Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 18.358
1.
Clin Oral Investig ; 28(6): 305, 2024 May 09.
Article En | MEDLINE | ID: mdl-38722356

OBJECTIVE: To evaluate the ability of the water glass treatment to penetrate zirconia and improve the bond strength of resin cement. MATERIAL AND METHODS: Water glass was applied to zirconia specimens, which were then sintered. The specimens were divided into water-glass-treated and untreated zirconia (control) groups. The surface properties of the water-glass-treated specimens were evaluated using surface roughness and electron probe micro-analyser (EPMA) analysis. A resin cement was used to evaluate the tensile bond strength, with2 and without a silane-containing primer. After 24 h in water storage at 37 °C and thermal cycling, the bond strengths were statistically evaluated with t-test, and the fracture surfaces were observed using SEM. RESULTS: The water glass treatment slightly increased the surface roughness of the zirconia specimens, and the EPMA analysis detected the water glass penetration to be 50 µm below the zirconia surface. The application of primer improved the tensile bond strength in all groups. After 24 h, the water-glass-treated zirconia exhibited a tensile strength of 24.8 ± 5.5 MPa, which was significantly higher than that of the control zirconia (17.6 ± 3.5 MPa) (p < 0.05). After thermal cycling, the water-glass-treated zirconia showed significantly higher tensile strength than the control zirconia. The fracture surface morphology was mainly an adhesive pattern, whereas resin cement residue was occasionally detected on the water-glass-treated zirconia surfaces. CONCLUSION: The water glass treatment resulted in the formation of a stable silica phase on the zirconia surface. This process enabled silane coupling to the zirconia and improved the adhesion of the resin cement.


Dental Bonding , Glass , Materials Testing , Resin Cements , Silanes , Surface Properties , Tensile Strength , Water , Zirconium , Zirconium/chemistry , Resin Cements/chemistry , Silanes/chemistry , Water/chemistry , Dental Bonding/methods , Glass/chemistry , Microscopy, Electron, Scanning , Dental Stress Analysis
2.
Clin Oral Investig ; 28(6): 311, 2024 May 14.
Article En | MEDLINE | ID: mdl-38743171

OBJECTIVE: This study used image-based finite element analysis (FEA) to assess the biomechanical changes in mandibular first molars resulting from alterations in the position of the root canal isthmus. METHODS: A healthy mandibular first molar, characterized by two intact root canals and a cavity-free surface, was selected as the subject. A three-dimensional model for the molar was established using scanned images of the patient's mandibular teeth. Subsequently, four distinct finite element models were created, each representing varied root canal morphologies: non-isthmus (Group A), isthmus located at the upper 1/3 of the root (Group B), middle 1/3 of the root (Group C), and lower 1/3 of the root (Group D). A static load of 200 N was applied along the tooth's longitudinal axis on the occlusal surface to simulate regular chewing forces. The biomechanical assessment was conducted regarding the mechanical stress profile within the root dentin. The equivalent stress (Von Mises stress) was used to assess the biomechanical features of mandibular teeth under mechanical loading. RESULTS: In Group A (without an isthmus), the maximum stress was 22.2 MPa, while experimental groups with an isthmus exhibited higher stresses, reaching up to 29.4 MPa. All maximum stresses were concentrated near the apical foramen. The presence of the isthmus modified the stress distribution in the dentin wall of the tooth canal. Notably, dentin stresses at specific locations demonstrated differences: at 8 mm from the root tip, Group B: 13.6 MPa vs. Group A: 11.4 MPa; at 3 mm from the root tip, Group C: 14.2 MPa vs. Group A: 4.5 MPa; at 1 mm from the root tip, Group D: 25.1 MPa vs. Group A: 10.3 MPa. The maximum stress in the root canal dentin within the isthmus region was located either at the top or bottom of the isthmus. CONCLUSION: A root canal isthmus modifies the stress profile within the dentin. The maximum stress occurs near the apical foramen and significantly increases when the isthmus is located closer to the apical foramina.


Dental Pulp Cavity , Dental Stress Analysis , Finite Element Analysis , Mandible , Molar , Humans , Biomechanical Phenomena , Dental Pulp Cavity/anatomy & histology , Dental Stress Analysis/methods , Imaging, Three-Dimensional/methods , Stress, Mechanical
3.
Clin Exp Dent Res ; 10(3): e888, 2024 Jun.
Article En | MEDLINE | ID: mdl-38712436

OBJECTIVE: To evaluate the effects of metal primer II (MP II) on the shear bond strength (SBS) of orthodontic brackets bonded to teeth and bis-acryl composite provisional material (Bis-Acryl). MATERIAL AND METHODS: Twenty extracted human premolars specimens and 20 premolar shaped Bis-Acryl specimens were obtained and randomly divided into two surface groups. The first group consisted of human premolars (T) bonded to brackets in the conventional way while in the second (T-MP) MP II was applied on the bracket base before bonding. Similarly, one group of provisional material (PM) was prepared according to conventional treatment and another with the application of MP-II metal bonder (PM-MP). In all cases Ortho-brackets (Victory Series, 3 M) were bonded employing Transbond XT resin cement. Then the brackets were debonded under shear and the results were statistically analyzed by two-way analysis of variance and Holm Sidak at α = .05. The debonded surfaces of all specimens were examined by light microscopy and the Adhesive Remnant Index (ARI) was recorded. RESULTS: The SBS results exhibited significant differences er (p < .001). For both the T and TM the application of MP-II increased the SBS compared to respective control groups (p < .001). The T-C group was found inferior compared to PM-C (p < .001) and the same is true for the comparison between T-MP and PM-MP (p < .001). ARI indexes demonstrated that the tooth groups were characterized by a predominantly adhesive failure at the resin-dentin interface. In contrast, the control group for provisional crowns (PM-C) showed a predominantly cohesive failure mode, which moved to predominantly adhesive after the application of MP II. CONCLUSION: The application of MP II enhances the SBS on both, human enamel and provisional crown materials.


