Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 336
Filter
1.
BMC Infect Dis ; 24(1): 688, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987682

ABSTRACT

BACKGROUND: Dengue fever has become a significant worldwide health concern, because of its high morbidity rate and the potential for an increase in mortality rates due to lack of adequate treatment. There is an immediate need for the development of effective medication for dengue fever. METHODS: Homology modeling of dengue virus (DENV) non-structural 4B (NS4B) protein was performed by SWISS-MODEL to predict the 3D structure of the protein. Structure validation was conducted using PROSA, PROCHECK, Ramachandran plot, and VERIFY-3D. MOE software was used to find out the in-Silico inhibitory potential of the five triterpenoids against the DENV-NS4B protein. RESULTS: The SWISS-MODEL was employed to predict the three-dimensional protein structure of the NS4B protein. Through molecular docking, it was found that the chosen triterpenoid NS4B protein had a high binding affinity interaction. It was observed that the NS4B protein binding energy for 15-oxoursolic acid, betulinic acid, ursolic acid, lupeol, and 3-o-acetylursolic acid were - 7.18, - 7.02, - 5.71, - 6.67 and - 8.00 kcal/mol, respectively. CONCLUSIONS: NS4B protein could be a promising target which showed good interaction with tested triterpenoids which can be developed as a potential antiviral drug for controlling dengue virus pathogenesis by inhibiting viral replication. However, further investigations are necessary to validate and confirm their efficacy.


Subject(s)
Antiviral Agents , Dengue Virus , Molecular Docking Simulation , Triterpenes , Viral Nonstructural Proteins , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Triterpenes/pharmacology , Triterpenes/chemistry , Dengue Virus/drug effects , Dengue Virus/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Protein Binding , Humans , Dengue/virology , Dengue/drug therapy , Protein Conformation , Membrane Proteins
2.
Antiviral Res ; 227: 105915, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38777094

ABSTRACT

The genus of flavivirus includes many mosquito-borne human pathogens, such as Zika (ZIKV) and the four serotypes of dengue (DENV1-4) viruses, that affect billions of people as evidenced by epidemics and endemicity in many countries and regions in the world. Among the 10 viral proteins encoded by the viral genome, the nonstructural protein 1 (NS1) is the only secreted protein and has been used as a diagnostic biomarker. NS1 has also been an attractive target for its biotherapeutic potential as a vaccine antigen. This review focuses on the recent advances in the structural landscape of the secreted NS1 (sNS1) and its complex with monoclonal antibodies (mAbs). NS1 forms an obligatory dimer, and upon secretion, it has been reported to be hexametric (trimeric dimers) that could dissociate and bind to the epithelial cell membrane. However, high-resolution structural information has been missing about the high-order oligomeric states of sNS1. Several cryoEM studies have since shown that DENV and ZIKV recombinant sNS1 (rsNS1) are in dynamic equilibrium of dimer-tetramer-hexamer states, with tetramer being the predominant form. It was recently revealed that infection-derived sNS1 (isNS1) forms a complex of the NS1 dimer partially embedded in a High-Density Lipoprotein (HDL) particle. Structures of NS1 in complexes with mAbs have also been reported which shed light on their protective roles during infection. The biological significance of the diversity of NS1 oligomeric states remains to be further studied, to inform future research on flaviviral pathogenesis and the development of therapeutics and vaccines. Given the polymorphism of flavivirus NS1 across sample types with variations in antigenicity, we propose a nomenclature to accurately define NS1 based on the localization and origin.


Subject(s)
Antibodies, Monoclonal , Antibodies, Viral , Flavivirus , Viral Nonstructural Proteins , Viral Nonstructural Proteins/immunology , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics , Humans , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/chemistry , Antibodies, Viral/immunology , Flavivirus/immunology , Flavivirus/chemistry , Flavivirus/genetics , Animals , Zika Virus/immunology , Zika Virus/genetics , Zika Virus/chemistry , Dengue Virus/immunology , Dengue Virus/genetics , Dengue Virus/chemistry , Protein Multimerization , Protein Conformation
3.
Bioconjug Chem ; 35(1): 34-42, 2024 01 17.
Article in English | MEDLINE | ID: mdl-37964742

