (LDH) release was assessed by ELISA, Annexin V/PI staining was detected by flow cytometry, the cell cycle changes were evaluated using PI staining followed by detection by flow cytometry, and Caspase-9 cleavage, Caspase-3 cleavage and GSDME expression were evaluated by western blot. RESULTS: Decitabine resulted in high expression of the GSDME in Ovcar5 in a concentration-dependent manner and increased tumor cell sensitivity to CAP. CAP induced mitochondrial damage and activated the Caspase-9/Caspase-3 pathway. Therefore, decitabine combined with CAP induced Ovcar5 cell pyroptosis through Caspase-3 mediated GSDME cleavage. Reactive oxygen species (ROS) generated by CAP treatment played an important role in the CAP/decitabine combination-induced production of ROS, activation of Caspase-9/Caspase-3, GSDME cleavage and pyroptosis that ROS scavenger NAC inhibited all these processes. CONCLUSIONS: CAP combined with decitabine induced Caspase-3 activation, which cleaved decitabine-upregulated GSDME and ediated pyroptosis.


Caspase 3 , Decitabine , Gasdermins , Plasma Gases , Pyroptosis , Reactive Oxygen Species , Signal Transduction , Pyroptosis/drug effects , Humans , Decitabine/pharmacology , Reactive Oxygen Species/metabolism , Caspase 3/metabolism , Signal Transduction/drug effects , Plasma Gases/pharmacology , Cell Line, Tumor , Membrane Potential, Mitochondrial/drug effects , Antimetabolites, Antineoplastic/pharmacology
14.
Cytometry B Clin Cytom ; 106(1): 11-24, 2024 01.
Article En | MEDLINE | ID: mdl-38345160

The 5-azacytidine (AZA) and decitabine (DEC) are noncytotoxic, differentiation-inducing therapies approved for treatment of myelodysplastic syndrome, acute myeloid leukemias (AML), and under evaluation as maintenance therapy for AML postallogeneic hematopoietic stem cell transplant and to treat hemoglobinapathies. Malignant cell cytoreduction is thought to occur by S-phase specific depletion of the key epigenetic regulator, DNA methyltransferase 1 (DNMT1) that, in the case of cancers, thereby releases terminal-differentiation programs. DNMT1-targeting can also elevate expression of immune function genes (HLA-DR, MICA, MICB) to stimulate graft versus leukemia effects. In vivo, there is a large inter-individual variability in DEC and 5-AZA activity because of pharmacogenetic factors, and an assay to quantify the molecular pharmacodynamic effect of DNMT1-depletion is a logical step toward individualized or personalized therapy. We developed and analytically validated a flow cytometric assay for DNMT1 epitope levels in blood and bone marrow cell subpopulations defined by immunophenotype and cell cycle state. Wild type (WT) and DNMT1 knock out (DKO) HC116 cells were used to select and optimize a highly specific DNMT1 monoclonal antibody. Methodologic validation of the assay consisted of cytometry and matching immunoblots of HC116-WT and -DKO cells and peripheral blood mononuclear cells; flow cytometry of H116-WT treated with DEC, and patient samples before and after treatment with 5-AZA. Analysis of patient samples demonstrated assay reproducibility, variation in patient DNMT1 levels prior to treatment, and DNMT1 depletion posttherapy. A flow-cytometry assay has been developed that in the research setting of clinical trials can inform studies of DEC or 5-AZA treatment to achieve targeted molecular pharmacodynamic effects and better understand treatment-resistance/failure.


Leukemia, Myeloid, Acute , Leukocytes, Mononuclear , Humans , Decitabine/pharmacology , Decitabine/therapeutic use , Flow Cytometry , Reproducibility of Results , Azacitidine/pharmacology , Azacitidine/therapeutic use , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Biomarkers
15.
Invest Ophthalmol Vis Sci ; 65(2): 23, 2024 Feb 01.
Article En | MEDLINE | ID: mdl-38345554

Purpose: Choroidal neovascularization (CNV) can constitute the final pathology of many ocular diseases and result in severe vision loss. Studies have demonstrated that DNA methylation is critical in retinal development, aging, and disorders. The current work investigated the effects and underlying mechanism of 5-Aza-2'-deoxycytidine (5-aza-dC), a suppressor of DNA methylation, in the pathological progression of CNV. Methods: The DNA methylation profiles of retinal pigment epithelial (RPE)/choroidal complexes in normal and laser-induced CNV mice were assessed by Arraystar Mouse RefSeq Promoter Arrays. The CNV area and blood flow density and intensity were observed by optical coherence tomography angiography, and fluorescence leakage was examined by fundus fluorescein angiography in CNV mice with systemic administration of 5-aza-dC. The effects of 5-aza-dC on the biological functions of bEnd.3 cells were estimated by related assays. Notum gene promoter methylation was measured using bisulfite sequencing PCR. Methyltransferases and Wnt signaling-related genes were detected in animal and cell culture experiments by real-time PCR and immunoblot. Results: Methyltransferases were upregulated, but Notum (a secretion inhibitor of Wnt signaling) was downregulated in the RPE/choroidal complexes of mice with experimental CNV. Intraperitoneal injection of 5-aza-dC inactivated the Wnt pathway and ameliorated the lesion area and the intensity and density of blood flow, as well as the degree of leakage in CNV. In vitro, vascular endothelial growth factor A (VEGFA) stimulation promoted methyltransferases expression and suppressed Notum expression, consequently activating Wnt signaling, whereas exogenous 5-aza-dC reversed VEGFA-induced hyperpermeability, proliferation, migration, and tube formation in bEnd.3 cells via demethylation of Notum promoter. Conclusions: We observed that 5-aza-dC attenuates the growth of CNV by inhibiting the Wnt signaling pathway via promoter demethylation of the Wnt antagonist Notum. These findings provide a theoretical basis for methylation-based treatment with the Notum gene as a potential target for CNV treatment.


