Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 6.266
1.
AAPS PharmSciTech ; 25(5): 105, 2024 May 09.
Article En | MEDLINE | ID: mdl-38724807

The formulation of microspheres involves a complex manufacturing process with multiple steps. Identifying the appropriate process parameters to achieve the desired quality attributes poses a significant challenge. This study aims to optimize the critical process parameters (CPPs) involved in the preparation of naltrexone microspheres using a Quality by Design (QbD) methodology. Additionally, the research aims to assess the drug release profiles of these microspheres under both in vivo and in vitro conditions. Critical process parameters (CPPs) and critical quality attributes (CQAs) were identified, and a Box-Behnken design was utilized to delineate the design space, ensuring alignment with the desired Quality Target Product Profile (QTPP). The investigated CPPs comprised polymer concentration, aqueous phase ratio to organic phase ratio, and quench volume. The microspheres were fabricated using the oil-in-water emulsion solvent extraction technique. Analysis revealed that increased polymer concentration was correlated with decreased particle size, reduced quench volume resulted in decreased burst release, and a heightened aqueous phase ratio to organic phase ratio improved drug entrapment. Upon analyzing the results, an optimal formulation was determined. In conclusion, the study conducted in vivo drug release testing on both the commercially available innovator product and the optimized test product utilizing an animal model. The integration of in vitro dissolution data with in vivo assessments presents a holistic understanding of drug release dynamics. The QbD approach-based optimization of CPPs furnishes informed guidance for the development of generic pharmaceutical formulations.


Chemistry, Pharmaceutical , Delayed-Action Preparations , Drug Delivery Systems , Drug Liberation , Microspheres , Naltrexone , Particle Size , Naltrexone/chemistry , Naltrexone/administration & dosage , Naltrexone/pharmacokinetics , Animals , Chemistry, Pharmaceutical/methods , Delayed-Action Preparations/chemistry , Drug Delivery Systems/methods , Polymers/chemistry , Emulsions/chemistry , Drug Compounding/methods , Solubility , Solvents/chemistry
2.
Carbohydr Polym ; 337: 122188, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38710565

Growing plants in karst areas tends to be difficult due to the easy loss of water and soil. To enhance soil agglomeration, water retention, and soil fertility, this study developed a physically and chemically crosslinked hydrogel prepared from quaternary ammonium guar gum and humic acid. The results showed that non-covalent dynamic bonds between the two components delayed humic acid release into the soil, with a release rate of only 35 % after 240 h. The presence of four hydrophilic groups (quaternary ammonium, hydroxyl, carboxyl, and carbonyl) in the hydrogel more than doubled the soil's water retention capacity. The interaction between hydrogel and soil minerals (especially carbonate and silica) promoted hydrogel-soil and soil­carbonate adhesion, and the adhesion strength between soil particles was enhanced by 650 %. Moreover, compared with direct fertilization, this degradable hydrogel not only increased the germination rate (100 %) and growth status of mung beans but also reduced the negative effects of excessive fertilization on plant roots. The study provides an eco-friendly, low-cost, and intelligent system for soil improvement in karst areas. It further proves the considerable application potential of hydrogels in agriculture.


Galactans , Humic Substances , Hydrogels , Mannans , Plant Gums , Quaternary Ammonium Compounds , Soil , Plant Gums/chemistry , Galactans/chemistry , Mannans/chemistry , Hydrogels/chemistry , Soil/chemistry , Quaternary Ammonium Compounds/chemistry , Fertilizers , Delayed-Action Preparations/chemistry , Germination/drug effects , Water/chemistry
3.
ACS Appl Mater Interfaces ; 16(20): 25869-25878, 2024 May 22.
Article En | MEDLINE | ID: mdl-38728411

Liraglutide has been extensively applied in the treatment of type 2 diabetes mellitus (T2DM), but its 11-15 h half-life resulted in daily administration, which led to poor patient compliance. This study aimed to solve this problem by developing liraglutide-loaded microspheres with a 1 month sustained release prepared by the W1/O/W2 method combined with the premix membrane emulsification technique to improve therapeutic efficacy. Remarkably, we found that the amphiphilic properties of liraglutide successfully reduced the oil-water interfacial tension, resulting in a stable primary emulsion and decreasing the level of drug leakage into the external water phase. As a result, exceptional drug loading (>8%) and encapsulation efficiency (>85%) of microspheres were achieved. Furthermore, the uniformity in microsphere size facilitated an in-depth exploration of the structural characteristics of liraglutide-loaded microspheres. The results indicated that the dimensions of the internal cavities of the microspheres were significantly influenced by the size of the inner water droplets in the primary emulsion. A denser and more uniform cavity structure decreased the initial burst release, improving the release process of liraglutide from the microspheres. To evaluate the release behavior of liraglutide from microspheres, a set of in vitro release assays and in vivo pharmacodynamics were performed. The liraglutide-loaded microspheres effectively decreased fasting blood glucose (FBG) levels and hemoglobin A1c (HbA1c) levels while enhancing the pancreatic and hepatic functions in db/db mice. In conclusion, liraglutide sustained-release microspheres showed the potential for future clinical applications in the management of T2DM and provided an effective therapeutic approach to overcoming patient compliance issues.