Dental Bonding , Orthodontic Brackets , Resin Cements , Shear Strength , Surface Properties , Humans , Resin Cements/chemistry , Dental Bonding/methods , Bicuspid , Dental Stress Analysis , Materials Testing , Acrylic Resins/chemistry , Composite Resins/chemistry , Acid Etching, Dental/methods , Dental Enamel/chemistry , Dental Enamel/drug effects
4.
BMC Oral Health ; 24(1): 513, 2024 May 02.
Article En | MEDLINE | ID: mdl-38698366

BACKGROUND: This study aims to evaluate the effect of surface treatment and resin cement on the shear bond strength (SBS) and mode of failure of polyetheretherketone (PEEK) to lithium disilicate ceramic (LDC). This is suggested to study alternative veneering of PEEK frameworks with a ceramic material. METHODS: eighty discs were prepared from PEEK blank and from lithium disilicate ceramic. Samples were divided into four groups according to surface treatment: Group (A) air abraded with 110 µm Al2O3, Group (AP) air abrasion and primer application, Group (S) 98% sulfuric acid etching for 60 s, Group (SP) Sulfuric acid and primer. Each group was subdivided into two subgroups based on resin cement type used for bonding LDC:1) subgroup (L) self- adhesive resin cement and 2) subgroup (B) conventional resin cement (n = 10). Thermocycling was done for all samples. The bond strength was assessed using the shear bond strength test (SBS). Failure mode analysis was done at 50X magnification with a stereomicroscope. Samples were chosen from each group for scanning electron microscope (SEM). The three-way nested ANOVA followed by Tukey's post hoc test were used for statistical analysis of results. Comparisons of effects were done utilizing one way ANOVA and (p < 0.05). RESULTS: The highest mean of shear bond strength values was demonstrated in Group of air abrasion with primer application using conventional resin cement (APB) (12.21 ± 2.14 MPa). Sulfuric acid groups showed lower shear bond strength values and the majority failed in thermocycling especially when no primer was applied. The failure mode analysis showed that the predominant failure type was adhesive failure between cement and PEEK, while the remaining was mixed failure between cement and PEEK. CONCLUSION: The air abrasion followed by primer application and conventional resin cement used for bonding Lithium Disilicate to PEEK achieved the best bond strength. Primer application did not have an effect when self-adhesive resin cement was used in air-abraded groups. Priming step is mandatory whenever sulfuric acid etching surface treatment is utilized for PEEK.


Benzophenones , Dental Bonding , Dental Porcelain , Dental Stress Analysis , Ketones , Materials Testing , Polyethylene Glycols , Polymers , Resin Cements , Shear Strength , Surface Properties , Dental Bonding/methods , Acid Etching, Dental/methods , Sulfuric Acids , Ceramics/chemistry , Air Abrasion, Dental/methods , Aluminum Oxide , Dental Veneers , Dental Etching/methods , Humans
5.
Clin Exp Dent Res ; 10(3): e901, 2024 Jun.
Article En | MEDLINE | ID: mdl-38770577

OBJECTIVES: The study aimed to evaluate the debonding resistance of three different endocrown designs on molar teeth, using three different zirconia surface pretreatments. MATERIAL AND METHOD: Ninety human mandibular first molars were divided into three main groups: endocrowns without ferrule, with 1 mm ferrule, and with 2 mm ferrule. The subgroups were defined by their surface pretreatment method used (n = 15): 50 µm alumina air-particle abrasion, silica coating using 30 µm Cojet™ particles, and Zircos-E® etching. The endocrowns were fabricated using multilayer zirconia ceramic, cemented with self-adhesive resin cement, and subjected to 5000 thermocycles (5-55°C) before debonding. The data obtained were analyzed using a two-way ANOVA. RESULTS: All test specimens survived the thermocyclic aging. The results indicated that both the preparation design and the surface treatment had a significant impact on the resistance to debonding of the endocrowns (p < .001). The 2 mm ferrule followed by the 1 mm ferrule designs exhibited the highest debonding resistance, both were superior to the endocrown without ferrule. Zircos-E® etching and silica coating yielded comparable debonding resistance, which were significantly higher than alumina air-particle abrasion. All endocrowns demonstrated a favorable failure mode. CONCLUSIONS: All designs and surface treatments showed high debonding resistance for a single restoration. However, ferrule designs with Zircos-E® etching or silica coating may represent better clinical options compared to the nonferrule design or alumina airborne-particle abrasion. Nonetheless, further research, including fatigue testing and evaluations with different luting agents is recommended.


