Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.268
1.
Life Sci Alliance ; 7(8)2024 Aug.
Article En | MEDLINE | ID: mdl-38830771

Dengue fever, a neglected tropical arboviral disease, has emerged as a global health concern in the past decade. Necessitating a nuanced comprehension of the intricate dynamics of host-virus interactions influencing disease severity, we analysed transcriptomic patterns using bulk RNA-seq from 112 age- and gender-matched NS1 antigen-confirmed hospital-admitted dengue patients with varying severity. Severe cases exhibited reduced platelet count, increased lymphocytosis, and neutropenia, indicating a dysregulated immune response. Using bulk RNA-seq, our analysis revealed a minimal overlap between the differentially expressed gene and transcript isoform, with a distinct expression pattern across the disease severity. Severe patients showed enrichment in retained intron and nonsense-mediated decay transcript biotypes, suggesting altered splicing efficiency. Furthermore, an up-regulated programmed cell death, a haemolytic response, and an impaired interferon and antiviral response at the transcript level were observed. We also identified the potential involvement of the RBM39 gene among others in the innate immune response during dengue viral pathogenesis, warranting further investigation. These findings provide valuable insights into potential therapeutic targets, underscoring the importance of exploring transcriptomic landscapes between different disease sub-phenotypes in infectious diseases.


Alternative Splicing , Dengue Virus , Severe Dengue , Humans , Alternative Splicing/genetics , Female , Male , Dengue Virus/genetics , Adult , Severe Dengue/genetics , Severe Dengue/immunology , Severe Dengue/virology , Middle Aged , Transcriptome/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Gene Expression Profiling/methods , Immunity, Innate/genetics , Dengue/genetics , Dengue/immunology , Dengue/virology , Young Adult , Severity of Illness Index , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology
2.
J Infect Dev Ctries ; 18(4): 495-500, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38728633

INTRODUCTION: After the Coronavirus Disease 2019 pandemic, a high number of cases and severe dengue in children were reported in some provinces in the south of Vietnam. This study aimed to determine the distribution of dengue virus serotypes and their correlation with demographic factors, disease severity, clinical manifestations, and laboratory findings. METHODOLOGY: This study employed a cross-sectional design. Ninety-six dengue-infected children admitted to Can Tho Children's Hospital between October 2022 and March 2023 were included. Confirmation of dengue infection was achieved through the real-time polymerase chain reaction (RT-PCR). RESULTS: Among the identified serotypes, DENV-2 accounted for the highest proportion (71.87%), followed by DENV-1 (23.96%), and DENV-4 (4.17%). DENV-3 was not detected. No significant demographic, disease severity, or laboratory differences were observed among the identified dengue serotypes. However, DENV-2 was associated with a higher occurrence of mucous membrane hemorrhages and gastrointestinal bleeding compared to other serotypes. CONCLUSIONS: Although DENV-2 was the most prevalent serotype responsible for dengue in children in southern Vietnam, it did not lead to more severe cases compared to other serotypes. This finding is crucial for evaluating the illness's prognosis.


Dengue Virus , Serogroup , Severe Dengue , Humans , Vietnam/epidemiology , Severe Dengue/epidemiology , Severe Dengue/virology , Cross-Sectional Studies , Male , Dengue Virus/classification , Dengue Virus/genetics , Dengue Virus/isolation & purification , Female , Child , Child, Preschool , Adolescent , Infant , Severity of Illness Index
3.
Arch Virol ; 169(6): 121, 2024 May 16.
Article En | MEDLINE | ID: mdl-38753119

Previous studies have demonstrated the relevance of several soluble molecules in the pathogenesis of dengue. In this regard, a possible role for angiotensin II (Ang II) in the pathophysiology of dengue has been suggested by the observation of a blockade of Ang II in patients with dengue, increased expression of molecules related to Ang II production in the plasma of dengue patients, increased expression of circulating cytokines and soluble molecules related to the action of Ang II, and an apparent relationship between DENV, Ang II effects, and miRNAs. In addition, in ex vivo experiments, the blockade of Ang II AT1 receptor and ACE-1 (angiotensin converting enzyme 1), both of which are involved in Ang II production and its function, inhibits infection of macrophages by DENV, suggesting a role of Ang II in viral entry or in intracellular viral replication of the virus. Here, we discuss the possible mechanisms of Ang II in the entry and replication of DENV. Ang II has the functions of increasing the expression of DENV entry receptors, creation of clathrin-coated vesicles, and increasing phagocytosis, all of which are involved in DENV entry. This hormone also modulates the expression of the Rab5 and Rab7 proteins, which are important in the endosomal processing of DENV during viral replication. This review summarizes the data related to the possible involvement of Ang II in the entry of DENV into cells and its replication.