Delayed-Action Preparations , Diabetes Mellitus, Type 2 , Liraglutide , Microspheres , Liraglutide/chemistry , Liraglutide/pharmacology , Diabetes Mellitus, Type 2/drug therapy , Animals , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacokinetics , Delayed-Action Preparations/pharmacology , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/pharmacology , Mice , Blood Glucose/drug effects , Blood Glucose/analysis , Diabetes Mellitus, Experimental/drug therapy , Male , Drug Liberation , Emulsions/chemistry , Particle Size
4.
J Biomed Mater Res B Appl Biomater ; 112(6): e35418, 2024 Jun.
Article En | MEDLINE | ID: mdl-38786546

The method of synthesis of unmodified and organo-modified silica hydrogels and their composites with orotic acid as a model drug was developed. The hydrogels had a pH of 6.5-7.8. The particulate nature and highly porous structures of the hydrogel materials were revealed using scanning electron and optical microscopy methods. The content of aqueous phase in the hydrogels was 99% or more. In order to evaluate the possibility of their application as a basis for development of novel soft drug formulations and cosmetic compositions, rheological properties of the hydrogels and in vitro release kinetics of the drug were studied. The effects of synthesis conditions (increasing concentration of catalyst of silica sol formation, drug loading) and the silica matrix modification with various organic groups on the indicated properties were investigated. It was found that all synthesized hydrogels exhibited pseudoplasticity, thixotropy and controlled release of the drug, which are important for their potential application. However, in general, the indicated effects led to worsening the properties of the hydrogel materials in comparison with the unmodified silica hydrogels.


Hydrogels , Rheology , Silicon Dioxide , Hydrogels/chemistry , Silicon Dioxide/chemistry , Kinetics , Drug Liberation , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacokinetics
5.
J Colloid Interface Sci ; 669: 835-843, 2024 Sep.
Article En | MEDLINE | ID: mdl-38749222

Wearable drug delivery systems (DDS) have made significant advancements in the field of precision medicine, offering precise regulation of drug dosage, location, and timing. The performance qualities that wearable DDS has always strived for are simplicity, efficiency, and intelligence. This paper proposes a wearable dual-drug synergistic release patch. The patch is powered by a built-in magnesium battery and utilizes a hydrogel containing viologen-based hyperbranched polyamidoamine as both a cathode material and an integrated drug reservoir. This design allows for the simultaneous release of both dexamethasone and tannic acid, overcoming the limitations of monotherapy and ensuring effective synergy for on-demand therapy. In a mouse model with praziquimod-induced psoriasis, the patch demonstrated therapeutic efficacy at a low voltage. The inflammatory skin returned to normal after 5 days with the on-demand release of dual drugs. This work provides a promising treatment option considering its straightforward construction and the therapeutic advantages of dual-drug synergy.


Dexamethasone , Psoriasis , Wearable Electronic Devices , Animals , Mice , Psoriasis/drug therapy , Psoriasis/pathology , Dexamethasone/administration & dosage , Dexamethasone/pharmacology , Delayed-Action Preparations/chemistry , Tannins/chemistry , Tannins/pharmacology , Drug Liberation , Hydrogels/chemistry , Drug Delivery Systems , Transdermal Patch , Polyamines
6.
Int J Mol Sci ; 25(10)2024 May 09.
Article En | MEDLINE | ID: mdl-38791175