ABSTRACT

Multivalent glycodendrimers are valuable tools for studying carbohydrate-protein interactions, and their scaffolds represent important components to increase specificity and affinity. Previous work by our group described the preparation of a tetravalent glucuronic acid rigid dendron that binds with good affinity to the dengue virus envelope protein (KD = 22 µM). Herein, the chemical synthesis and binding analysis of three new sets of rigid, semirigid, and flexible glucuronic acid-based dendrimers bearing different levels of multivalency and their interactions with the dengue virus envelope protein are described. The different oligoalkynyl scaffolds were coupled to glucuronic acid azides by a copper-catalyzed azide-alkyne cycloaddition reaction through optimized synthetic strategies to afford the desired glycodendrimers with good yields. Surface plasmon resonance studies have demonstrated that glycodendrimers 12b and 12c, with flexible scaffolds, give the best binding interactions with the dengue virus envelope protein (12b: KD = 0.487 µM and 12c: KD = 0.624 µM). Their binding constant values were 45 and 35 times higher than the one obtained in previous studies with a rigid tetravalent glucuronic acid dendron (KD = 22 µM), respectively. Molecular modeling studies were carried out in order to understand the difference in behavior observed for 12b and 12c. This work reports an efficient glycodendrimer chemical synthesis process that provides an appropriate scaffold that offers an easy and versatile strategy to find new active compounds against the dengue virus.


Subject(s)
Dendrimers , Dengue Virus , Dengue , Humans , Dengue Virus/chemistry , Glucuronic Acid , Viral Envelope Proteins/chemistry , Dendrimers/chemistry
4.
mSystems ; 9(1): e0097323, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38112462

ABSTRACT

Dengue fever is a mosquito-borne tropical disease caused by the dengue virus (DENV). The replication of DENV relies on the processing of its genome-encoded polyprotein by both viral protease NS3 (NS3pro) and host proteases. However, the impact of host proteases on DENV proliferation is not well understood. In this study, we utilized fluorophosphonate-based probes (FPs) to investigate the up-regulation of host serine proteases during DENV infection in detail. Among the identified proteases, acyl-CoA thioesterase 2 (ACOT2), an enzyme that hydrolyzes acyl-CoA molecules to generate fatty acids and free CoA, exhibited cleavage activity against DENV polypeptide substrates. Enzymatic assays and virological experiments confirmed that ACOT2 contributes to DENV propagation during the replication stage by cleaving the viral polyprotein. Docking models provided insights into the binding pocket of viral polypeptides and the catalytic mechanism of ACOT2. Notably, this study is the first to demonstrate that ACOT2 functions as a serine protease to hydrolyze protein substrates. These findings offer novel insights into DENV infection, host response, as well as the potential development of innovative antiviral strategies.IMPORTANCEDENV, one of the major pathogens of Dengue fever, remains a significant public health concern in tropical and subtropical regions worldwide. How DENV efficiently hijacks the host and accesses its life cycle with delicate interaction remains to be elucidated. Here, we deconvoluted that the host protease ACOT2 assists the DENV replication and characterized the ACOT2 as a serine protease involved in the hydrolysis of the DENV polypeptide substrate. Our results not only further the understanding of the DENV life cycle but also provide a possibility for the usage of activity-based proteomics to reveal host-virus interactions.


Subject(s)
Dengue Virus , Dengue , Animals , Humans , Dengue Virus/chemistry , Serine Proteases , Polyproteins , Serine Endopeptidases/chemistry , Dengue/metabolism , Peptides , Cell Proliferation , Thiolester Hydrolases
5.
Antiviral Res ; 220: 105753, 2023 12.
Article in English | MEDLINE | ID: mdl-37967754

ABSTRACT

Dengue infection is a global health problem as climate change facilitates the spread of mosquito vectors. Infected patients could progress to severe plasma leakage and hemorrhagic shock, where current standard treatment remains supportive. Previous reports suggested that several flavonoid derivatives inhibited mosquito-borne flaviviruses. This work aimed to explore sulfonamide chalcone derivatives as dengue inhibitors and to identify molecular targets. We initially screened 27 sulfonamide chalcones using cell-based antiviral and cytotoxic screenings. Two potential compounds, SC22 and SC27, were identified with DENV1-4 EC50s in the range of 0.71-0.94 and 3.15-4.46 µM, and CC50s at 14.63 and 31.02 µM, respectively. The compounds did not show any elevation in ALT or Cr in C57BL/6 mice on the 1st, 3rd, and 7th days after being administered intraperitoneally with 50 mg/kg SC22 or SC27 in a single dose. Moreover, the SAM-binding site of NS5 methyltransferase was a potential target of SC27 identified by computational and enzyme-based assays. The main target of SC22 was in a late stage of viral replication, but the exact target molecule had yet to be identified. In summary, a sulfonamide chalcone, SC27, was a potential DENV inhibitor that targeted viral methyltransferase. Further investigation should be the study of the structure-activity relationship of SC27 derivatives for higher potency and lower toxicity.