Angiotensin II , Dengue Virus , Virus Internalization , Virus Replication , Angiotensin II/metabolism , Humans , Dengue Virus/physiology , Dengue Virus/genetics , Animals , Dengue/virology , Dengue/metabolism
4.
Elife ; 122024 May 24.
Article En | MEDLINE | ID: mdl-38787378

Severe dengue infections are characterized by endothelial dysfunction shown to be associated with the secreted nonstructural protein 1 (sNS1), making it an attractive vaccine antigen and biotherapeutic target. To uncover the biologically relevant structure of sNS1, we obtained infection-derived sNS1 (isNS1) from dengue virus (DENV)-infected Vero cells through immunoaffinity purification instead of recombinant sNS1 (rsNS1) overexpressed in insect or mammalian cell lines. We found that isNS1 appeared as an approximately 250 kDa complex of NS1 and ApoA1 and further determined the cryoEM structures of isNS1 and its complex with a monoclonal antibody/Fab. Indeed, we found that the major species of isNS1 is a complex of the NS1 dimer partially embedded in a high-density lipoprotein (HDL) particle. Crosslinking mass spectrometry studies confirmed that the isNS1 interacts with the major HDL component ApoA1 through interactions that map to the NS1 wing and hydrophobic domains. Furthermore, our studies demonstrated that the sNS1 in sera from DENV-infected mice and a human patient form a similar complex as isNS1. Our results report the molecular architecture of a biological form of sNS1, which may have implications for the molecular pathogenesis of dengue.


Dengue Virus , Dengue , Lipoproteins, HDL , Viral Nonstructural Proteins , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics , Animals , Dengue Virus/genetics , Dengue Virus/metabolism , Chlorocebus aethiops , Mice , Humans , Lipoproteins, HDL/metabolism , Vero Cells , Dengue/virology , Dengue/metabolism , Apolipoprotein A-I/metabolism , Apolipoprotein A-I/chemistry , Protein Multimerization , Cryoelectron Microscopy
5.
J Med Virol ; 96(6): e29689, 2024 Jun.
Article En | MEDLINE | ID: mdl-38818789

Individuals infected with dengue virus (DENV) often show no symptoms, which raises the risk of DENV transfusion transmission (TT-DENV) in areas where the virus is prevalent. This study aimed to determine the evidence of DENV infection in blood donors from different geographic regions of Thailand. A cross-sectional study was conducted on blood donor samples collected from the Thai Red Cross National Blood Center and four regional blood centers between March and September 2020. Screening for DENV nonstructural protein 1 (NS1), anti-DENV immunoglobulin G (IgG), and IgM antibodies was performed on residual blood from 1053 donors using enzyme-linked immunosorbent assay kits. Positive NS1 and IgM samples indicating acute infection were verified using four different techniques, including quantitative real-time (q) RT-PCR, nested PCR, virus isolation in C6/36 cells, and mosquito amplification. DENV IgG seropositivity was identified in 89% (938/1053) of blood donors. Additionally, 0.4% (4/1053) and 2.1% (22/1053) of Thai blood donors tested positive for NS1 and IgM, respectively. The presence of asymptomatic dengue virus infection in healthy blood donors suggests a potential risk of transmission through blood transfusion, posing a concern for blood safety.


Antibodies, Viral , Blood Donors , Dengue Virus , Dengue , Immunoglobulin G , Immunoglobulin M , Humans , Thailand/epidemiology , Dengue/transmission , Dengue/epidemiology , Blood Donors/statistics & numerical data , Cross-Sectional Studies , Dengue Virus/immunology , Dengue Virus/isolation & purification , Dengue Virus/genetics , Antibodies, Viral/blood , Female , Male , Adult , Immunoglobulin M/blood , Immunoglobulin G/blood , Young Adult , Middle Aged , Adolescent , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/immunology , Blood Donation
6.
Int J Mol Sci ; 25(10)2024 May 17.
Article En | MEDLINE | ID: mdl-38791534