The modified release of active substances such as chlorzoxazone from matrix tablets, based on Kollidon®SR and chitosan, depends both on the drug solubility in the dissolution medium and on the matrix composition. The aim of this study is to obtain some new oral matrix tablet formulations, based on Kollidon®SR and chitosan, in order to optimize the low-dose oral bioavailability of chlorzoxazone, a non-steroidal anti-inflammatory drug of class II Biopharmaceutical Classification System. Nine types of chlorzoxazone matrix tablets were obtained using the direct compression method by varying the components ratio as 1:1, 1:2, and 1:3 chlorzoxazone/excipients, 20-40 w/w % Kollidon®SR, 3-7 w/w % chitosan while the auxiliary substances: Aerosil® 1 w/w %, magnesium stearate 0.5 w/w % and Avicel® up to 100 w/w % were kept in constant concentrations. Pharmaco-technical characterization of the tablets included the analysis of flowability and compressibility properties (flow time, friction coefficient, angle of repose, Hausner ratio, and Carr index), and pharmaco-chemical characteristics (such as mass and dose uniformity, thickness, diameter, mechanical strength, friability, softening degree, and in vitro release profiles). Based on the obtained results, only three matrix tablet formulations (F1b, F2b, and F3b, containing 30 w/w % KOL and 5 w/w % CHT, were selected and further tested. These formulations were studied in detail by Fourier-transform infrared spectrometry, X-ray diffraction, thermogravimetry, and differential scanning calorimetry. The three formulations were comparatively studied regarding the release kinetics of active substances using in vitro release testing. The results were analyzed by fitting into four representative mathematical models for the modified-release oral formulations. In vitro kinetic study revealed a complex mechanism of release occurring in two steps of drug release, the first step (0-2 h) and the second (2-36 h). Two factors were calculated to assess the release profile of chlorzoxazone: f1-the similarity factor, and f2-the factor difference. The results have shown that both Kollidon®SR and chitosan may be used as matrix-forming agents when combined with chlorzoxazone. The three formulations showed optima pharmaco-technical properties and in vitro kinetic behavior; therefore, they have tremendous potential to be used in oral pharmaceutical products for the controlled delivery of chlorzoxazone. In vitro dissolution tests revealed a faster drug release for the F2b sample.


Chitosan , Chlorzoxazone , Delayed-Action Preparations , Drug Liberation , Hydrophobic and Hydrophilic Interactions , Tablets , Tablets/chemistry , Chlorzoxazone/chemistry , Chlorzoxazone/pharmacokinetics , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacokinetics , Chitosan/chemistry , Solubility , Excipients/chemistry , Chemistry, Pharmaceutical/methods
7.
Int J Mol Sci ; 25(10)2024 May 13.
Article En | MEDLINE | ID: mdl-38791364

The use of natural active substances and the development of new formulations are promising directions in the cosmetic and pharmacy industries. The primary purpose of this research was the production of microparticles based on whey protein isolate (WPI) and calcium alginate (ALG) containing Calendula officinalis flower extract and their incorporation into films composed of gelatin, WPI, and glycerol. Both swollen and dry microparticles were studied by optical microscopy and their sizes were measured. Water absorption by the microparticles, their loading capacity, and the release profile of flower extract were also characterized. The films were analyzed by mechanical tests (Young's modulus, tensile strength, elongation at break), swelling capacity, contact angle, and moisture content measurements. The presented data showed that the active ingredient was successfully enclosed in spherical microparticles and completely released after 75 min of incubation at 37 °C. The incorporation of the microparticles into polymer films caused a decrease in stiffness and tensile strength, simultaneously increasing the ductility of the samples. Moreover, the films containing microparticles displayed higher swelling ability and moisture content compared to those without them. Hence, the materials prepared in this study with Calendula officinalis flower extract encapsulated into polymeric microspheres can be a starting point for the development of new products intended for skin application; advantages include protection of the extract against external factors and a controlled release profile.


Calendula , Delayed-Action Preparations , Flowers , Plant Extracts , Tensile Strength , Whey Proteins , Calendula/chemistry , Flowers/chemistry , Plant Extracts/chemistry , Whey Proteins/chemistry , Delayed-Action Preparations/chemistry , Alginates/chemistry , Gelatin/chemistry , Microspheres
8.
Langmuir ; 40(21): 10992-11010, 2024 May 28.
Article En | MEDLINE | ID: mdl-38743441

The exploration of environmentally friendly, less toxic, sustained-release insecticide is increasing with the growing demand for food to meet the requirements of the expanding population. As a sustained-release carrier, the unique, environmentally friendly intelligent responsive hydrogel system is an important factor in improving the efficiency of insecticide utilization and accurate release. In this study, we developed a facile approach for incorporating the natural compound rosin (dehydroabietic acid, DA) and zinc ions (Zn2+) into a poly(N-isopropylacrylamide) (PNIPAM) hydrogel network to construct a controlled-release hydrogel carrier (DA-PNIPAM-Zn2+). Then, the model insecticide avermectin (AVM) was encapsulated in the carrier at a drug loading rate of 36.32% to form AVM@DA-PNIPAM-Zn2+. Surprisingly, the smart controlled carrier exhibited environmental responsiveness, strongly enhanced mechanical properties, self-healing ability, hydrophobicity, and photostability to ensure a balance between environmental friendliness and the precision of the drug release. The release experiments showed that the carboxyl and amide groups in the polymer chains alter the intermolecular forces within the hydrogel meshes and ingredient diffusion by changing temperatures (25 and 40 °C) and pH values (5.8, 7.4, and 8.5), leading to different release behaviors. The insecticidal activity of the AVM@DA-PNIPAM-Zn2+ against oriental armyworms was good, with an effective minimum toxicity toward aquatic animals. Therefore, AVM@DA-PNIPAM-Zn2+ is an effective drug delivery system against oriental armyworms. We anticipate that this ecofriendly, sustainable, smart-response carrier may broaden the utilization rosin and its possible applications in the agricultural sector.