Subject(s)
Chalcone , Chalcones , Dengue Virus , Dengue , Humans , Animals , Mice , Dengue Virus/chemistry , Chalcone/pharmacology , Chalcone/therapeutic use , Chalcones/pharmacology , Methyltransferases , Mice, Inbred C57BL , Binding Sites , Dengue/drug therapy , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , Antiviral Agents/therapeutic use , Viral Nonstructural Proteins , Virus Replication
6.
Virology ; 586: 12-22, 2023 09.
Article in English | MEDLINE | ID: mdl-37473502

ABSTRACT

Dengue viruses are human pathogens that are transmitted through mosquitoes. Apart from the typical symptoms associated with viral fevers, DENV infections are known to cause several neurological complications such as meningitis, encephalitis, intracranial haemorrhage, retinopathies along with the more severe, and sometimes fatal, vascular leakage and dengue shock syndrome. This study was designed to investigate, in detail, the predicted viral protein aggregation prone regions among all serotypes. Further, in order to understand the cross-talk between viral protein aggregation and aggregation of cellular proteins, cross-seeding experiments between the DENV NS1 (1-30), corresponding to the ß-roll domain and the diabetes hallmark protein, amylin, were performed. Various techniques such as fluorescence spectroscopy, circular dichroism, atomic force microscopy and immunoblotting have been employed for this. We observe that the DENV proteomes have many predicted APRs and the NS1 (1-30) of DENV1-3, 2K and capsid anchor of DENV2 and DENV4 are capable of forming amyloids, in vitro. Further, the DENV NS1 (1-30), aggregates are also able to cross-seed and enhance amylin aggregation and vice-versa. This knowledge may lead to an opportunity for designing suitable inhibitors of protein aggregation that may be beneficial for viral infections and comorbidities.


Subject(s)
Dengue Virus , Viral Proteins , Dengue Virus/chemistry , Dengue Virus/classification , Proteome , Viral Proteins/chemistry , Viral Proteins/metabolism , Islet Amyloid Polypeptide/metabolism , Protein Aggregates , Humans , Dengue/metabolism , Dengue/pathology , Dengue/virology , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology
7.
Biotechnol Bioeng ; 120(9): 2658-2671, 2023 09.
Article in English | MEDLINE | ID: mdl-37058415

ABSTRACT

Vaccine development against dengue virus is challenging because of the antibody-dependent enhancement of infection (ADE), which causes severe disease. Consecutive infections by Zika (ZIKV) and/or dengue viruses (DENV), or vaccination can predispose to ADE. Current vaccines and vaccine candidates contain the complete envelope viral protein, with epitopes that can raise antibodies causing ADE. We used the envelope dimer epitope (EDE), which induces neutralizing antibodies that do not elicit ADE, to design a vaccine against both flaviviruses. However, EDE is a discontinuous quaternary epitope that cannot be isolated from the E protein without other epitopes. Utilizing phage display, we selected three peptides that mimic the EDE. Free mimotopes were disordered and did not elicit an immune response. After their display on adeno-associated virus (AAV) capsids (VLP), they recovered their structure and were recognized by an EDE-specific antibody. Characterization by cryo-EM and enzyme-linked immunosorbent assay confirmed the correct display of a mimotope on the surface of the AAV VLP and its recognition by the specific antibody. Immunization with the AAV VLP displaying one of the mimotopes induced antibodies that recognized ZIKV and DENV. This work provides the basis for developing a Zika and dengue virus vaccine candidate that will not induce ADE.


Subject(s)
Dengue Virus , Dengue , Vaccines , Zika Virus Infection , Zika Virus , Humans , Zika Virus Infection/prevention & control , Dengue Virus/chemistry , Dengue/prevention & control , Antibodies, Viral , Viral Envelope Proteins/chemistry , Antibodies, Neutralizing , Epitopes , Cross Reactions
8.
J Biomol Struct Dyn ; 41(23): 13993-14002, 2023.
Article in English | MEDLINE | ID: mdl-36970872