Aluminum Oxide , Silicon Dioxide , Surface Properties , Zirconium , Aluminum Oxide/chemistry , Humans , Silicon Dioxide/chemistry , Zirconium/chemistry , Molar , Materials Testing , Air Abrasion, Dental/methods , Resin Cements/chemistry , Dental Etching/methods , Dental Stress Analysis , Dental Prosthesis Design
6.
J Adhes Dent ; 26(1): 147-170, 2024 Jan 15.
Article En | MEDLINE | ID: mdl-38785223

PURPOSE: To systematically review in-vitro studies that evaluated the influence of erbium laser pretreatment on dentin shear bond strength (SBS) and bond failure modes. MATERIALS AND METHODS: Electronic databases (PubMed, Cochrane Central, Embase, and Web of Science) were searched. Only in-vitro studies involving erbium laser irradiation of the dentin surface and SBS testing of the bonded resin block were included. The three common modes of bond failure (1. adhesive, 2. cohesive, and 3. mixed) were observed and analyzed. The network meta-analysis (NMA) was performed by Stata 15.0 software, the risk of bias was evaluated, and the certainty of the evidence was assessed by the Confidence in Network Meta-analysis (CINeMA). RESULTS: Forty studies with nine pretreatments (1. blank group: BL; 2. phosphoric acid etch-and-rinse: ER; 3. self-etch adhesive: SE; 4. Er:YAG laser: EL; 5. Er,Cr:YSGG laser: ECL; 6. ER+EL; 7. ER+ECL; 8. SE+EL; 9. SE+ECL) were included in this analysis. The NMA of SBS showed that ER+EL [SMD = 0.32, 95% CI (0.11, 0.98)] had the highest SBS next to ER, especially when using one of the 3M ESPE adhesives, followed by EL, ECL, SE and SE+EL. The Ivoclar Vivadent adhesives significantly increased the SBS of the ECL [SMD = 0.37, 95% CI (0.16,0.90)] and was higher than ER+EL [SMD = 0.25,95% CI (0.07,0.85)]. Finally, the surface under the cumulative ranking curve (SUCRA) value indicated that ER+EL (SUCRA = 71.0%) and EL (SUCRA = 62.9%) were the best treatments for enhancing dentin SBS besides ER. ER+EL (SUCRA = 85.3%), ER (SUCRA = 83.7%) and ER (SUCRA = 84.3%) had the highest probability of occurring in adhesive, cohesive and mixed failure modes, respectively. CONCLUSION: Er:YAG and Er,Cr:YSGG lasers improved dentin SBS compared to the blank group, especially when the acid etch-and-rinse pretreatment was combined with Er:YAG laser. Shear bond strength and failure mode do not appear to be directly related.


Dental Bonding , Dentin , Lasers, Solid-State , Shear Strength , Dental Bonding/methods , Lasers, Solid-State/therapeutic use , Humans , Network Meta-Analysis , Dentin-Bonding Agents/chemistry , Acid Etching, Dental , Dental Stress Analysis
7.
BMC Oral Health ; 24(1): 586, 2024 May 21.
Article En | MEDLINE | ID: mdl-38773502

BACKGROUND: Cement spacer is essential for compensating deformation of zirconia restoration after sintering shrinkage, allowing proper seating and better fracture resistance of the restoration. Studies assessing the effect of cement spacer on fit accuracy and fracture strength of zirconia frameworks are missing in the literature. Therefore, the aim of this study was to evaluate the effect of different cement spacer settings on fit accuracy and fracture strength of 3-unit and 4-unit zirconia frameworks. METHODS: Sixty standardized stainless-steel master dies were manufactured with 2 prepared abutments for fabricating 3-unit and 4-unit zirconia frameworks. The frameworks were assigned into 6 groups (n = 10) according to cement spacer setting (30 µm, 50 µm, and 80 µm) as follows: 3-unit frameworks; 3u-30, 3u-50, 3u-80, and 4-unit frameworks; 4u-30, 4u-50, and 4u-80. The frameworks were assessed for fit accuracy with the replica method. The specimens were cemented to their corresponding dies, and the fracture strength was measured in a universal testing machine. The Weibull parameters were calculated for the study groups and fractured specimens were inspected for failure mode. Two-Way ANOVA followed by Tukey test for pairwise comparison between study groups (α = 0.05). RESULTS: The cement spacer had a significant effect on both fit accuracy and fracture strength for 3-unit and 4-unit frameworks. The 50 µm spacer had significantly better fit accuracy followed by 80 µm, and 30 µm spacers. Both 50 µm and 80 µm spacers had similar fracture strength, and both had significantly better strength than 30 µm spacer. CONCLUSIONS: For both 3-unit and 4-unit zirconia frameworks, 50 µm cement spacer can be recommended over 30 µm and 80 µm spacers for significantly better fit accuracy and adequate fracture strength.