Drug Carriers , Hydrogels , Insecticides , Ivermectin , Resins, Plant , Ivermectin/analogs & derivatives , Ivermectin/chemistry , Ivermectin/pharmacology , Ivermectin/toxicity , Hydrogels/chemistry , Hydrogels/pharmacology , Animals , Hydrogen-Ion Concentration , Insecticides/chemistry , Insecticides/pharmacology , Resins, Plant/chemistry , Drug Carriers/chemistry , Temperature , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacology , Drug Liberation , Moths/drug effects , Rosaceae/chemistry , Zinc/chemistry , Zinc/pharmacology , Acrylic Resins
9.
Biomaterials ; 309: 122584, 2024 Sep.
Article En | MEDLINE | ID: mdl-38735180

Inflammatory bowel disease (IBD) is a kind of auto-immune disease characterized by disrupted intestinal barrier and mucosal epithelium, imbalanced gut microbiome and deregulated immune responses. Therefore, the restoration of immune equilibrium and gut microbiota could potentially serve as a hopeful approach for treating IBD. Herein, the oral probiotic Escherichia coli Nissle 1917 (ECN) was genetically engineered to express secretable interleukin-2 (IL-2), a kind of immunomodulatory agent, for the treatment of IBD. In our design, probiotic itself has the ability to regulate the gut microenvironment and IL-2 at low dose could selectively promote the generation of regulatory T cells to elicit tolerogenic immune responses. To improve the bioavailability of ECN expressing IL-2 (ECN-IL2) in the gastrointestinal tract, enteric coating Eudragit L100-55 was used to coat ECN-IL2, achieving significantly enhanced accumulation of engineered probiotics in the intestine. More importantly, L100-55 coated ECN-IL2 could effectively activated Treg cells to regulate innate immune responses and gut microbiota, thereby relieve inflammation and repair the colon epithelial barrier in dextran sodium sulfate (DSS) induced IBD. Therefore, genetically and chemically modified probiotics with excellent biocompatibility and efficiency in regulating intestinal microflora and intestinal inflammation show great potential for IBD treatment in the future.


Delayed-Action Preparations , Inflammatory Bowel Diseases , Interleukin-2 , Probiotics , T-Lymphocytes, Regulatory , Probiotics/administration & dosage , Inflammatory Bowel Diseases/therapy , Animals , Administration, Oral , Interleukin-2/metabolism , Delayed-Action Preparations/chemistry , T-Lymphocytes, Regulatory/immunology , Escherichia coli , Mice, Inbred C57BL , Humans , Gastrointestinal Microbiome , Mice , Polymethacrylic Acids/chemistry
10.
Food Chem ; 452: 139588, 2024 Sep 15.
Article En | MEDLINE | ID: mdl-38754168

In this study, sodium alginate/ soy protein isolate (SPI) microgels cross-linked by various divalent cations including Cu2+, Ba2+, Ca2+, and Zn2+ were fabricated. Cryo-scanning electron microscopy observations revealed distinctive structural variations among the microgels. In the context of gastric pH conditions, the degree of shrinkage of the microgels followed the sequence of Ca2+ > Ba2+ > Cu2+ > Zn2+. Meanwhile, under intestinal pH conditions, the degree of swelling was ranked as Zn2+ > Ca2+ > Ba2+ > Cu2+. The impact of these variations was investigated through in vitro digestion studies, revealing that all microgels successfully delayed the release of ß-carotene within the stomach. Within the simulated intestinal fluid, the microgel cross-linked with Zn2+ exhibited an initial burst release, while those cross-linked with Cu2+, Ba2+, or Ca2+ displayed a sustained release pattern. This research underscores the potential of sodium alginate/SPI microgels cross-linked with different divalent cations as efficient controlled-release delivery systems.