Choroidal Neovascularization , Wnt Signaling Pathway , Mice , Animals , Wnt Signaling Pathway/genetics , Decitabine/pharmacology , Vascular Endothelial Growth Factor A/metabolism , Endothelial Cells/metabolism , Choroidal Neovascularization/drug therapy , Choroidal Neovascularization/genetics , Choroidal Neovascularization/metabolism , Azacitidine/pharmacology , Methyltransferases , Disease Models, Animal , Mice, Inbred C57BL
16.
Proc Natl Acad Sci U S A ; 121(7): e2310264121, 2024 Feb 13.
Article En | MEDLINE | ID: mdl-38319963

Epigenetic regulation plays a crucial role in the pathogenesis of autoimmune diseases such as inflammatory arthritis. DNA hypomethylating agents, such as decitabine (DAC), have been shown to dampen inflammation and restore immune homeostasis. In the present study, we demonstrate that DAC elicits potent anti-inflammatory effects and attenuates disease symptoms in several animal models of arthritis. Transcriptomic and epigenomic profiling show that DAC-mediated hypomethylation regulates a wide range of cell types in arthritis, altering the differentiation trajectories of anti-inflammatory macrophage populations, regulatory T cells, and tissue-protective synovial fibroblasts (SFs). Mechanistically, DAC-mediated demethylation of intragenic 5'-Cytosine phosphate Guanine-3' (CpG) islands of the transcription factor Irf8 (interferon regulatory factor 8) induced its re-expression and promoted its repressor activity. As a result, DAC restored joint homeostasis by resetting the transcriptomic signature of negative regulators of inflammation in synovial macrophages (MerTK, Trem2, and Cx3cr1), TREGs (Foxp3), and SFs (Pdpn and Fapα). In conclusion, we found that Irf8 is necessary for the inhibitory effect of DAC in murine arthritis and that direct expression of Irf8 is sufficient to significantly mitigate arthritis.


Arthritis , Azacitidine , Mice , Animals , Decitabine/pharmacology , Azacitidine/pharmacology , Epigenesis, Genetic , DNA Methylation , Interferon Regulatory Factors/metabolism , Inflammation/genetics , Arthritis/genetics , Anti-Inflammatory Agents , Membrane Glycoproteins/metabolism , Receptors, Immunologic/genetics
17.
Nat Struct Mol Biol ; 31(3): 498-512, 2024 Mar.
Article En | MEDLINE | ID: mdl-38182927

Three-dimensional (3D) epigenome remodeling is an important mechanism of gene deregulation in cancer. However, its potential as a target to counteract therapy resistance remains largely unaddressed. Here, we show that epigenetic therapy with decitabine (5-Aza-mC) suppresses tumor growth in xenograft models of pre-clinical metastatic estrogen receptor positive (ER+) breast tumor. Decitabine-induced genome-wide DNA hypomethylation results in large-scale 3D epigenome deregulation, including de-compaction of higher-order chromatin structure and loss of boundary insulation of topologically associated domains. Significant DNA hypomethylation associates with ectopic activation of ER-enhancers, gain in ER binding, creation of new 3D enhancer-promoter interactions and concordant up-regulation of ER-mediated transcription pathways. Importantly, long-term withdrawal of epigenetic therapy partially restores methylation at ER-enhancer elements, resulting in a loss of ectopic 3D enhancer-promoter interactions and associated gene repression. Our study illustrates the potential of epigenetic therapy to target ER+ endocrine-resistant breast cancer by DNA methylation-dependent rewiring of 3D chromatin interactions, which are associated with the suppression of tumor growth.


Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Decitabine/pharmacology , Decitabine/therapeutic use , Decitabine/metabolism , Epigenome , DNA Methylation/genetics , Chromatin , Epigenesis, Genetic , DNA/metabolism , Gene Expression Regulation, Neoplastic
18.
Clin Epigenetics ; 16(1): 3, 2024 01 03.
Article En | MEDLINE | ID: mdl-38172923

BACKGROUND: Inhibition of cyclin-dependent kinase 9 (CDK9), a novel epigenetic target in cancer, can reactivate epigenetically silenced genes in cancer by dephosphorylating the SWI/SNF chromatin remodeler BRG1. Here, we characterized the anti-tumor efficacy of MC180295, a newly developed CDK9 inhibitor. METHODS: In this study, we explored the pharmacokinetics of MC180295 in mice and rats, and tested the anti-tumor efficacy of MC180295, and its enantiomers, in multiple cancer cell lines and mouse models. We also combined CDK9 inhibition with a DNA methyltransferase (DNMT) inhibitor, decitabine, in multiple mouse models, and tested MC180295 dependence on T cells. Drug toxicity was measured by checking body weights and complete blood counts. RESULTS: MC180295 had high specificity for CDK9 and high potency against multiple neoplastic cell lines (median IC50 of 171 nM in 46 cell lines representing 6 different malignancies), with the highest potency seen in AML cell lines derived from patients with MLL translocations. MC180295 is a racemic mixture of two enantiomers, MC180379 and MC180380, with MC180380 showing higher potency in a live-cell epigenetic assay. Both MC180295 and MC180380 showed efficacy in in vivo AML and colon cancer xenograft models, and significant synergy with decitabine in both cancer models. Lastly, we found that CDK9 inhibition-mediated anti-tumoral effects were partially dependent on CD8 + T cells in vivo, indicating a significant immune component to the response. CONCLUSIONS: MC180380, an inhibitor of cyclin-dependent kinase 9 (CDK9), is an efficacious anti-cancer agent worth advancing further toward clinical use.


Cyclin-Dependent Kinase 9 , Leukemia, Myeloid, Acute , Humans , Mice , Rats , Animals , Cyclin-Dependent Kinase 9/genetics , Cyclin-Dependent Kinase 9/metabolism , Decitabine/pharmacology , DNA Methylation , Cell Line, Tumor , Leukemia, Myeloid, Acute/genetics , Apoptosis
19.
Clin Epigenetics ; 16(1): 16, 2024 01 22.
Article En | MEDLINE | ID: mdl-38254153

BACKGROUND: Decitabine has been widely used to treat acute myeloid leukemia (AML); however as AML is a heterogeneous disease, not all patients benefit from decitabine. This study aimed to identify markers for predicting the response to decitabine. METHODS: An intersection of in vitro experiments and bioinformatics was performed using a combination of epigenetic and transcriptomic analysis. A tumor-suppressor gene associated with methylation and the response to decitabine was screened. Then the sensitivity and specificity of this marker in predicting the response to decitabine was confirmed in 54 samples from newly diagnosed AML patients treated with decitabine plus IA regimen in a clinical trial (ChiCTR2000037928). RESULTS: In vitro experiments showed that decitabine caused hypomethylation and upregulation of BTG1, while downregulation of BTG1 attenuated the inhibitory effect of decitabine. In newly diagnosed AML patients who received decitabine plus IA regimen, the predictive value of BTG1 to predict complete remission (CR) was assigned with a sensitivity of 86.7% and a specificity of 100.0% when BTG1 expression was < 0.292 (determined using real-time quantitative PCR), with area under the curve (AUC) = 0.933, P = 0.021. The predictive value of BTG1 to predict measurable residual disease (MRD) negativity was assigned with a sensitivity of 100.0% and a specificity of 80.0% when BTG1 expression was < 0.292 (AUC = 0.892, P = 0.012). Patients were divided into low and high BTG1 expression groups according to a cutoff of 0.292, and the CR rate of the low-expression group was significantly higher than that of the high-expression group (97.5% vs. 50%, P < 0.001). CONCLUSIONS: Low expression of BTG1 was associated with CR and MRD negativity in newly diagnosed AML patients treated with a decitabine-containing regimen, suggesting that BTG1 is a potential marker for predicting the response to decitabine in newly diagnosed AML. CLINICAL TRIAL REGISTRATION: ChiCTR2000037928.


DNA Methylation , Leukemia, Myeloid, Acute , Humans , Decitabine/pharmacology , Decitabine/therapeutic use , Area Under Curve , Computational Biology , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Pathologic Complete Response , Neoplasm Proteins
20.
Biochim Biophys Acta Rev Cancer ; 1879(2): 189066, 2024 Mar.
Article En | MEDLINE | ID: mdl-38163523

Decitabine's early successful therapeutic outcomes in hematologic malignancies have led to regulatory approvals from the Food and Drug Administration (FDA) and the European Medicines Agency (EMA) for addressing myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). These approvals have sparked keen interest in exploring the potential of decitabine for treating solid tumors. Continuous preclinical and clinical trials have proved that low doses of decitabine also bring benefits in treating solid tumors, and various proposed mechanisms attempt to explain the potential efficacy. It is important to note that the application of decitabine in solid tumors is still considered investigational. This article reviews the application mechanism and current status of decitabine in the treatment of solid tumors.


Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , United States , Humans , Decitabine/pharmacology , Decitabine/therapeutic use , Azacitidine/pharmacology , Azacitidine/therapeutic use , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/pathology , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Epigenesis, Genetic
...