ABSTRACT

There is currently no drug available to treat mosquito-borne dengue. The C-terminal RNA-dependent RNA polymerase (RdRp) domain in the non-structural type 5 (NS5) protein of the dengue virus (DENV) is essential for viral RNA synthesis and replication, and therefore, it is an attractive target for the anti-dengue drug development. We report herein the discovery and validation of two novel non-nucleoside classes of small molecules as DENV RdRp inhibitors. Firstly, using the refined X-ray structure of the DENV NS5 RdRp domain (PDB-ID: 4V0R), we conducted docking, binding free-energy studies, and short-scale molecular dynamics simulation to investigate the binding sites of known small molecules that led to the optimized protein-ligand complex. Subsequently, protein structure-based screening of a commercial database (∼500,000 synthetic compounds), pre-filtered for the drug-likeness, led to the top-ranked 171 molecules, which was then subjected to structural diversity analysis and clustering. This process led to six structurally distinct and best-scored compounds that were procured from the commercial vendor, and then subjected to the in vitro testing in the MTT and dengue infection assays. It revealed two unique and structurally unique compounds, KKR-D-02 and KKR-D-03, exhibiting 84 and 81% reductions, respectively, in DENV copy number in repeated assays in comparison to the virus-infected cell controls. These active compounds represent novel scaffolds for further structure-based discovery of novel candidate molecules for the intervention of dengue.Communicated by Ramaswamy H. Sarma.


Subject(s)
Dengue Virus , Dengue , Animals , Dengue Virus/chemistry , Binding Sites , Dengue/drug therapy , Virus Replication , RNA-Dependent RNA Polymerase/chemistry , Antiviral Agents/chemistry , Viral Nonstructural Proteins/chemistry
9.
J Microbiol ; 61(1): 131-143, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36723792

ABSTRACT

Dengue virus (DENV), belonging to the family Flaviviridae, is the causative agent of dengue and comprises four serotypes. A second heterologous DENV infection is a critical risk factor for severe dengue, and no effective vaccine is available to prevent infection by all four DENV serotypes. Recombinant DENV vaccines are primarily based on the envelope proteins, prM and E. The E protein and its envelope domain III (EDIII) have been investigated as candidate antigens (Ags) for recombinant subunit vaccines. However, most EDIII-based Ags are monomers that do not display the cognate antigenic structure of E protein, which is essential for induction of virus-neutralizing immunity. Here, we developed recombinant DENV-2 envelope domain (r2ED) protein as an Ag that mimics the quaternary structure of E protein on the DENV surface. We confirmed that r2ED retained the conformational epitope displayed at the E-dimer interface, which reportedly exhibits broad virus-neutralizing capacity, without displaying the fusion loop epitope that causes antibody (Ab)-dependent enhancement. Furthermore, compared with EDIII alone, r2ED elicited stronger Ag-specific and cross-reactive neutralizing Ab and T cell-mediated immune responses in mice. This Ag-specific immunity was maintained at an elevated level 6 months after the last immunization, suggesting sustained Ag-specific immune memory. Taken together, these observations suggest that r2ED could be used to develop an improved subunit vaccine capable of inducing a broadly cross-reactive and long-lasting immune response against DENV infection.


Subject(s)
Dengue Virus , Dengue , Animals , Mice , Viral Envelope Proteins/genetics , Dengue Virus/genetics , Dengue Virus/chemistry , Antibodies, Neutralizing , Antibodies, Viral , Epitopes/genetics , Epitopes/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Immunity , Dengue/prevention & control
10.
Biomol NMR Assign ; 17(1): 23-26, 2023 06.
Article in English | MEDLINE | ID: mdl-36723824

ABSTRACT

Dengue virus belongs to the Flaviviridae family, being responsible for an endemic arboviral disease in humans. It is an enveloped virus, whose genome is a positive-stranded RNA packaged by the capsid protein. Dengue virus capsid protein (DENVC) forms homodimers in solution organized in 4 α-helices and an intrinsically disordered N-terminal region. The N-terminal region is involved in the binding of membranous structures in host cells and in the recognition of nucleotides. Here we report the 1H, 15N and 13C resonance assignments of the DENVC with the deletion of the first 19 intrinsically disordered residues. The backbone chemical shift perturbations suggest changes in the α1 and α2 helices between full length and the truncated proteins.