Alginates , Delayed-Action Preparations , Microgels , Soybean Proteins , Alginates/chemistry , Soybean Proteins/chemistry , Delayed-Action Preparations/chemistry , Microgels/chemistry , Hydrogen-Ion Concentration , beta Carotene/chemistry , Cations, Divalent/chemistry
11.
Food Chem ; 452: 139533, 2024 Sep 15.
Article En | MEDLINE | ID: mdl-38705119

Encapsulating enzymes in metal-organic frameworks is a common practice to improve enzyme stability against harsh conditions. However, the synthesis of enzyme@MOFs has been primarily limited to small-scale laboratory settings, hampering their industrial applications. Spray drying is a scalable and cost-effective technology, which has been frequently used in industry for large-scale productions. Despite these advantages, its potential for encapsulating enzymes in MOFs remains largely unexplored, due to challenges such as nozzle clogging from MOF particle formation, utilization of toxic organic solvents, controlled release of encapsulated enzymes, and high temperatures that could compromise enzyme activity. Herein, we present a novel approach for preparing phytase@MIL-88 A using solvent-free spray drying. This involves atomizing two MOF precursor solutions separately using a three-fluid nozzle, with enzyme release controlled by manipulating defects within the MOFs. The physicochemical properties of the spray dried particles are characterized using X-ray diffraction, Fourier-transform infrared spectroscopy, and scanning electron microscopy. Leveraging the efficiency and scalability of spray drying in industrial production, this scalable encapsulation technique holds considerable promise for broad industrial applications.


6-Phytase , Delayed-Action Preparations , Enzyme Stability , Metal-Organic Frameworks , Metal-Organic Frameworks/chemistry , 6-Phytase/chemistry , 6-Phytase/metabolism , Delayed-Action Preparations/chemistry , Spray Drying , Enzymes, Immobilized/chemistry , Desiccation , Particle Size , Drug Compounding/methods , Drug Compounding/instrumentation
12.
Int J Pharm ; 658: 124207, 2024 Jun 10.
Article En | MEDLINE | ID: mdl-38718971

The application of three-dimensional printing (3DP) in the pharmaceutical industry brings a broad spectrum of benefits to patients by addressing individual needs and improve treatment success. This study investigates the sustained release properties of 3DP tablets containing Theophylline (TPH), which is commonly used to treat respiratory diseases and recently having a comeback due to its potential in the treatment of conditions like Covid-19. Since TPH is a narrow therapeutic window (NTW) drug with serious side effects in the event of overdose, the release properties must be observed particularly closely. We employed a state-of-the-art single screw extrusion 3D printer, which is fed with granules containing the drug. By employing a Taguchi orthogonal array design of experiments (DOE), tablet design parameters and factor related process stability were sought to be evaluated fundamentally. Following this, examinations regarding tailored TPH dosages were undertaken and a relationship between the real printed dose of selected tablet designs and their sustained drug release was established. The release profiles were analyzed using different mathematical model fits and compared in terms of mean dissolution times (MDT). Finally, in-vivo/in-vitro correlation (IVIVC) and physiologically based pharmacokinetic (PBPK) modeling showed that a paradigm patient group could be covered with the dosage forms produced.


Delayed-Action Preparations , Drug Liberation , Printing, Three-Dimensional , Tablets , Theophylline , Theophylline/chemistry , Theophylline/administration & dosage , Theophylline/pharmacokinetics , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacokinetics , Humans , Drug Compounding/methods , Bronchodilator Agents/administration & dosage , Bronchodilator Agents/pharmacokinetics , Bronchodilator Agents/chemistry
13.
Int J Pharm ; 658: 124215, 2024 Jun 10.
Article En | MEDLINE | ID: mdl-38740104

This study focuses on the combination of three-dimensional printing (3DP) and amorphous solid dispersion (ASD) technologies for the manufacturing of gastroretentive floating tablets. Employing hot melt extrusion (HME) and fused deposition modeling (FDM), the study investigates the development of drug-loaded filaments and 3D printed (3DP) tablets containing felodipine as model drug and hydroxypropyl methylcellulose (HPMC) as the polymeric carrier. Prior to fabrication, solubility parameter estimation and molecular dynamics simulations were applied to predict drug-polymer interactions, which are crucial for ASD formation. Physical bulk and surface characterization complemented the quality control of both drug-loaded filaments and 3DP tablets. The analysis confirmed a successful amorphous dispersion of felodipine within the polymeric matrix. Furthermore, the low infill percentage and enclosed design of the 3DP tablet allowed for obtaining low-density systems. This structure resulted in buoyancy during the entire drug release process until a complete dissolution of the 3DP tablets (more than 8 h) was attained. The particular design made it possible for a single polymer to achieve a zero-order controlled release of the drug, which is considered the ideal kinetics for a gastroretentive system. Accordingly, this study can be seen as an advancement in ASD formulation for 3DP technology within pharmaceutics.