C-type lectins play a crucial role as pathogen-recognition receptors for the dengue virus, which is responsible for causing both dengue fever (DF) and dengue hemorrhagic fever (DHF). DHF is a serious illness caused by the dengue virus, which exists in four different serotypes: DEN-1, DEN-2, DEN-3, and DEN-4. We conducted a genetic association study, during a significant DEN-2 outbreak in southern Taiwan, to explore how variations in the neck-region length of L-SIGN (also known as CD209L, CD299, or CLEC4M) impact the severity of dengue infection. PCR genotyping was utilized to identify polymorphisms in variable-number tandem repeats. We constructed L-SIGN variants containing either 7- or 9-tandem repeats and transfected these constructs into K562 and U937 cells, and cytokine and chemokine levels were evaluated using enzyme-linked immunosorbent assays (ELISAs) following DEN-2 virus infection. The L-SIGN allele 9 was observed to correlate with a heightened risk of developing DHF. Subsequent results revealed that the 9-tandem repeat was linked to elevated viral load alongside predominant T-helper 2 (Th2) cell responses (IL-4 and IL-10) in K562 and U937 cells. Transfecting K562 cells in vitro with L-SIGN variants containing 7- and 9-tandem repeats confirmed that the 9-tandem repeat transfectants facilitated a higher dengue viral load accompanied by increased cytokine production (MCP-1, IL-6, and IL-8). Considering the higher prevalence of DHF and an increased frequency of the L-SIGN neck's 9-tandem repeat in the Taiwanese population, individuals with the 9-tandem repeat may necessitate more stringent protection against mosquito bites during dengue outbreaks in Taiwan.


Dengue Virus , Lectins, C-Type , Receptors, Cell Surface , Severe Dengue , Virus Replication , Humans , Lectins, C-Type/genetics , Lectins, C-Type/metabolism , Severe Dengue/immunology , Severe Dengue/virology , Severe Dengue/genetics , Dengue Virus/genetics , Dengue Virus/immunology , Virus Replication/genetics , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Male , K562 Cells , Female , U937 Cells , Taiwan/epidemiology , Minisatellite Repeats/genetics , Adult , Cytokines/metabolism , Cytokines/genetics , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Middle Aged , Viral Load
7.
BMC Genomics ; 25(1): 433, 2024 May 01.
Article En | MEDLINE | ID: mdl-38693476

BACKGROUND: The increasing burden of dengue virus on public health due to more explosive and frequent outbreaks highlights the need for improved surveillance and control. Genomic surveillance of dengue virus not only provides important insights into the emergence and spread of genetically diverse serotypes and genotypes, but it is also critical to monitor the effectiveness of newly implemented control strategies. Here, we present DengueSeq, an amplicon sequencing protocol, which enables whole-genome sequencing of all four dengue virus serotypes. RESULTS: We developed primer schemes for the four dengue virus serotypes, which can be combined into a pan-serotype approach. We validated both approaches using genetically diverse virus stocks and clinical specimens that contained a range of virus copies. High genome coverage (>95%) was achieved for all genotypes, except DENV2 (genotype VI) and DENV 4 (genotype IV) sylvatics, with similar performance of the serotype-specific and pan-serotype approaches. The limit of detection to reach 70% coverage was 10-100 RNA copies/µL for all four serotypes, which is similar to other commonly used primer schemes. DengueSeq facilitates the sequencing of samples without known serotypes, allows the detection of multiple serotypes in the same sample, and can be used with a variety of library prep kits and sequencing instruments. CONCLUSIONS: DengueSeq was systematically evaluated with virus stocks and clinical specimens spanning the genetic diversity within each of the four dengue virus serotypes. The primer schemes can be plugged into existing amplicon sequencing workflows to facilitate the global need for expanded dengue virus genomic surveillance.


Dengue Virus , Genome, Viral , Serogroup , Whole Genome Sequencing , Dengue Virus/genetics , Dengue Virus/isolation & purification , Dengue Virus/classification , Whole Genome Sequencing/methods , Humans , Genotype , Dengue/virology , Dengue/diagnosis , High-Throughput Nucleotide Sequencing/methods , RNA, Viral/genetics
8.
PLoS Negl Trop Dis ; 18(5): e0012184, 2024 May.
Article En | MEDLINE | ID: mdl-38768248