Subject(s)
Capsid Proteins , Dengue Virus , Humans , Capsid Proteins/chemistry , Dengue Virus/chemistry , Dengue Virus/genetics , Dengue Virus/metabolism , Nuclear Magnetic Resonance, Biomolecular , Protein Structure, Secondary , Protein Conformation, alpha-Helical
11.
J Biomol Struct Dyn ; 41(6): 2289-2299, 2023 04.
Article in English | MEDLINE | ID: mdl-35067204

ABSTRACT

Dengue virus, an arbovirus, is one of the most prevalent diseases in the tropical environment and leads to huge number of casualties every year. No therapeutics are available till date against the viral disease and the only medications provide symptomatic relief. In this study, we have focused on utilizing conventional nanobodies and repurposing them for Dengue. Computationally affinity matured, best binding nanobodies tagged with constant antibody regions, could be proposed as therapeutics. These could also be applied for drug delivery purposes due to their high specificity against the viral Capsid. Another application of these nanobodies has been thought to utilize them for diagnostic purposes, to use the nanobodies for viral detection from patient samples at the earliest stage using ELISA. This study may open a new avenue for immunologic study in foreseeable future with the usage of the same molecules for multiple purposes. HighlightsNatural nanobodies against viruses were modified for use against Dengue virus Capsid conserved regions.Computational affinity maturation was performed making use of change in binding affinities upon mutating various residues in the complementary determining regions.Docking studies performed to inspect the docking groove, interface analysis and energy calculations.MM/GBSA calculations done to calculate binding free energy of the complex to determine stability of the complex.Communicated by Ramaswamy H. Sarma.


Subject(s)
Dengue Virus , Dengue , Single-Domain Antibodies , Humans , Capsid/metabolism , Dengue Virus/chemistry , Single-Domain Antibodies/metabolism , Molecular Docking Simulation , Capsid Proteins/chemistry , Dengue/drug therapy
12.
PeerJ ; 10: e13650, 2022.
Article in English | MEDLINE | ID: mdl-35945938

ABSTRACT

Background: Dengue and Zika are two major vector-borne diseases. Dengue causes up to 25,000 deaths and nearly a 100 million cases worldwide per year, while the incidence of Zika has increased in recent years. Although Zika has been associated to fetal microcephaly and Guillain-Barré syndrome both it and dengue have common clinical symptoms such as severe headache, retroocular pain, muscle and join pain, nausea, vomiting, and rash. Currently, vaccines have been designed and antivirals have been identified for these diseases but there still need for more options for treatment. Our group previously obtained some fractions from medicinal plants that blocked dengue virus (DENV) infection in vitro. In the present work, we explored the possible targets by molecular docking a group of molecules contained in the plant fractions against DENV and Zika virus (ZIKV) NS3-helicase (NS3-hel) and NS3-protease (NS3-pro) structures. Finally, the best ligands were evaluated by molecular dynamic simulations. Methods: To establish if these molecules could act as wide spectrum inhibitors, we used structures from four DENV serotypes and from ZIKV. ADFR 1.2 rc1 software was used for docking analysis; subsequently molecular dynamics analysis was carried out using AMBER20. Results: Docking suggested that 3,5-dicaffeoylquinic acid (DCA01), quercetin 3-rutinoside (QNR05) and quercetin 3,7-diglucoside (QND10) can tightly bind to both NS3-hel and NS3-pro. However, after a molecular dynamics analysis, tight binding was not maintained for NS3-hel. In contrast, NS3-pro from two dengue serotypes, DENV3 and DENV4, retained both QNR05 and QND10 which converged near the catalytic site. After the molecular dynamics analysis, both ligands presented a stable trajectory over time, in contrast to DCA01. These findings allowed us to work on the design of a molecule called MOD10, using the QND10 skeleton to improve the interaction in the active site of the NS3-pro domain, which was verified through molecular dynamics simulation, turning out to be better than QNR05 and QND10, both in interaction and in the trajectory. Discussion: Our results suggests that NS3-hel RNA empty binding site is not a good target for drug design as the binding site located through docking is too big. However, our results indicate that QNR05 and QND10 could block NS3-pro activity in DENV and ZIKV. In the interaction with these molecules, the sub-pocket-2 remained unoccupied in NS3-pro, leaving opportunity for improvement and drug design using the quercetin scaffold. The analysis of the NS3-pro in complex with MOD10 show a molecule that exerts contact with sub-pockets S1, S1', S2 and S3, increasing its affinity and apparent stability on NS3-pro.