Drug Liberation , Felodipine , Hypromellose Derivatives , Printing, Three-Dimensional , Solubility , Tablets , Felodipine/chemistry , Felodipine/administration & dosage , Hypromellose Derivatives/chemistry , Drug Compounding/methods , Molecular Dynamics Simulation , Drug Carriers/chemistry , Delayed-Action Preparations/chemistry , Chemistry, Pharmaceutical/methods , Hot Melt Extrusion Technology/methods , Technology, Pharmaceutical/methods
14.
Biomed Mater ; 19(4)2024 May 30.
Article En | MEDLINE | ID: mdl-38772383

The traditional chemotherapeutic agents' disadvantages such as high toxicity, untargeting and poor water solubility lead to disappointing chemotherapy effects, which restricts its clinical application. In this work, novel size-appropriate and glutathione (GSH)-responsive nano-hydrogels were successfully prepared via the active ester method between chitosan (containing -NH2) and cross-linker (containing NHS). Especially, the cross-linker was elaborately designed to possess a disulfide linkage (SS) as well as two terminal NHS groups, namely NHS-SS-NHS. These functionalities endowed chitosan-based cross-linked scaffolds with capabilities for drug loading and delivery, as well as a GSH-responsive mechanism for drug release. The prepared nano-hydrogels demonstrated excellent performance applicable morphology, excellent drug loading efficiency (∼22.5%), suitable size (∼100 nm) and long-term stability. The prepared nano-hydrogels released over 80% doxorubicin (DOX) after incubation in 10 mM GSH while a minimal DOX release less than 25% was tested in normal physiological buffer (pH = 7.4). The unloaded nano-hydrogels did not show any apparent cytotoxicity to A 549 cells. In contrast, DOX-loaded nano-hydrogels exhibited marked anti-tumor activity against A 549 cells, especially in high GSH environment. Finally, through fluorescent imaging and flow cytometry analysis, fluorescein isothiocyanate-labeled nano-hydrogels show obvious specific binding to the GSH high-expressing A549 cells and nonspecific binding to the GSH low-expressing A549 cells. Therefore, with this cross-linking approach, our present finding suggests that cross-linked chitosan nano-hydrogel drug carrier improves the anti-tumor effect of the A 549 cells and may serve as a potential injectable delivery carrier.


Antineoplastic Agents , Chitosan , Cross-Linking Reagents , Doxorubicin , Glutathione , Hydrogels , Chitosan/chemistry , Humans , Doxorubicin/pharmacology , Doxorubicin/chemistry , Glutathione/chemistry , Glutathione/metabolism , Hydrogels/chemistry , Cross-Linking Reagents/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Survival/drug effects , Drug Liberation , Cell Line, Tumor , A549 Cells , Drug Carriers/chemistry , Drug Delivery Systems , Disulfides/chemistry , Delayed-Action Preparations/chemistry
15.
J Nanobiotechnology ; 22(1): 287, 2024 May 26.
Article En | MEDLINE | ID: mdl-38797862

Periodontitis is a prevalent chronic inflammatory disease, which leads to gradual degradation of alveolar bone. The challenges persist in achieving effective alveolar bone repair due to the unique bacterial microenvironment's impact on immune responses. This study explores a novel approach utilizing Metal-Organic Frameworks (MOFs) (comprising magnesium and gallic acid) for promoting bone regeneration in periodontitis, which focuses on the physiological roles of magnesium ions in bone repair and gallic acid's antioxidant and immunomodulatory properties. However, the dynamic oral environment and irregular periodontal pockets pose challenges for sustained drug delivery. A smart responsive hydrogel system, integrating Carboxymethyl Chitosan (CMCS), Dextran (DEX) and 4-formylphenylboronic acid (4-FPBA) was designed to address this problem. The injectable self-healing hydrogel forms a dual-crosslinked network, incorporating the MOF and rendering its on-demand release sensitive to reactive oxygen species (ROS) levels and pH levels of periodontitis. We seek to analyze the hydrogel's synergistic effects with MOFs in antibacterial functions, immunomodulation and promotion of bone regeneration in periodontitis. In vivo and in vitro experiment validated the system's efficacy in inhibiting inflammation-related genes and proteins expression to foster periodontal bone regeneration. This dynamic hydrogel system with MOFs, shows promise as a potential therapeutic avenue for addressing the challenges in bone regeneration in periodontitis.