BACKGROUND: Dengue is a major public health concern in Reunion Island, marked by recurrent epidemics, including successive outbreaks of dengue virus serotypes 1 and 2 (DENV1 and DENV2) with over 70,000 cases confirmed since 2017. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we used Oxford Nanopore NGS technology for sequencing virologically-confirmed samples and clinical isolates collected between 2012 and 2022 to investigate the molecular epidemiology and evolution of DENV in Reunion Island. Here, we generated and analyzed a total of 499 DENV1, 360 DENV2, and 18 DENV3 sequences. By phylogenetic analysis, we show that different genotypes and variants of DENV have circulated in the past decade that likely originated from Seychelles, Mayotte and Southeast Asia and highly affected areas in Asia and Africa. CONCLUSIONS/SIGNIFICANCE: DENV sequences from Reunion Island exhibit a high genetic diversity which suggests regular introductions of new viral lineages from various Indian Ocean islands. The insights from our phylogenetic analysis may inform local health authorities about the endemicity of DENV variants circulating in Reunion Island and may improve dengue management and surveillance. This work emphasizes the importance of strong local coordination and collaboration to inform public health stakeholders in Reunion Island, neighboring areas, and mainland France.


Dengue Virus , Dengue , Genetic Variation , Genotype , Phylogeny , Dengue Virus/genetics , Dengue Virus/classification , Dengue Virus/isolation & purification , Humans , Dengue/epidemiology , Dengue/virology , Reunion/epidemiology , Molecular Epidemiology , Serogroup , Disease Outbreaks , High-Throughput Nucleotide Sequencing
9.
Emerg Infect Dis ; 30(6): 1203-1213, 2024 Jun.
Article En | MEDLINE | ID: mdl-38782023

Major dengue epidemics throughout Nicaragua's history have been dominated by 1 of 4 dengue virus serotypes (DENV-1-4). To examine serotypes during the dengue epidemic in Nicaragua in 2022, we performed real-time genomic surveillance in-country and documented cocirculation of all 4 serotypes. We observed a shift toward co-dominance of DENV-1 and DENV-4 over previously dominant DENV-2. By analyzing 135 new full-length DENV sequences, we found that introductions underlay the resurgence: DENV-1 clustered with viruses from Ecuador in 2014 rather than those previously seen in Nicaragua; DENV-3, which last circulated locally in 2014, grouped instead with Southeast Asia strains expanding into Florida and Cuba in 2022; and new DENV-4 strains clustered within a South America lineage spreading to Florida in 2022. In contrast, DENV-2 persisted from the formerly dominant Nicaragua clade. We posit that the resurgence emerged from travel after the COVID-19 pandemic and that the resultant intensifying hyperendemicity could affect future dengue immunity and severity.


COVID-19 , Dengue Virus , Dengue , Phylogeny , SARS-CoV-2 , Serogroup , Dengue Virus/genetics , Dengue Virus/classification , Nicaragua/epidemiology , Humans , Dengue/epidemiology , Dengue/virology , COVID-19/epidemiology , COVID-19/virology , SARS-CoV-2/genetics , Pandemics
10.
Viruses ; 16(5)2024 04 29.
Article En | MEDLINE | ID: mdl-38793584

Genetic studies preceded by the observation of an unknown mosquito species in Mikolów (Poland) confirmed that it belongs to a new invasive species in Polish fauna, Aedes japonicus (Theobald, 1901), a known vector for numerous infectious diseases. Ae. japonicus is expanding its geographical presence, raising concerns about potential disease transmission given its vector competence for chikungunya virus, dengue virus, West Nile virus, and Zika virus. This first genetically confirmed identification of Ae. japonicus in Poland initiates a comprehensive review of the literature on Ae. japonicus, its biology and ecology, and the viral infections transmitted by this species. This paper also presents the circumstances of the observation of Ae. japonicus in Poland and a methodology for identifying this species.


Aedes , Mosquito Vectors , Poland , Aedes/virology , Animals , Mosquito Vectors/virology , Introduced Species , Humans , West Nile virus/genetics , Dengue Virus/genetics , Dengue Virus/isolation & purification , Dengue Virus/classification , Zika Virus/genetics , Chikungunya virus/genetics , Chikungunya virus/classification , Chikungunya virus/isolation & purification
11.
Viruses ; 16(5)2024 05 03.
Article En | MEDLINE | ID: mdl-38793607