Dental Stress Analysis , Materials Testing , Zirconium , Zirconium/chemistry , Dental Cements/chemistry , Dental Restoration Failure , Humans , Cementation/methods
8.
Braz Dent J ; 35: e245720, 2024.
Article En | MEDLINE | ID: mdl-38775593

This study evaluated a new method of adhesive system application on the bond strength between fiber post and root dentin using two adhesive systems. The canals of sixty bovine incisors were prepared and obturated. The roots were divided into six groups (n=10) according to the adhesive system (Clearfil SE - CSE and Single Bond Universal - SBU) and the application strategy (microbrush - MB; rotary brush - RB; and ultrasonic tip - US). The glass fiber posts were cemented with resin cement (RelyX ARC). The roots were sectioned perpendicularly to their long axis, and three slices per root were obtained. Previously to the push-out test, confocal laser scanning microscopy (CLSM) was performed to illustrate the interfacial adaptation of the cement to the root canal walls. Failure patterns were analyzed with 40x magnification. Shapiro-Wilk indicated a normal distribution of the data. The bond strength values were compared using one-way ANOVA and Tukey's tests. Student's T test analyzed the differences between the adhesive systems within each third and protocol. A significance level of 5% was used. CSE with RB showed higher mean bond strength values compared to MB (conventional technique) (P < 0.05). US application resulted in intermediate bond strength values for CSE (P > 0.05). The application of SBU using RB generated higher mean bond strength values compared to MB and US (P < 0.05). Adhesive failures were predominant (65.5%). CSE and SBU application with the new rotary brush improved the bond strength of fiber posts to root dentin compared to the conventional strategy.


Dentin , Post and Core Technique , Resin Cements , Cattle , Animals , Resin Cements/chemistry , Dental Bonding/methods , Bisphenol A-Glycidyl Methacrylate/chemistry , Dentin-Bonding Agents/chemistry , Microscopy, Confocal , Polymethacrylic Acids/chemistry , Materials Testing , Glass/chemistry , Tooth Root , Polyethylene Glycols/chemistry , Dental Stress Analysis
9.
Dental Press J Orthod ; 29(2): e2423282, 2024.
Article En | MEDLINE | ID: mdl-38775601

OBJECTIVE: This study aimed to compare the insertion torque (IT), flexural strength (FS) and surface alterations between stainless steel (SS-MIs) and titanium alloy (Ti-MIs) orthodontic mini-implants. METHODS: Twenty-four MIs (2 x 10 mm; SS-MIs, n = 12; Ti-MIs, n = 12) were inserted on artificial bone blocks of 20 lb/ft3 (20 PCF) and 40 lb/ft3 (40 PCF) density. The maximum IT was recorded using a digital torque meter. FS was evaluated at 2, 3 and 4 mm-deflection. Surface topography and chemical composition of MIs were assessed by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). General linear and mixed models were used to assess the effect of the MI type, bone density and deflection on the evaluated outcomes. RESULTS: The IT of Ti-MIs was 1.1 Ncm greater than that obtained for the SS-MIs (p= 0.018). The IT for MIs inserted in 40 PCF test blocks was 5.4 Ncm greater than that for those inserted in 20 PCF test blocks (p < 0.001). SS-MIs inserted in higher density bone (40 PCF) had significantly higher flexural strength than the other groups, at 2 mm (98.7 ± 5.1 Ncm), 3 mm (112.0 ± 3.9 Ncm) and 4 mm (120.0 ± 3.4 Ncm) of deflection (p< 0.001). SEM evidenced fractures in the Ti-MIs. EDS revealed incorporation of 18% of C and 2.06% of O in the loaded SS-MIs, and 3.91% of C in the loaded Ti-MIs. CONCLUSIONS: Based on the findings of this in vitro study, it seems that SS-MIs offer sufficient stability and exhibit greater mechanical strength, compared to Ti-MIs when inserted into higher density bone.


Dental Alloys , Dental Implants , Flexural Strength , Materials Testing , Microscopy, Electron, Scanning , Orthodontic Anchorage Procedures , Stainless Steel , Surface Properties , Titanium , Torque , Titanium/chemistry , Stainless Steel/chemistry , Orthodontic Anchorage Procedures/instrumentation , Orthodontic Anchorage Procedures/methods , Dental Alloys/chemistry , In Vitro Techniques , Spectrometry, X-Ray Emission , Dental Stress Analysis , Humans , Stress, Mechanical , Bone Density
10.
Int J Prosthodont ; 37(7): 195-202, 2024 Feb 21.
Article En | MEDLINE | ID: mdl-38787584

PURPOSE: To evaluate the fracture resistance of permanent resin crowns for primary teeth produced using two different 3D-printing technologies (digital light processing [DLP] and stereolithography [SLA]) and cemented with various luting cements (glass ionomer, resin-modified glass ionomer, and self-adhesive resin cement), whether thermally aged or not. MATERIALS AND METHODS: A typodont primary mandibular second molar tooth was prepared and scanned, and a restoration design was created with web-based artificial intelligence (AI) dental software. A total of 96 crowns were prepared, and 12 experimental groups were generated according to the cement type, 3Dprinting technology (DLP or SLA), and thermal aging. Fracture resistance values and failure types of the specimens were noted. The results were statistically analyzed with three-way ANOVA and Tukey HSD tests (α = .05). RESULTS: The results of the three-way ANOVA showed that there was an interaction among the factors (3D-printing technology, cement type, and thermal aging) (P = .003). Thermal aging significantly decreased the fracture resistance values in all experimental groups. DLP-printed crowns showed higher fracture resistance values than SLA-printed crowns. Cement type also affected the fracture resistance, with glass ionomer cement showing the lowest values after aging. Resin-modified glass ionomer and resin cements were more preferable for 3D-printed crowns. CONCLUSIONS: The type of cement and the 3D-printing technology significantly influenced the fracture resistance of 3D-printed permanent resin crowns for primary teeth, and it was decided that these crowns would be able to withstand masticatory forces in children.