Bone Regeneration , Chitosan , Drug Delivery Systems , Hydrogels , Metal-Organic Frameworks , Periodontitis , Periodontitis/drug therapy , Hydrogels/chemistry , Bone Regeneration/drug effects , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Animals , Chitosan/chemistry , Chitosan/analogs & derivatives , Mice , Drug Delivery Systems/methods , Dextrans/chemistry , Male , Reactive Oxygen Species/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Delayed-Action Preparations/chemistry , Humans
16.
ACS Biomater Sci Eng ; 10(5): 3425-3437, 2024 May 13.
Article En | MEDLINE | ID: mdl-38622760

Triple-negative breast cancer (TNBC) lacks expressed protein targets, making therapy development challenging. Hydrogels offer a promising new route in this regard by improving the chemotherapeutic efficacy through increased solubility and sustained release. Moreover, subcutaneous hydrogel administration reduces patient burden by requiring less therapy and shorter treatment times. We recently established the design principles for the supramolecular assembly of single-domain coiled-coils into hydrogels. Using a modified computational design algorithm, we designed Q8, a hydrogel with rapid assembly for faster therapeutic hydrogel preparation. Q8 encapsulates and releases doxorubicin (Dox), enabling localized sustained release via subcutaneous injection. Remarkably, a single subcutaneous injection of Dox-laden Q8 (Q8•Dox) significantly suppresses tumors within just 1 week. This work showcases the bottom-up engineering of a fully protein-based drug delivery vehicle for improved TBNC treatment via noninvasive localized therapy.


Delayed-Action Preparations , Doxorubicin , Hydrogels , Triple Negative Breast Neoplasms , Doxorubicin/pharmacology , Doxorubicin/administration & dosage , Doxorubicin/chemistry , Doxorubicin/therapeutic use , Hydrogels/chemistry , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Female , Humans , Animals , Delayed-Action Preparations/chemistry , Cell Line, Tumor , Protein Engineering , Mice , Drug Liberation , Antibiotics, Antineoplastic/administration & dosage , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/therapeutic use , Antibiotics, Antineoplastic/chemistry
17.
Theranostics ; 14(6): 2637-2655, 2024.
Article En | MEDLINE | ID: mdl-38646642

Rationale: To meet the need of long-acting analgesia in postoperative pain management, slow-releasing formulations of local anesthetics (LAs) have been extensively investigated. However, challenges still remain in obtaining such formulations in a facile and cost-effective way, and a mechanism for controlling the release rate to achieve an optimal duration is still missing. Methods: In this study, nanosheets formed by a self-assembling peptide were used to encapsulate ropivacaine in a soft-coating manner. By adjusting the ratio between the peptide and ropivacaine, ropivacaine particles with different size were prepared. Releasing profile of particles with different size were studied in vitro and in vivo. The influence of particle size and ropivacaine concentration on effective duration and toxicity were evaluated in rat models. Results: Our results showed that drug release rate became slower as the particle size increased, with particles of medium size (2.96 ± 0.04 µm) exhibiting a moderate release rate and generating an optimal anesthetic duration. Based on this size, formulations at different ropivacaine concentrations generated anesthetic effect with different durations in rat sciatic nerve block model, with the 6% formulation generated anesthetic duration of over 35 h. Long-acting analgesia up to 48 h of this formulation was also confirmed in a rat total knee arthroplasty model. Conclusion: This study provided a facile strategy to prepare LA particles of different size and revealed the relationship between particle size, release rate and anesthetic duration, which provided both technical and theoretical supports for developing long-acting LA formulations with promising clinical application.


Anesthetics, Local , Nanoparticles , Particle Size , Peptides , Ropivacaine , Ropivacaine/administration & dosage , Ropivacaine/chemistry , Ropivacaine/pharmacokinetics , Animals , Anesthetics, Local/administration & dosage , Anesthetics, Local/chemistry , Rats , Nanoparticles/chemistry , Peptides/chemistry , Peptides/administration & dosage , Pain, Postoperative/drug therapy , Rats, Sprague-Dawley , Male , Analgesia/methods , Delayed-Action Preparations/chemistry , Drug Liberation , Amides/chemistry , Amides/administration & dosage , Sciatic Nerve/drug effects , Disease Models, Animal
18.
Acta Biomater ; 180: 423-435, 2024 May.
Article En | MEDLINE | ID: mdl-38641183

Communication between tumors and lymph nodes carries substantial significance for antitumor immunotherapy. Remodeling the immune microenvironment of tumor-draining lymph nodes (TdLN) plays a key role in enhancing the anti-tumor ability of immunotherapy. In this study, we constructed a biomimetic artificial lymph node structure composed of F127 hydrogel loading effector memory T (TEM) cells and PD-1 inhibitors (aPD-1). The biomimetic lymph nodes facilitate the delivery of TEM cells and aPD-1 to the TdLN and the tumor immune microenvironment, thus realizing effective and sustained anti-tumor immunotherapy. Exploiting their unique gel-forming and degradation properties, the cold tumors were speedily transformed into hot tumors via TEM cell supplementation. Meanwhile, the efficacy of aPD-1 was markedly elevated compared with conventional drug delivery methods. Our finding suggested that the development of F127@TEM@aPD-1 holds promising potential as a future novel clinical drug delivery technique. STATEMENT OF SIGNIFICANCE: F127@TEM@aPD-1 show unique advantages in cancer treatment. When injected subcutaneously, F127@TEM@aPD-1 can continuously supplement TEM cells and aPD-1 to tumor draining lymph nodes (TdLN) and the tumor microenvironment, not only improving the efficacy of ICB therapy through slow release, but also exhibiting dual regulatory effects on the tumor and TdLN.


Delayed-Action Preparations , Hydrogels , Lymph Nodes , Memory T Cells , Programmed Cell Death 1 Receptor , Animals , Hydrogels/chemistry , Hydrogels/pharmacology , Lymph Nodes/drug effects , Lymph Nodes/pathology , Lymph Nodes/immunology , Mice , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Memory T Cells/drug effects , Memory T Cells/immunology , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacology , Delayed-Action Preparations/pharmacokinetics , Tumor Microenvironment/drug effects , Cell Line, Tumor , Immune Checkpoint Inhibitors/pharmacology , Immunotherapy/methods , Female , Mice, Inbred C57BL , Humans
19.
Food Chem ; 448: 139167, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38574718

Cyclodextrin-based metal-organic framework (CD-MOF) has been widely used in various delivery systems due to its excellent edibility and high drug loading capacity. However, its typically bulky size and high brittleness in aqueous solutions pose significant challenges for practical applications. Here, we proposed an ultrasonic-assisted method for rapid synthesis of uniformly-sized nanoscale CD-MOF, followed by its hydrophobic modification through ester bond cross-linking (Nano-CMOF). Proper ultrasound treatment effectively reduced particle size to nanoscale (393.14 nm). Notably, carbonate ester cross-linking method significantly improved water stability without altering its cubic shape and high porosity (1.3 cm3/g), resulting in a retention rate exceeding 90% in various media. Furthermore, the loading of quercetin did not disrupt cubic structure and showcased remarkable storage stability. Nano-CMOF achieved controlled release of quercetin in both aqueous environments and digestion. Additionally, Nano-CMOF demonstrated exceptional antioxidant (free radical scavenging 82.27%) and biocompatibility, indicating its significant potential as novel nutritional delivery systems in food and biomedical fields.


Cyclodextrins , Delayed-Action Preparations , Drug Carriers , Hydrophobic and Hydrophilic Interactions , Metal-Organic Frameworks , Quercetin , Quercetin/chemistry , Metal-Organic Frameworks/chemistry , Cyclodextrins/chemistry , Drug Carriers/chemistry , Delayed-Action Preparations/chemistry , Nanoparticles/chemistry , Biocompatible Materials/chemistry , Particle Size , Humans , Drug Stability
20.
Molecules ; 29(8)2024 Apr 09.
Article En | MEDLINE | ID: mdl-38675519

The massive amount of water-soluble urea used leads to nutrient loss and environmental pollution in both water and soil. The aim of this study was to develop a novel lignin-based slow-release envelope material that has essential nitrogen and sulfur elements for plants. After the amination reaction with a hydrolysate of yak hair keratin, the coating formulation was obtained by adding different loadings (2, 5, 8, 14 wt%) of aminated lignin (AL) to 5% polyvinyl alcohol (PVA) solution. These formulations were cast into films and characterized for their structure, thermal stability, and mechanical and physicochemical properties. The results showed that the PVA-AL (8%) formulation had good physical and chemical properties in terms of water absorption and mechanical properties, and it showed good degradation in soil with 51% weight loss after 45 days. It is suitable for use as a coating material for fertilizers. Through high-pressure spraying technology, enveloped urea particles with a PVA-AL (8%) solution were obtained, which showed good morphology and slow-release performance. Compared with urea, the highest urea release was only 96.4% after 30 days, conforming to Higuchi model, Ritger-Peppas model, and second-order dynamic model. The continuous nitrogen supply of PVA-AL coated urea to Brassica napus was verified by potting experiments. Therefore, the lignin-based composite can be used as a coating material to produce a new slow-release nitrogen fertilizer for sustainable crop production.


Lignin , Polyvinyl Alcohol , Urea , Lignin/chemistry , Polyvinyl Alcohol/chemistry , Urea/chemistry , Delayed-Action Preparations/chemistry , Fertilizers , Polymers/chemistry
...