Subject(s)
Dengue Virus , Dengue , Zika Virus Infection , Zika Virus , Humans , Zika Virus/metabolism , Molecular Docking Simulation , Flavonoids/pharmacology , Zika Virus Infection/drug therapy , Peptide Hydrolases/chemistry , Quercetin/pharmacology , Dengue Virus/chemistry , Serine Endopeptidases/chemistry , Dengue/drug therapy
13.
Cell Chem Biol ; 29(5): 811-823.e7, 2022 05 19.
Article in English | MEDLINE | ID: mdl-35231399

ABSTRACT

Zika virus (ZIKV) is a flavivirus that can cause severe disease, but there are no approved treatments or vaccines. A complication for flavivirus vaccine development is the potential of immunogens to enhance infection via antibody-dependent enhancement (ADE), a process mediated by poorly neutralizing and cross-reactive antibodies. Thus, there is a great need to develop immunogens that minimize the potential to elicit enhancing antibodies. Here we utilized structure-based protein engineering to develop "resurfaced" (rs) ZIKV immunogens based on E glycoprotein domain III (ZDIIIs), in which epitopes bound by variably neutralizing antibodies were masked by combinatorial mutagenesis. We identified one resurfaced ZDIII immunogen (rsZDIII-2.39) that elicited a protective but immune-focused response. Compared to wild type ZDIII, immunization with resurfaced rsZDIII-2.39 protein nanoparticles produced fewer numbers of ZIKV EDIII antigen-reactive B cells and elicited serum that had a lower magnitude of induced ADE against dengue virus serotype 1 (DENV1) Our findings enhance our understanding of the structural and functional determinants of antibody protection against ZIKV.


Subject(s)
Dengue Virus , Nanoparticles , Zika Virus Infection , Zika Virus , Antibodies, Neutralizing , Antibodies, Viral , Dengue Virus/chemistry , Humans , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/genetics , Zika Virus Infection/prevention & control
14.
Biomol NMR Assign ; 16(1): 135-145, 2022 04.
Article in English | MEDLINE | ID: mdl-35149939

ABSTRACT

The serotype II Dengue (DENV 2) virus is the most prevalent of all four known serotypes. Herein, we present nearly complete 1H, 15N, and 13C backbone and 1H, 13C isoleucine, valine, and leucine methyl resonance assignment of the apo S135A catalytically inactive variant of the DENV 2 protease enzyme folded as a tandem formed between the serine protease domain NS3pro and the cofactor NS2B, as well as the secondary structure prediction of this complex based on the assigned chemical shifts using the TALOS-N software. Our results provide a solid ground for future elucidation of the structure and dynamic of the apo NS3pro/NS2B complex, key for adequate development of inhibitors, and a thorough molecular understanding of their function(s).


Subject(s)
Dengue Virus , Dengue , Dengue Virus/chemistry , Dengue Virus/metabolism , Humans , Mutant Proteins , Nuclear Magnetic Resonance, Biomolecular , Viral Nonstructural Proteins/chemistry
15.
Viruses ; 14(2)2022 01 27.
Article in English | MEDLINE | ID: mdl-35215846

ABSTRACT

Flaviviruses such as dengue virus (DENV) and Zika virus (ZIKV) have evolved sophisticated mechanisms to suppress the host immune system. For instance, flavivirus infections were found to sabotage peroxisomes, organelles with an important role in innate immunity. The current model suggests that the capsid (C) proteins of DENV and ZIKV downregulate peroxisomes, ultimately resulting in reduced production of interferons by interacting with the host protein PEX19, a crucial chaperone in peroxisomal biogenesis. Here, we aimed to explore the importance of peroxisomes and the role of C interaction with PEX19 in the flavivirus life cycle. By infecting cells lacking peroxisomes we show that this organelle is required for optimal DENV replication. Moreover, we demonstrate that DENV and ZIKV C bind PEX19 through a conserved PEX19-binding motif, which is also commonly found in cellular peroxisomal membrane proteins (PMPs). However, in contrast to PMPs, this interaction does not result in the targeting of C to peroxisomes. Furthermore, we show that the presence of C results in peroxisome loss due to impaired peroxisomal biogenesis, which appears to occur by a PEX19-independent mechanism. Hence, these findings challenge the current model of how flavivirus C might downregulate peroxisomal abundance and suggest a yet unknown role of peroxisomes in flavivirus biology.