Crowns , Dental Restoration Failure , Printing, Three-Dimensional , Tooth, Deciduous , Humans , Resin Cements/chemistry , Dental Prosthesis Design , Dental Stress Analysis , Glass Ionomer Cements/chemistry , Dental Cements/chemistry , Materials Testing , Molar
11.
Int J Prosthodont ; 37(7): 203-207, 2024 Feb 21.
Article En | MEDLINE | ID: mdl-38787585

AIM: The aim of this study was to evaluate the flexural strength properties of three different aged and nonaged 3D-printed resins built by different 3D printing systems used in dental applications. MATERIALS AND METHODS: Bars (2 × 2 × 25 mm) were additively fabricated using a 3D printer and different dental crown resins (Saremco Crowntec, Senertek P-Crown V2, and Senertek P-Crown V3) per the manufacturers' recommendations. Each subgroup was divided into aged and nonaged subgroups (n = 10 bars per group). Thermocycling procedures (5° to 55°C; 5,000 cycles) were performed under favorable conditions for the aged subgroups from each material. Flexural strength (MPa) was measured in all samples using a universal test machine. RESULTS: When both aged and nonaged resins are compared, significant differences were found in flexural strength measurements (P < .001). The highest flexural strength was observed in the Saremco Crowntec group, while the lowest flexural strength was observed in the Senertek P Crown V2 group. The flexural strength measurements of Saremco Crowntec and Senertek P Crown V3 displayed no significant difference between their aged and nonaged groups (P > .05), while Senertek P Crown V2 (P = .039) showed significant differences between its aged and nonaged groups. CONCLUSIONS: Saremco Crowntec showed the highest flexural strength both in aged and nonaged groups, while Senertek P Crown V2 had the lowest strength. The artificial aging process decreased flexural strength values in all 3D-printed resin groups.


Crowns , Flexural Strength , Materials Testing , Printing, Three-Dimensional , Dental Stress Analysis , Time Factors , Composite Resins/chemistry
12.
Int J Prosthodont ; 37(7): 175-185, 2024 Feb 21.
Article En | MEDLINE | ID: mdl-38787582

PURPOSE: To assess the manufacturing accuracy, intaglio surface adaptation, and survival of resin-based CAD/CAM definitive crowns created via additive manufacturing (AM) or subtractive manufacturing (SM). MATERIALS AND METHODS: A maxillary right first molar crown was digitally designed and manufactured using AM hybrid resin composite (VarseoSmile Crown Plus, Bego [AM-HRC]), AM glass filler-reinforced resin composite (Crowntec, Saremco Dental [AM-RC]), and SM polymer-infiltrated ceramic (Vita Enamic, VITA Zahnfabrik [SM-PICN]). Manufacturing accuracy (trueness and precision) was assessed by computing the root mean square (RMS) error (in µm; n = 15 per material). Intaglio surface adaptation was assessed by calculating the average gap distance (µm). Ten crowns from each group were cemented on fiberglass-reinforced epoxy resin dies and cyclically loaded to simulate 5 years of functional loading. One-way ANOVA, post hoc Bonferroni comparison tests, and Levene's test were used to analyze the data (α = .05). RESULTS: AM-RC had higher overall trueness than AM-HRC and SM-PICN (P ≤ .05), whereas the trueness of AM-RC on the external surface was similar to that of SM-PICN (P = .99) and higher than AM-HRC (P = .001). SM-PICN had lower precision than AM-RC and AM-HRC overall and at internal occlusal surfaces (P ≤ .05). Overall intaglio surface adaptation was similar between all groups (P = .531). However, for the axial intaglio surface, AM-RC and AM-HRC had higher adaptation than SM-PICN (P ≤ .05). All tested crowns survived the cyclic loading simulation of 5 years clinical use. CONCLUSIONS: AM-RC showed high manufacturing accuracy and adaptation. The tested resin-based CAD/CAM materials demonstrated clinically acceptable manufacturing accuracy and simulated medium-term durability, justifying the initiation of clinical investigations to determine their potential implementation in daily clinical practice.


Composite Resins , Computer-Aided Design , Crowns , Dental Prosthesis Design , In Vitro Techniques , Composite Resins/chemistry , Humans , Dental Marginal Adaptation , Surface Properties , Materials Testing , Dental Stress Analysis , Ceramics/chemistry , Molar
13.
Int J Prosthodont ; 37(7): 253-263, 2024 Feb 21.
Article En | MEDLINE | ID: mdl-38787590

PURPOSE: This study investigated the impact of common surface pretreatments on the contact angle (CA), surface free energy (SFE), and push-out bond strength (PBS) of custom 3D-printed resin posts. MATERIALS AND METHODS: Post spaces of 60 endodontically treated mandibular premolars were prepared. Custom 3D-printed posts made from permanent crown resin were fabricated for 50 randomly selected post spaces. The specimens were then divided into six groups (n = 10) based on their surface pretreatment methods. These methods included sandblasting (SB), silane (SL), hydrofluoric acid (HF), and hydrogen peroxide (HP). Additionally, two control groups were established: glass fiber control (GFC) and permanent resin control (PRC). CA and SFE were measured for each 3D-printed post group. PBS and failure mode analyses were conducted. The data were analyzed using the two-way ANOVA followed by the Tukey post hoc test (α = .05). RESULTS: The lowest CA values were found in the SB and SL groups. The SB group had the highest SFE compared to all other groups. SL markedly enhanced the PBS of the resin post compared to the PRC at the cervical, middle, and apical levels (P = .001, P = .000, and P = .002, respectively), and the values were comparable to those of the GFC (P = .695, P = .999, and P = .992, respectively). Except in the GFC, SB, and SL groups, mixed failure decreased from the cervical to apical levels, while adhesive failure rates increased. CONCLUSIONS: The application of silane and sandblasting to the surfaces of custom 3D-printed resin posts effectively increased their SFE, thereby enhancing their adhesion.


Dental Bonding , Post and Core Technique , Printing, Three-Dimensional , Surface Properties , Humans , In Vitro Techniques , Dental Stress Analysis , Bicuspid , Materials Testing , Tooth, Nonvital
14.
Int J Prosthodont ; 37(7): 221-226, 2024 Feb 21.
Article En | MEDLINE | ID: mdl-38787587

PURPOSE: To evaluate fracture load values of five types of interim CAD/CAM crowns with and without thermocycling. MATERIALS AND METHODS: A complete coverage crown was designed on a mandibular first molar with a uniform 1.5-mm axial and occlusal reduction, and the STL file was exported to manufacture 100 crowns using five materials (20 crowns per material): ZCAD Temp Esthetic (SM-ZCAD; Harvest Dental); Telio CAD (SM-TCAD); P pro Crown and Bridge (AM-PPRO); E-Dent 400 C&B MHF (AM-EDENT); and DENTCA Crown & Bridge (AM-DENTCA). Each group was then divided into two subgroups: before and after thermocycling (10 cornws per subgroup). The STL file of the mandibular first molar die was used to manufacture 100 resin dies. Each die was assigned to one interim crown. Interim crowns were then luted to their assigned die using a temporary luting agent. The fracture strength of crowns was then assessed using a universal testing machine at a crosshead speed of 2 mm/minute. Two-way ANOVA followed by Tukey multiple comparations post-hoc tests were used to assess the effect of material choice and thermocycling process on the fracture strength of interim crowns (α = .05). RESULTS: Material choice and the thermocycling process exerted a significant (P < .001) impact on the fracture strength of interim crowns. However, the interaction between these two factors did not yield a statistically significant effect (P = .176). CONCLUSIONS: Within the limitations of this study, the type of interim materials and thermocycling process have a significant impact on the fracture strength of interim crowns.


Computer-Aided Design , Crowns , Dental Prosthesis Design , Dental Stress Analysis , Materials Testing , Dental Restoration Failure , Humans , Molar
15.
BMC Oral Health ; 24(1): 545, 2024 May 10.
Article En | MEDLINE | ID: mdl-38730391

BACKGROUND: This Finite Element Analysis was conducted to analyze the biomechanical behaviors of titanium base abutments and several crown materials with respect to fatigue lifetime and stress distribution in implants and prosthetic components. METHODS: Five distinct designs of implant-supported single crowns were modeled, including a polyetheretherketone (PEEK), polymer-infiltrated ceramic network, monolithic lithium disilicate, and precrystallized and crystallized zirconia-reinforced lithium silicates supported by a titanium base abutment. For the static load, a 100 N oblique load was applied to the buccal incline of the palatal cusp of the maxillary right first premolar. The dynamic load was applied in the same way as in static loading with a frequency of 1 Hz. The principal stresses in the peripheral bone as well as the von Mises stresses and fatigue strength of the implants, abutments, prosthetic screws, and crowns were assessed. RESULTS: All of the models had comparable von Mises stress values from the implants and abutments, as well as comparable maximum and minimum principal stress values from the cortical and trabecular bones. The PEEK crown showed the lowest stress (46.89 MPa) in the cervical region. The prosthetic screws and implants exhibited the highest von Mises stress among the models. The lithium disilicate crown model had approximately 9.5 times more cycles to fatique values for implants and 1.7 times more cycles to fatique values for abutments than for the lowest ones. CONCLUSIONS: With the promise of at least ten years of clinical success and favorable stress distributions in implants and prosthetic components, clinicians can suggest using an implant-supported lithium disilicate crown with a titanium base abutment.


Benzophenones , Crowns , Dental Abutments , Dental Prosthesis, Implant-Supported , Dental Stress Analysis , Finite Element Analysis , Titanium , Titanium/chemistry , Humans , Dental Porcelain/chemistry , Polyethylene Glycols/chemistry , Dental Materials/chemistry , Polymers , Ketones/chemistry , Zirconium/chemistry , Dental Implants, Single-Tooth , Materials Testing , Dental Implant-Abutment Design , Biomechanical Phenomena
16.
J Adhes Dent ; 26(1): 135-145, 2024 Jan 15.
Article En | MEDLINE | ID: mdl-38771025

PURPOSE: To measure zirconia-to-zirconia microtensile bond strength (µTBS) using composite cements with and without primer. MATERIALS AND METHODS: Two Initial Zirconia UHT (GC) sticks (1.8x1.8x5.0 mm) were bonded using four cements with and without their respective manufacturer's primer/adhesive (G-CEM ONE [GOne] and G-Multi Primer, GC; Panavia V5 [Pv5]), and Panavia SA Cement Universal [PSAu], and Clearfil Ceramic Plus, Kuraray Noritake; RelyX Universal (RXu) and Scotchbond Universal Plus [SBUp], 3M Oral Care). Specimens were trimmed to an hour-glass shaped specimen whose isthmus is circular in cross-section. After 1-week water storage, the specimens were either tested immediately (1-week µTBS) or first subjected to 50,000 thermocycles (50kTC-aged µTBS). The fracture mode was categorized as either adhesive interfacial failure, cohesive failure in composite cement, or mixed failure, followed by SEM fracture analysis of selected specimens. Data were analyzed using linear mixed-effects statistics (α = 0.05; variables: composite cement, primer/adhesive application, aging). RESULTS: The statistical analysis revealed no significant differences with aging (p = 0.3662). No significant difference in µTBS with/without primer and aging was recorded for GOne and PSAu. A significantly higher µTBS was recorded for Pv5 and RXu when applied with their respective primer/adhesive. Comparing the four composite cements when they were applied in the manner that resulted in their best performance, a significant difference in 50kTC-aged µTBS was found for PSAu compared to Pv5 and RXu. A significant decrease in µTBS upon 50kTC aging was only recorded for RXu in combination with SBUp. CONCLUSION: Adequate bonding to zirconia requires the functional monomer 10-MDP either contained in the composite cement, in which case a separate 10-MDP primer is no longer needed, or in the separately applied primer/adhesive.


Composite Resins , Dental Bonding , Materials Testing , Methacrylates , Resin Cements , Tensile Strength , Zirconium , Zirconium/chemistry , Resin Cements/chemistry , Composite Resins/chemistry , Methacrylates/chemistry , Dental Cements/chemistry , Ceramics/chemistry , Dental Stress Analysis , Humans , Time Factors , Water/chemistry , Temperature , Dental Porcelain/chemistry , Surface Properties , Dental Materials/chemistry , Glass Ionomer Cements
17.
Am J Dent ; 37(2): 106-112, 2024 Apr.
Article En | MEDLINE | ID: mdl-38704854

PURPOSE: To compare the fracture resistance and failure mode of porcelain laminate veneers with different preparation depths in endodontically treated teeth. METHODS: Root canal treatment was performed for 40 maxillary central incisors, and then the teeth were divided into four groups (n= 10). The preparation depths were as follows: Group A: 0.9 mm, Group B: 0.6 mm, Group C: 0.3 mm, and in all three groups, 2 mm butt joint incisal reductions were performed; Group D was a control group with no preparation. Then 30 lithium disilicate porcelain veneers were milled by CAD- CAM method and cemented. After that, all specimens were subjected to cyclic loading and thermal cycling and finally were tested by a universal testing machine until failure occurred. RESULTS: The mean failure loads (N) after exposure to continuous load were as follows: Group A: 625.70 (401.45-1037.77), Group B: 780.32 (222.93-1391.82), Group C: 748.81 (239.68-1241.87) and Group D (control) : 509.88 (84.42-1025.85) and P= 0.216. Analysis of failure mode in four groups showed that P= 0.469. There was no significant difference between the control and the other groups. In this study, 0.3, 0.6 and 0.9 mm depths of preparation for porcelain laminate veneers for endodontically treated teeth had no significant difference in fracture resistance and failure mode with non-prepared teeth. CLINICAL SIGNIFICANCE: Reasonable consideration might be given to porcelain laminate veneer treatment for teeth that have become discolored and resistant to bleaching (such as instances where discoloration is severe following root canal treatment). This approach is considered to be on the conservative side, and has demonstrated that a labial preparation depth reduction of up to 0.9 mm does not have any impact on the failure mode or fracture resistance of endodontically-treated teeth.


Dental Porcelain , Dental Restoration Failure , Dental Stress Analysis , Dental Veneers , Tooth, Nonvital , Dental Porcelain/chemistry , Humans , Incisor , Materials Testing
18.
BMC Oral Health ; 24(1): 583, 2024 May 20.
Article En | MEDLINE | ID: mdl-38764030

BACKGROUND: Endocrown in pediatric dentistry was rooted in the fundamental principles of preserving healthy dental tissues, leveraging contemporary adhesive methodologies. AIM: This research aimed on assessing and comparing the fracture resistance of pulpotomized primary molars when rehabilitated with zirconia crowns and two distinct types of endocrowns, namely E-Max and Brilliant Crios. METHODS: The study involved thirty, anonymized, freshly extracted second primary molars that underwent pulpotomy. These teeth were then evenly divided into three groups, each consisting of ten specimens: the zirconia crown, the E-Max endocrown, and the Brilliant Crios endocrown groups. Post-pulpotomy, the teeth were prepared for their respective restorations. Subsequent to this preparation, the zirconia crowns, E-Max endocrowns, and Brilliant Crios endocrowns were secured. To evaluate the fracture resistance using a computer-controlled testing machine (Instron), a progressively increasing load was applied to each group until fracture occurred. The gathered data were then analyzed for outliers and subjected to normality testing using the Shapiro-Wilk and/or Kolmogorov-Smirnov tests, with a significance threshold set at 0.05. RESULTS: There was no statistically significant difference in fracture resistance of pulpotomized primary molars among lithium disilicate (E-Max) group (mean=1367.59N), Brilliant Crios group (mean=1349.73N) and zirconia group (mean=1240.82N). CONCLUSION: Endocrowns can be considered a promising restoration for pulpotomized primary molars.


Crowns , Dental Porcelain , Molar , Pulpotomy , Tooth, Deciduous , Zirconium , Humans , Dental Porcelain/chemistry , Pulpotomy/methods , Tooth Fractures , Dental Stress Analysis , Ceramics/chemistry , Dental Restoration, Permanent/methods , Materials Testing
19.
J Adhes Dent ; 26(1): 125-134, 2024 Jan 15.
Article En | MEDLINE | ID: mdl-38770704

PURPOSE: To investigate the effect of adhesive type and long-term aging on the shear bond strength (SBS) between silica-based ceramics and composite cement (CC). MATERIALS AND METHODS: Lithium-silicate (LS), feldspathic (FD) and polymer-infiltrated ceramic (PIC) blocks were sectioned (10 x 12 x 2 mm) and divided into 24 groups considering the factors: "ceramics" (LS, FD, and PIC), "adhesive" (Ctrl: without adhesive; 2SC: 2-step conventional; 3SC: 3-step conventional; 1SU: 1-step universal), and "aging" (non-aged or aged [A]). After the surface treatments, CC cylinders (n = 15, Ø = 2 mm; height = 2 mm) were made and half of the samples were subjected to thermocycling (10,000) and stored in water at 37°C for 18 months. The samples were submitted to SBS testing (100 kgf, 1 mm/min) and failure analysis. Extra samples were prepared for microscopic analysis of the adhesive interface. SBS (MPa) data was analyzed by 3-way ANOVA and Tukey's test (5%). Weibull analysis was performed on the SBS data. RESULTS: All factors and interactions were significant for SBS (p<0.05). Before aging, there was no significant difference between the tested groups and the respective control groups. After aging, the LS_1SU (22.18 ± 7.74) and LS_2SC (17.32 ± 5.86) groups exhibited significantly lower SBS than did the LS_Ctrl (30.30 ± 6.11). Only the LS_1SU group showed a significant decrease in SBS after aging vs without aging. The LS_1SU (12.20) group showed the highest Weibull modulus, which was significantly higher than LS_2SC_A (2.82) and LS_1SU_A (3.15) groups. CONCLUSION: No type of adhesive applied after silane benefitted the long-term adhesion of silica-based ceramics to CC in comparison to the groups without adhesive.


Ceramics , Dental Bonding , Materials Testing , Resin Cements , Shear Strength , Silicon Dioxide , Silicon Dioxide/chemistry , Ceramics/chemistry , Time Factors , Resin Cements/chemistry , Computer-Aided Design , Surface Properties , Dental Stress Analysis , Cementation/methods , Dental Porcelain/chemistry , Humans , Composite Resins/chemistry , Dental Cements/chemistry , Potassium Compounds/chemistry , Aluminum Silicates/chemistry , Temperature
20.
J Contemp Dent Pract ; 25(3): 231-235, 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38690695

AIM: This study aimed to compare the bond strength of AH Plus sealer to root canal dentin when used with or without various antibiotics including amoxicillin, clindamycin, and triple antibiotic mixture (TAM). MATERIALS AND METHODS: A total of 80 single-rooted extracted human teeth were instrumented and obturated with gutta-percha and four different sealer-antibiotic combinations (n = 20). Group I: AH Plus without any antibiotics, Group II: AH Plus with amoxicillin, Group III: AH Plus with clindamycin, and Group IV: AH Plus with TAM. After seven days, the roots were sectioned perpendicular to their long axis and 1 mm thick slices were obtained from the midroots. The specimens were subjected to a push-out bond strength test and failure modes were also evaluated. Data was analyzed using Kruskal-Wallis and Dunn's post hoc tests. RESULTS: Group IV had significantly higher bond strength compared to other groups (p ≤ 0.05). No significant differences were found between other groups. While the sealer-antibiotic groups predominantly showed cohesive failure modes, the control group displayed both cohesive and mixed failure modes. CONCLUSION: Within the limitations of this study, the addition of TAM increased the push-out bond strength of AH Plus. CLINICAL SIGNIFICANCE: Amoxicillin, clindamycin, or TAM can be added to AH Plus for increased antibacterial efficacy without concern about their effects on the bond strength of the sealer. How to cite this article: Adl A, Shojaei NS, Ranjbar N. The Effect of Adding Various Antibiotics on the Push-out Bond Strength of a Resin-based Sealer: An In Vitro Study. J Contemp Dent Pract 2024;25(3):231-235.


Amoxicillin , Anti-Bacterial Agents , Dental Bonding , Epoxy Resins , Root Canal Filling Materials , Humans , Root Canal Filling Materials/chemistry , In Vitro Techniques , Clindamycin , Materials Testing , Dental Stress Analysis , Root Canal Obturation/methods
...