The dengue virus is a single-stranded, positive-sense RNA virus that infects ~400 million people worldwide. Currently, there are no approved antivirals available. CRISPR-based screening methods have greatly accelerated the discovery of host factors that are essential for DENV infection and that can be targeted in host-directed antiviral interventions. In the present study, we performed a focused CRISPR (Clustered Regularly Interspaced Palindromic Repeats) library screen to discover the key host factors that are essential for DENV infection in human Huh7 cells and identified the Protein Activator of Interferon-Induced Protein Kinase (PACT) as a novel pro-viral factor for DENV. PACT is a double-stranded RNA-binding protein generally known to activate antiviral responses in virus-infected cells and block viral replication. However, in our studies, we observed that PACT plays a pro-viral role in DENV infection and specifically promotes viral RNA replication. Knockout of PACT resulted in a significant decrease in DENV RNA and protein abundances in infected cells, which was rescued upon ectopic expression of full-length PACT. An analysis of global gene expression changes indicated that several ER-associated pro-viral genes such as ERN1, DDIT3, HERPUD1, and EIF2AK3 are not upregulated in DENV-infected PACT knockout cells as compared to infected wildtype cells. Thus, our study demonstrates a novel role for PACT in promoting DENV replication, possibly through modulating the expression of ER-associated pro-viral genes.


CRISPR-Cas Systems , Dengue Virus , Virus Replication , Dengue Virus/physiology , Dengue Virus/genetics , Humans , Dengue/virology , Cell Line , Host-Pathogen Interactions/genetics , RNA, Viral/genetics , RNA, Viral/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Clustered Regularly Interspaced Short Palindromic Repeats
12.
Viruses ; 16(5)2024 05 05.
Article En | MEDLINE | ID: mdl-38793612

As dengue expands globally and many vaccines are under trials, there is a growing recognition of the need for assessing T cell immunity in addition to assessing the functions of neutralizing antibodies during these endeavors. While several dengue-specific experimentally validated T cell epitopes are known, less is understood about which of these epitopes are conserved among circulating dengue viruses and also shared by potential vaccine candidates. As India emerges as the epicenter of the dengue disease burden and vaccine trials commence in this region, we have here aligned known dengue specific T cell epitopes, reported from other parts of the world with published polyprotein sequences of 107 dengue virus isolates available from India. Of the 1305 CD4 and 584 CD8 epitopes, we found that 24% and 41%, respectively, were conserved universally, whereas 27% and 13% were absent in any viral isolates. With these data, we catalogued epitopes conserved in circulating dengue viruses from India and matched them with each of the six vaccine candidates under consideration (TV003, TDEN, DPIV, CYD-TDV, DENVax and TVDV). Similar analyses with viruses from Thailand, Brazil and Mexico revealed regional overlaps and variations in these patterns. Thus, our study provides detailed and nuanced insights into regional variation that should be considered for itemization of T cell responses during dengue natural infection and vaccine design, testing and evaluation.


CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Dengue Vaccines , Dengue Virus , Dengue , Epitopes, T-Lymphocyte , Epitopes, T-Lymphocyte/immunology , Dengue Virus/immunology , Dengue Virus/genetics , Dengue Virus/classification , Humans , Dengue/immunology , Dengue/prevention & control , Dengue/virology , Dengue Vaccines/immunology , CD8-Positive T-Lymphocytes/immunology , India , CD4-Positive T-Lymphocytes/immunology , Brazil , Thailand , Mexico , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood
13.
Viruses ; 16(5)2024 05 18.
Article En | MEDLINE | ID: mdl-38793685

In recent years, the function of noncoding RNAs (ncRNAs) as regulatory molecules of cell physiology has begun to be better understood. Advances in viral molecular biology have shown that host ncRNAs, cellular factors, and virus-derived ncRNAs and their interplay are strongly disturbed during viral infections. Nevertheless, the folding of RNA virus genomes has also been identified as a critical factor in regulating canonical and non-canonical functions. Due to the influence of host ncRNAs and the structure of RNA viral genomes, complex molecular and cellular processes in infections are modulated. We propose three main categories to organize the current information about RNA-RNA interactions in some well-known human viruses. The first category shows examples of host ncRNAs associated with the immune response triggered in viral infections. Even though miRNAs introduce a standpoint, they are briefly presented to keep researchers moving forward in uncovering other RNAs. The second category outlines interactions between virus-host ncRNAs, while the third describes how the structure of the RNA viral genome serves as a scaffold for processing virus-derived RNAs. Our grouping may provide a comprehensive framework to classify ncRNA-host-cell interactions for emerging viruses and diseases. In this sense, we introduced them to organize DENV-host-cell interactions.