Subject(s)
Capsid Proteins/chemistry , Capsid Proteins/metabolism , Dengue Virus/physiology , Membrane Proteins/metabolism , Protein Interaction Domains and Motifs , Zika Virus/physiology , Animals , Cell Line , Dengue Virus/chemistry , Humans , Organelle Biogenesis , Peroxisomes/physiology , Virus Replication , Zika Virus/chemistry
16.
J Biomol Struct Dyn ; 40(11): 4866-4878, 2022 07.
Article in English | MEDLINE | ID: mdl-33345726

ABSTRACT

Dengue virus enters the cell by receptor-mediated endocytosis followed by a viral envelope (DENVE) protein-mediated membrane fusion. A small detergent molecule n-octyl-ß-D-glucoside (ßOG) occupies the hydrophobic pocket which is located in the hinge region plays a major role in the rearrangement. It has been reported that mutations occurred in this binding pocket lead to the alterations of pH threshold for fusion. In addition to this event, the protonation of histidine residues present in the hydrophobic pocket would also impart the conformational change of the E protein evidence this pocket as a promising target. The present study identified novel cinnamic acid analogs as significant blockers of the hydrophobic pocket through molecular modeling studies against DENVE. A library of seventy-two analogs of cinnamic acid was undertaken for the discovery process of DENV inhibitors. A Molecular docking study was used to analyze the binding mechanism between these compounds and DENV followed by ADMET prediction. Binding energies were predicted by the MMGBSA study. The Molecular dynamic simulation was utilized to confirm the stability of potential compound binding. The compounds CA and SCA derivatives have been tested against HSV-1 & 2 viruses. From the computational results, the compounds CA1, CA2, SCA 60, SCA 57, SCA 37, SCA 58, and SCA 14 exhibited favorable interaction energy. The compounds have in-vitro antiviral activity; the results clearly indicate that the compounds showed the activity against both the viruses (HSV-1 & HSV-2). Our study provides valuable information on the discovery of small molecules DENVE inhibitors.Communicated by Ramaswamy H. Sarma.


Subject(s)
Antiviral Agents , Dengue Virus , Viral Envelope Proteins , Antiviral Agents/chemistry , Dengue Virus/chemistry , Glucosides , Molecular Docking Simulation , Molecular Dynamics Simulation , Viral Envelope Proteins/chemistry
17.
Viruses ; 13(8)2021 07 24.
Article in English | MEDLINE | ID: mdl-34452312

ABSTRACT

The four serotypes of the mature dengue virus can display different morphologies, including the compact spherical, the bumpy spherical and the non-spherical clubshape morphologies. In addition, the maturation process of dengue virus is inefficient and therefore some partially immature dengue virus particles have been observed and they are infectious. All these viral particles have different antigenicity profiles and thus may affect the type of the elicited antibodies during an immune response. Understanding the molecular determinants and environmental conditions (e.g., temperature) in inducing morphological changes in the virus and how potent antibodies interact with these particles is important for designing effective therapeutics or vaccines. Several techniques, including cryoEM, site-directed mutagenesis, hydrogen-deuterium exchange mass spectrometry, time-resolve fluorescence resonance energy transfer, and molecular dynamic simulation, have been performed to investigate the structural changes. This review describes all known morphological variants of DENV discovered thus far, their surface protein dynamics and the key residues or interactions that play important roles in the structural changes.


Subject(s)
Antigenic Variation , Antigens, Viral/chemistry , Antigens, Viral/genetics , Dengue Virus/immunology , Dengue/virology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antibody-Dependent Enhancement , Antigens, Viral/immunology , Dengue Vaccines/immunology , Dengue Virus/chemistry , Dengue Virus/classification , Dengue Virus/genetics , Humans , Serogroup , Viral Envelope Proteins/genetics
18.
Viruses ; 13(7)2021 07 17.
Article in English | MEDLINE | ID: mdl-34372598

ABSTRACT

Dengue virus (DENV) infection causes a spectrum of dengue diseases that have unclear underlying mechanisms. Nonstructural protein 1 (NS1) is a multifunctional protein of DENV that is involved in DENV infection and dengue pathogenesis. This study investigated the potential post-translational modification of DENV NS1 by phosphorylation following DENV infection. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), 24 potential phosphorylation sites were identified in both cell-associated and extracellular NS1 proteins from three different cell lines infected with DENV. Cell-free kinase assays also demonstrated kinase activity in purified preparations of DENV NS1 proteins. Further studies were conducted to determine the roles of specific phosphorylation sites on NS1 proteins by site-directed mutagenesis with alanine substitution. The T27A and Y32A mutations had a deleterious effect on DENV infectivity. The T29A, T230A, and S233A mutations significantly decreased the production of infectious DENV but did not affect relative levels of intracellular DENV NS1 expression or NS1 secretion. Only the T230A mutation led to a significant reduction of detectable DENV NS1 dimers in virus-infected cells; however, none of the mutations interfered with DENV NS1 oligomeric formation. These findings highlight the importance of DENV NS1 phosphorylation that may pave the way for future target-specific antiviral drug design.