Dengue Virus , Genome, Viral , RNA, Untranslated , RNA, Viral , Dengue Virus/genetics , Dengue Virus/physiology , Humans , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , Host-Pathogen Interactions/genetics , Dengue/virology , MicroRNAs/genetics , MicroRNAs/metabolism , Animals
14.
Viruses ; 16(5)2024 05 13.
Article En | MEDLINE | ID: mdl-38793650

BACKGROUND: Risk factors for severe dengue manifestations have been attributed to various factors, including specific serotypes, sex, and age. Mexico has seen the re-emergence of DENV-3, which has not circulated in a decade. OBJECTIVE: To describe dengue serotypes by age, sex, and their association with disease severity in dengue-positive serum samples from epidemiological surveillance system units. MATERIALS AND METHODS: A descriptive analysis was conducted to evaluate the frequency of dengue severity by sex, age, disease quarter, geographical location, and dengue virus serotypes. The study was conducted using laboratory samples from confirmed dengue cases through RT-qPCR from the epidemiological surveillance laboratory network of the Mexican Social Security Institute, Mexico. Simple frequencies and proportions were calculated using the z-test for proportional differences between groups. Bivariate analysis with adjusted Chi2 was performed, and binary logistic regression models were constructed using the forward Wald method considering the model's predictive capacity. The measure of association was the odds ratio, with 95% confidence intervals. Statistical significance was set to an alpha level of <0.05. RESULTS: In 2023, 10,441 samples were processed for dengue RT-qPCR at the IMSS, with a predominance of serotype DENV-3 (64.4%). The samples were mostly from women (52.0%) and outpatient cases (63.3%). The distribution of dengue severity showed significant variations by age, with a lower proportion of severe cases in young children and a higher proportion in the 5- to 14-year-old group. Hospitalizations increased significantly with severity. Warm regions had more cases overall and severity. Cases were most frequent from July to September. While DENV-2 was associated with severity, DENV-4 was not. Binary regression identified higher risk in women, age extremes, and DENV-2, with an overall predictive model of 58.5%. CONCLUSIONS: Women, age groups at the extremes of life, and the DENV-2 serotype presented severe risk of dengue in a population with social security in Mexico during 2023.


Dengue Virus , Serogroup , Severe Dengue , Humans , Mexico/epidemiology , Female , Male , Dengue Virus/genetics , Dengue Virus/classification , Dengue Virus/isolation & purification , Adolescent , Adult , Child , Middle Aged , Child, Preschool , Young Adult , Retrospective Studies , Infant , Severe Dengue/epidemiology , Severe Dengue/virology , Social Security , Aged , Risk Factors , Severity of Illness Index , Infant, Newborn
15.
Braz J Microbiol ; 55(2): 1801-1809, 2024 Jun.
Article En | MEDLINE | ID: mdl-38709438

Dengue necessitates accurate diagnosis. Rapid tests such as Bioline™ DENGUE DUO have gained traction, but validation in specific populations is essential. This study aimed to evaluate the performance of the Bioline™ test, alongside assessing the socio-epidemiological profile of symptomatic patients in a Brasília Military Hospital. The serum of 404 symptomatic patients was analyzed by the Bioline™ DENGUE DUO test, followed by Dengue virus detection and discrimination of the four serotypes by RT-qPCR. Accuracy was assessed using parameters including sensitivity (S), specificity (E), positive and negative predictive values (PPV and NPV), and positive (RV +) and negative (RV-) likelihood ratios. The NS1 component exhibited a sensitivity of 70.37%, a specificity of 97.30%, and an overall efficiency of 90.10% when compared to RT-qPCR as the gold standard. The IgM component demonstrated a sensitivity of 26.85%, a specificity of 89.53%, and an overall efficiency of 72.77% when compared to RT-qPCR as the gold standard. The IgG component demonstrated a sensitivity of 23.15%, a specificity of 68.92%, and an overall efficiency of 56.68% when compared to RT-qPCR as the gold standard. Several rapid tests are commercially available. However, considering variations across regions and demographic groups, it is important to question their accuracy in specific populations. Rapid tests are important screening tools, but they can have limitations for the certainty of diagnosis. Bioline™ DENGUE DUO displayed good specificity, but sensitivity was slightly below optimal levels. While helpful for confirming dengue, improvements are needed to effectively rule out the disease.


Dengue Virus , Dengue , Hospitals, Military , Sensitivity and Specificity , Humans , Dengue/diagnosis , Dengue/blood , Dengue/virology , Brazil/epidemiology , Dengue Virus/immunology , Dengue Virus/genetics , Dengue Virus/isolation & purification , Female , Male , Adult , Middle Aged , Young Adult , Adolescent , Antibodies, Viral/blood , Child , Aged , Immunoglobulin M/blood , Child, Preschool , Reagent Kits, Diagnostic/standards
16.
J Med Microbiol ; 73(5)2024 May.
Article En | MEDLINE | ID: mdl-38722305

Background. Dengue is an important arboviral infection of considerable public health significance. It occurs in a wide global belt within a variety of tropical regions. The timely laboratory diagnosis of Dengue infection is critical to inform both clinical management and an appropriate public health response. Vaccination against Dengue virus is being introduced in some areas.Discussion. Appropriate diagnostic strategies will vary between laboratories depending on the available resources and skills. Diagnostic methods available include viral culture, the serological detection of Dengue-specific antibodies in using enzyme immunoassays (EIAs), microsphere immunoassays, haemagglutination inhibition or in lateral flow point of care tests. The results of antibody tests may be influenced by prior vaccination and exposure to other flaviviruses. The detection of non-structural protein 1 in serum (NS1) has improved the early diagnosis of Dengue and is available in point-of-care assays in addition to EIAs. Direct detection of viral RNA from blood by PCR is more sensitive than NS1 antigen detection but requires molecular skills and resources. An increasing variety of isothermal nucleic acid detection methods are in development. Timing of specimen collection and choice of test is critical to optimize diagnostic accuracy. Metagenomics and the direct detection by sequencing of viral RNA from blood offers the ability to rapidly type isolates for epidemiologic purposes.Conclusion. The impact of vaccination on immune response must be recognized as it will impact test interpretation and diagnostic algorithms.


Dengue Vaccines , Dengue Virus , Dengue , Humans , Dengue/diagnosis , Dengue/prevention & control , Dengue/immunology , Dengue Virus/immunology , Dengue Virus/genetics , Dengue Vaccines/immunology , Dengue Vaccines/administration & dosage , Clinical Laboratory Techniques/methods , Antibodies, Viral/blood , RNA, Viral/genetics , Viral Nonstructural Proteins/immunology , Viral Nonstructural Proteins/genetics
17.
Euro Surveill ; 29(14)2024 Apr.
Article En | MEDLINE | ID: mdl-38577804

In February 2023, German public health authorities reported two dengue cases (one confirmed, one probable) and four possible cases who travelled to Ibiza, Spain, in late summer/autumn 2022; the infection was probably acquired through mosquito bites. Case 1 visited Ibiza over 1 week in late August with two familial companions; all three developed symptoms the day after returning home. Only Case 1 was tested; dengue virus (DENV) infection was confirmed by presence of NS1 antigen and IgM antibodies. Case 2 travelled to Ibiza with two familial companions for 1 week in early October, and stayed in the same town as Case 1. Case 2 showed symptoms on the day of return, and the familial companions 1 day before and 3 days after return; Case 2 tested positive for DENV IgM. The most probable source case had symptom onset in mid-August, and travelled to a dengue-endemic country prior to a stay in the same municipality of Ibiza for 20 days, until the end of August. Dengue diagnosis was probable based on positive DENV IgM. Aedes albopictus, a competent vector for dengue, has been present in Ibiza since 2014. This is the first report of a local dengue transmission event on Ibiza.


Aedes , Dengue Virus , Dengue , Animals , Humans , Dengue/diagnosis , Dengue/epidemiology , Dengue Virus/genetics , Spain/epidemiology , Mosquito Vectors , Disease Outbreaks , Immunoglobulin M
18.
J Biomed Sci ; 31(1): 43, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38649998

Dengue viruses (DENV) are positive-stranded RNA viruses belonging to the Flaviviridae family. DENV is the causative agent of dengue, the most rapidly spreading viral disease transmitted by mosquitoes. Each year, millions of people contract the virus through bites from infected female mosquitoes of the Aedes species. In the majority of individuals, the infection is asymptomatic, and the immune system successfully manages to control virus replication within a few days. Symptomatic individuals may present with a mild fever (Dengue fever or DF) that may or may not progress to a more critical disease termed Dengue hemorrhagic fever (DHF) or the fatal Dengue shock syndrome (DSS). In the absence of a universally accepted prophylactic vaccine or therapeutic drug, treatment is mostly restricted to supportive measures. Similar to many other viruses that induce acute illness, DENV has developed several ways to modulate host metabolism to create an environment conducive to genome replication and the dissemination of viral progeny. To search for new therapeutic options, understanding the underlying host-virus regulatory system involved in various biological processes of the viral life cycle is essential. This review aims to summarize the complex interaction between DENV and the host cellular machinery, comprising regulatory mechanisms at various molecular levels such as epigenetic modulation of the host genome, transcription of host genes, translation of viral and host mRNAs, post-transcriptional regulation of the host transcriptome, post-translational regulation of viral proteins, and pathways involved in protein degradation.


Dengue Virus , Dengue , Dengue Virus/physiology , Dengue Virus/pathogenicity , Dengue Virus/genetics , Humans , Dengue/virology , Animals , Host-Pathogen Interactions , Virus Replication
19.
J Med Virol ; 96(5): e29635, 2024 May.
Article En | MEDLINE | ID: mdl-38682660

Guangzhou has been the city most affected by the dengue virus (DENV) in China, with a predominance of DENV serotype 1 (DENV-1). Viral factors such as dengue serotype and genotype are associated with severe dengue (SD). However, none of the studies have investigated the relationship between DENV-1 genotypes and SD. To understand the association between DENV-1 genotypes and SD, the clinical manifestations of patients infected with different genotypes were investigated. A total of 122 patients with confirmed DENV-1 genotype infection were recruited for this study. The clinical manifestations, laboratory tests, and levels of inflammatory mediator factors were statistically analyzed to investigate the characteristics of clinical manifestations and immune response on the DENV-1 genotype. In the case of DENV-1 infection, the incidence of SD with genotype V infection was significantly higher than that with genotype I infection. Meanwhile, patients infected with genotype V were more common in ostealgia and bleeding significantly. In addition, levels of inflammatory mediator factors including IFN-γ, TNF-α, IL-10, and soluble vascular cell adhesion molecule 1 were higher in patients with SD infected with genotype V. Meanwhile, the concentrations of regulated upon activation normal T-cell expressed and secreted and growth-related gene alpha were lower in patients with SD infected with genotype V. The higher incidence of SD in patients infected with DENV-1 genotype V may be attributed to elevated cytokines and adhesion molecules, along with decreased chemokines.


Dengue Virus , Genotype , Serogroup , Severe Dengue , Humans , Dengue Virus/genetics , Dengue Virus/classification , China/epidemiology , Male , Female , Adult , Middle Aged , Severe Dengue/virology , Severe Dengue/epidemiology , Young Adult , Cytokines/blood , Adolescent , Aged , Incidence , Child , Dengue/virology , Dengue/epidemiology
20.
Indian J Med Res ; 159(2): 153-162, 2024 Feb 01.
Article En | MEDLINE | ID: mdl-38577856

BACKGROUND OBJECTIVES: West Bengal is a dengue-endemic State in India, with all four dengue serotypes in co-circulation. The present study was conceived to determine the changing trends of circulating dengue virus (DENV) serotypes in five consecutive years (2015-2019) using a geographic information system (GIS) during the dengue season in West Bengal, India. METHODS: Molecular serotyping of dengue NS1 sero-reactive serum samples from individuals with ≤5 days of fever was performed using conventional nested reverse transcriptase-PCR. GIS techniques such as Getis-Ord Gi* hotspot analysis and heatmap were used to elucidate dengue transmission based on the received NS1-positive cases and vector data analysis was used to point out risk-prone areas. RESULTS: A total of 3915 dengue NS1 sero-positive samples were processed from most parts of West Bengal and among these, 3249 showed RNA positivity. The major circulating serotypes were DENV 3 (63.54%) in 2015, DENV 1 (52.79%) in 2016 and DENV 2 (73.47, 76.04 and 47.15%) in 2017, 2018 and 2019, respectively. Based on the NS1 positivity, dengue infections were higher in males than females and young adults of 21-30 yr were mostly infected. Getis-Ord Gi* hotspot cluster analysis and heatmap indicate that Kolkata has become a hotspot for dengue outbreaks and serotype plotting on maps confirms a changing trend of predominant serotypes during 2015-2019 in West Bengal. INTERPRETATION CONCLUSIONS: Co-circulation of all the four dengue serotypes was observed in this study, but only one serotype became prevalent during an outbreak. Representation of NS1-positive cases and serotype distribution in GIS mapping clearly showed serotypic shift in co-circulation. The findings of this study suggest the need for stringent surveillance in dengue-endemic areas to limit the impact of dengue and implement better vector-control strategies.


Dengue Virus , Dengue , Male , Female , Young Adult , Humans , Serogroup , Dengue/epidemiology , Dengue Virus/genetics , Geographic Information Systems , India/epidemiology , RNA, Viral/genetics
...