Subject(s)
Dengue Virus/chemistry , Dengue Virus/pathogenicity , Viral Nonstructural Proteins/metabolism , Animals , Cell Line , Chlorocebus aethiops , Chromatography, Liquid , Dengue/virology , Dengue Virus/genetics , Hep G2 Cells , Humans , Kinetics , Phosphorylation , Protein Binding , Sequence Analysis, Protein , Tandem Mass Spectrometry , Vero Cells , Viral Nonstructural Proteins/genetics , Virus Replication
19.
Parasit Vectors ; 14(1): 314, 2021 Jun 09.
Article in English | MEDLINE | ID: mdl-34108021

ABSTRACT

BACKGROUND: The Aedes aegypti mosquito is responsible for the transmission of several medically important arthropod-borne viruses, including multiple serotypes of dengue virus (DENV-1, -2, -3, and -4). Competition within the mosquito between DENV serotypes can affect viral infection dynamics, modulating the transmission potential of the pathogen. Vector control remains the main method for limiting dengue fever. The insect endosymbiont Wolbachia pipientis is currently being trialed in field releases globally as a means of biological control because it reduces virus replication inside the mosquito. It is not clear how co-infection between DENV serotypes in the same mosquito might alter the pathogen-blocking phenotype elicited by Wolbachia in Ae. aegypti. METHODS: Five- to 7-day-old female Ae. aegypti from two lines, namely, with (wMel) and without Wolbachia infection (WT), were fed virus-laden blood through an artificial membrane with either a mix of DENV-2 and DENV-3 or the same DENV serotypes singly. Mosquitoes were subsequently incubated inside environmental chambers and collected on the following days post-infection: 3, 4, 5, 7, 8, 9, 11, 12, and 13. Midgut, carcass, and salivary glands were collected from each mosquito at each timepoint and individually analyzed to determine the percentage of DENV infection and viral RNA load via RT-qPCR. RESULTS: We saw that for WT mosquitoes DENV-3 grew to higher viral RNA loads across multiple tissues when co-infected with DENV-2 than when it was in a mono-infection. Additionally, we saw a strong pathogen-blocking phenotype in wMel mosquitoes independent of co-infection status. CONCLUSION: In this study, we demonstrated that the wMel mosquito line is capable of blocking DENV serotype co-infection in a systemic way across the mosquito body. Moreover, we showed that for WT mosquitoes, serotype co-infection can affect infection frequency in a tissue- and time-specific manner and that both viruses have the potential of being transmitted simultaneously. Our findings suggest that the long-term efficacy of Wolbachia pathogen blocking is not compromised by arthropod-borne virus co-infection.


Subject(s)
Aedes/microbiology , Aedes/virology , Dengue Virus/physiology , Mosquito Vectors/microbiology , Mosquito Vectors/virology , Wolbachia/physiology , Aedes/physiology , Animals , Dengue Virus/chemistry , Dengue Virus/classification , Dengue Virus/genetics , Female , Kinetics , Mosquito Vectors/physiology , Viral Load , Virus Replication , Wolbachia/genetics
20.
Eur J Med Chem ; 221: 113527, 2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34020338

ABSTRACT

Dengue virus belongs to the class of RNA viruses and subclass of enveloped single-stranded positive-sense RNA virus. It causes dengue fever (DF), dengue hemorrhagic fever (DHF), or dengue shock syndrome (DSS), where DHF and DSS are life-threatening. Even though dengue is an age-old disease, it is still a mystery and continues to be a global threat. Numerous attempts have been carried out in the past few decades to eradicate the virus through vaccine and antiviral drugs, but still battle continues. In this review, the possible drug targets for discovery and development of potential antiviral drugs against structural proteins of dengue virus, the current development status of the antiviral drugs against dengue around the world, and challenges that need to be addressed to overcome the shortcomings in the process of drug discovery have been discussed.


Subject(s)
Antiviral Agents/pharmacology , Dengue Virus/drug effects , Dengue/drug therapy , Drug Development , Viral Structural Proteins/antagonists & inhibitors , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Dengue/metabolism , Dengue/virology , Dengue Virus/chemistry , Microbial Sensitivity Tests , Molecular Structure , Viral Structural Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL