Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 366
Filter
2.
Forensic Sci Int ; 361: 112131, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38981414

ABSTRACT

Systematic retrospective processing of previously analysed biological samples has been proven to be a valuable tool in the search for new drugs (e.g. new psychoactive substances (NPS)) and for quality assessment in clinical and forensic toxicology. In a previous study, we developed a strategy for retrospective data-analysis using a personalized library of synthetic cannabinoids, designer benzodiazepines and synthetic opioids obtained from the crowdsourced database HighResNPS (https://highresnps.com). In this study, the same strategy was employed for the compounds within the groups of NPS that were not previously included such as synthetic cathinones, phenethylamines, aminoindanes, arylalkylamines, piperazine derivates, piperidines, pyrrolidines, indolalkylamines and arylcyclohexylamines. Synthetic opioids and designer benzodiazepines, which were not part of the previous study, were also included. To enhance the effectiveness of the retrospective analysis, a predicted retention time was included for all entries. Data files from the analysis of 2186 forensic post mortem samples with an Agilent Technologies 6540 ultra-high pressure liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS) performed in the laboratory from January 2014 to December 2021 were retrospectively processed with the up-to-date library. Tentative findings were classified in two groups: The findings where MS/MS data was acquired for library match (category 1) and the less certain findings where such data lacked (category 2). Five compounds of category 1 (three synthetic cathinones and two indolalkylamines) were identified in 12 samples. Only one of the findings, 4-MEAPP (4-methyl-α-ethylaminopentiophenone), was deemed plausible after reviewing case information. As many as 501 presumably positive category 2 findings were detected. Using the predicted retention time as an additional criterion the number was significantly reduced but still too high for a manual review. This work has demonstrated that the strategy developed in the previous study can be applied to other NPS groups. However, it is important to note the limitations such a method may have in detecting compounds at very low concentrations.


Subject(s)
Psychotropic Drugs , Humans , Retrospective Studies , Psychotropic Drugs/analysis , Psychotropic Drugs/chemistry , Mass Spectrometry , Forensic Toxicology/methods , Substance Abuse Detection/methods , Chromatography, High Pressure Liquid , Designer Drugs/analysis , Designer Drugs/chemistry , Illicit Drugs/analysis , Illicit Drugs/chemistry
3.
Forensic Sci Int ; 361: 112145, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38991327

ABSTRACT

Drug use is prevalent in prisons with drugs associated with depressant effects found to be more prevalent than stimulants. Synthetic cathinones (SCats; often sold as "bath salts", "ecstasy", "molly", and "monkey dust") are the second largest category of new psychoactive substances (NPS) currently monitored by the European Monitoring Centre for Drugs and Drug Addiction (EMCDDA) and are commonly used as substitutes for regulated stimulants, such as amphetamine, cocaine, and MDMA. N,N-dimethylpentylone (also known as dimethylpentylone, dipentylone, and bk-DMBDP) was detected for the first time in the Scottish prisons in seven powder samples seized between January and July 2023. Samples were analyzed using gas chromatography-mass spectrometry (GC-MS), ultra-high performance liquid chromatography-quadrupole time of flight mass spectrometry (UPLC-QToF-MS), and nuclear magnetic resonance imaging (NMR). Dimethylpentylone was detected alongside other drugs in four samples, including the novel benzodiazepine desalkylgidazepam (bromonordiazepam) and the synthetic cannabinoid receptor agonists (SCRAs) MDMB-INACA and MDMB-4en-PINACA.


Subject(s)
Alkaloids , Gas Chromatography-Mass Spectrometry , Illicit Drugs , Prisons , Humans , Alkaloids/analysis , Illicit Drugs/analysis , Illicit Drugs/chemistry , Psychotropic Drugs/analysis , Psychotropic Drugs/chemistry , Designer Drugs/analysis , Designer Drugs/chemistry , Substance Abuse Detection/methods
4.
Ann Biol Clin (Paris) ; 82(2): 151-173, 2024 06 05.
Article in French | MEDLINE | ID: mdl-38721719

ABSTRACT

Synthetic cannabinoids (CS), or synthetic endocannabinoid receptor agonists, were initially synthesized for basic research into exocannabinoid signaling pathways, as well as in clinical research for their analgesic properties. The use of CS for recreational purposes is a recent phenomenon, but one that has grown very quickly in recent years, since these molecules now represent the main category of new synthetic products (NPS). This literature review aims to bring together current data regarding the use and effects caused by CS in humans. The relationship between the structure and activity of these CSs, the pharmacology and adverse effects of these CSs and finally the different methods of analyzing CSs. A better understanding of this phenomenon is essential to raise awareness among stakeholders in the health field.


Subject(s)
Cannabinoids , Humans , Cannabinoids/adverse effects , Cannabinoids/toxicity , Synthetic Drugs/adverse effects , Synthetic Drugs/chemistry , Synthetic Drugs/toxicity , Illicit Drugs/adverse effects , Illicit Drugs/toxicity , Cannabinoid Receptor Agonists/adverse effects , Animals , Designer Drugs/adverse effects , Designer Drugs/chemistry
5.
Sci Rep ; 14(1): 11119, 2024 05 15.
Article in English | MEDLINE | ID: mdl-38750247

ABSTRACT

G-protein-coupled receptors (GPCRs) transduce diverse signals into the cell by coupling to one or several Gα subtypes. Of the 16 Gα subtypes in human cells, Gα12 and Gα13 belong to the G12 subfamily and are reported to be functionally different. Notably, certain GPCRs display selective coupling to either Gα12 or Gα13, highlighting their significance in various cellular contexts. However, the structural basis underlying this selectivity remains unclear. Here, using a Gα12-coupled designer receptor exclusively activated by designer drugs (DREADD; G12D) as a model system, we identified residues in the α5 helix and the receptor that collaboratively determine Gα12-vs-Gα13 selectivity. Residue-swapping experiments showed that G12D distinguishes differences between Gα12 and Gα13 in the positions G.H5.09 and G.H5.23 in the α5 helix. Molecular dynamics simulations observed that I378G.H5.23 in Gα12 interacts with N1032.39, S1693.53 and Y17634.53 in G12D, while H364G.H5.09 in Gα12 interact with Q2645.71 in G12D. Screening of mutations at these positions in G12D identified G12D mutants that enhanced coupling with Gα12 and to an even greater extent with Gα13. Combined mutations, most notably the dual Y17634.53H and Q2645.71R mutant, further enhanced Gα12/13 coupling, thereby serving as a potential Gα12/13-DREADD. Such novel Gα12/13-DREADD may be useful in future efforts to develop drugs that target Gα12/13 signaling as well as to identify their therapeutic indications.


Subject(s)
GTP-Binding Protein alpha Subunits, G12-G13 , Molecular Dynamics Simulation , Receptors, G-Protein-Coupled , Humans , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/chemistry , GTP-Binding Protein alpha Subunits, G12-G13/metabolism , GTP-Binding Protein alpha Subunits, G12-G13/genetics , HEK293 Cells , Designer Drugs/chemistry , Designer Drugs/metabolism , Protein Binding
7.
Magn Reson Chem ; 61(2): 66-72, 2023 02.
Article in English | MEDLINE | ID: mdl-34404110

ABSTRACT

The dissemination of spectral information of new psychoactive substances (NPS) acquired on benchtop nuclear magnetic resonance (NMR) spectrometers is of high importance considering the emerging application of such portable and accessible instruments in forensic analyses. Seven members of the 2C-X series (2C-B, 2C-C, 2C-D, 2C-E, 2C-P, 2C-T2, and 2C-T7) of NPS were analyzed via 60 MHz 1 H benchtop NMR spectroscopy and their molecular structural relations are discussed with respect to the observed proton NMR spectra.


Subject(s)
Designer Drugs , Hallucinogens , Hallucinogens/chemistry , Designer Drugs/chemistry , Amines , Magnetic Resonance Spectroscopy/methods
8.
Molecules ; 27(18)2022 Sep 06.
Article in English | MEDLINE | ID: mdl-36144500

ABSTRACT

The ongoing development of more and more new psychoactive substances continues to be a huge problem in 2022 affecting the European and international drug market. Through slight alterations in the structure of illicit drugs, a way to circumvent the law is created, as the created derivatives serve as legal alternatives with similar effects. A common way of structure modification is the induction of a halogen residue. Recently, halogenated derivatives of the well-known designer drug 4-methylaminorex appeared on the market and are available in various online shops. In this study, three novel halogenated 4-methylaminorex derivatives, namely 4'-fluoro-4-methylaminorex, 4'-chloro-4-methylaminorex, and 4'-bromo-4-methylaminorex, were purchased online and characterized using nuclear magnetic resonance (NMR) spectroscopy, liquid chromatography-high-resolution mass spectrometry (LC-HRMS), and chiral high-performance liquid chromatography with ultraviolet detection (HPLC-UV). These derivatives possess two stereogenic centers, and analyses revealed that all of them were present as a racemic mixture of the trans diastereomeric form.


Subject(s)
Designer Drugs , Illicit Drugs , Designer Drugs/chemistry , Halogens , Illicit Drugs/chemistry , Oxazoles/pharmacology
9.
Curr Pharm Des ; 28(32): 2639-2652, 2022.
Article in English | MEDLINE | ID: mdl-35538798

ABSTRACT

BACKGROUND: Previous studies have reported that benzodiazepines (BZDs) seem to enhance euphoric and reinforcing properties of opioids in opioid users so that a direct effect on opioid receptors has been postulated, together with a possible synergistic induction of severe side effects due to co use of BDZs and opioids. This is particularly worrisome given the appearance on the market of designer benzodiazepines (DBZDs), whose activity/toxicity profiles are scarcely known. OBJECTIVES: This study aimed to evaluate, through computational studies, the binding affinity (or lack thereof) of 101 DBZDs identified online on the kappa, mu, and delta opioid receptors (K, M, DOR); and to assess whether their mechanism of action could include activation of the latter. METHODS: MOE® was used for the computational studies. Pharmacophore mapping based on strong opioids agonist binders' 3D chemical features was used to filter the DBZDs. Resultant DBZDs were docked into the crystallised 3D active conformation of KOR (PDB6B73), DOR (PDB6PT3) and MOR (PDB5C1M). Co-crystallised ligands and four strong agonists were used as reference compounds. A score (S, Kcal/mol) representative of the predicted binding affinity, and a description of ligand interactions were obtained from MOE®. RESULTS: The docking results, filtered for S < -8.0 and the interaction with the Asp residue, identified five DBZDs as putative binders of the three ORs : ciclotizolam, fluloprazolam, JQ1, Ro 48-6791, and Ro 48-8684. CONCLUSION: It may be inferred that at least some DBZDs may have the potential to activate opioid receptors. This could mediate/increase their anxiolytic, analgesic, and addiction potentials, as well as worsen the side effects associated with opioid co-use.


Subject(s)
Analgesics, Opioid , Anti-Anxiety Agents , Benzodiazepines , Designer Drugs , Receptors, Opioid , Humans , Analgesics , Analgesics, Opioid/adverse effects , Analgesics, Opioid/chemistry , Analgesics, Opioid/pharmacology , Benzodiazepines/adverse effects , Benzodiazepines/chemistry , Benzodiazepines/pharmacology , Ligands , Receptors, Opioid/agonists , Receptors, Opioid/drug effects , Receptors, Opioid/metabolism , Receptors, Opioid, delta/agonists , Receptors, Opioid, delta/drug effects , Receptors, Opioid, delta/metabolism , Receptors, Opioid, kappa/agonists , Receptors, Opioid, kappa/drug effects , Receptors, Opioid, kappa/metabolism , Receptors, Opioid, mu/agonists , Receptors, Opioid, mu/drug effects , Receptors, Opioid, mu/metabolism , Designer Drugs/adverse effects , Designer Drugs/chemistry , Designer Drugs/pharmacology
10.
Molecules ; 26(20)2021 Oct 14.
Article in English | MEDLINE | ID: mdl-34684770

ABSTRACT

The Sterling Research Group identified pravadoline as an aminoalkylindole (AAI) non-steroidal anti-inflammatory pain reliever. As drug design progressed, the ability of AAI analogs to block prostaglandin synthesis diminished, and antinociceptive activity was found to result from action at the CB1 cannabinoid receptor, a G-protein-coupled receptor (GPCR) abundant in the brain. Several laboratories applied computational chemistry methods to ultimately conclude that AAI and cannabinoid ligands could overlap within a common binding pocket but that WIN55212-2 primarily utilized steric interactions via aromatic stacking, whereas cannabinoid ligands required some electrostatic interactions, particularly involving the CB1 helix-3 lysine. The Huffman laboratory identified strategies to establish CB2 receptor selectivity among cannabimimetic indoles to avoid their CB1-related adverse effects, thereby stimulating preclinical studies to explore their use as anti-hyperalgesic and anti-allodynic pharmacotherapies. Some AAI analogs activate novel GPCRs referred to as "Alkyl Indole" receptors, and some AAI analogs act at the colchicine-binding site on microtubules. The AAI compounds having the greatest potency to interact with the CB1 receptor have found their way into the market as "Spice" or "K2". The sale of these alleged "herbal products" evades FDA consumer protections for proper labeling and safety as a medicine, as well as DEA scheduling as compounds having no currently accepted medical use and a high potential for abuse. The distribution to the public of potent alkyl indole synthetic cannabimimetic chemicals without regard for consumer safety contrasts with the adherence to regulatory requirements for demonstration of safety that are routinely observed by ethical pharmaceutical companies that market medicines.


Subject(s)
Cannabinoids/chemistry , Cannabinoids/pharmacology , Designer Drugs/chemistry , Designer Drugs/pharmacology , Analgesics/chemistry , Analgesics/pharmacology , Animals , Benzoxazines/pharmacology , Binding Sites , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Drug Design , Humans , Indoles/chemistry , Indoles/pharmacology , Ligands , Morpholines/pharmacology , Naphthalenes/pharmacology , Receptor, Cannabinoid, CB1/agonists , Receptor, Cannabinoid, CB1/chemistry , Receptor, Cannabinoid, CB2/agonists , Receptor, Cannabinoid, CB2/chemistry , Static Electricity , Structure-Activity Relationship
11.
Neuropharmacology ; 200: 108820, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34619165

ABSTRACT

Clandestine chemists are currently exploiting the pyrrolidinophenone scaffold to develop new designer drugs that carry the risk of abuse and overdose. These drugs promote addiction through the rewarding effects of increased dopaminergic neurotransmission. 3,4-Methylenedioxypyrovalerone (MDPV) and its analogs are illicit psychostimulants of this class that are ∼50-fold more potent than cocaine at inhibiting the human dopamine transporter (hDAT). In contrast, MDPV is a weak inhibitor at both the human serotonin transporter (hSERT) and, as it is shown here, the Drosophila melanogaster DAT (dDAT). We studied three conserved residues between hSERT and dDAT that are unique in hDAT (A117, F318, and P323 in dDAT), and one residue that is different in all three transporters (D121 in dDAT). hDAT residues were replaced in the dDAT sequence at these positions using site-directed mutagenesis and stable cell lines were generated expressing these mutant transporters. The potencies of MDPV and two of its analogs were determined using a Ca2+-mobilization assay. In this assay, voltage-gated Ca2+ channels are expressed to sense the membrane electrical depolarization evoked when dopamine is transported through DAT. Each individual mutant slightly improved MDPV's potency, but the combination of all four increased its potency ∼100-fold (2 log units) in inhibiting dDAT activity. Molecular modeling and docking studies were conducted to explore the possible mode of interaction between MDPV and DAT in silico. Two of the studied residues (F318 and P323) are at the entrance of the S1 binding site, whereas the other two (A117 and D121) face the aryl moiety of MDPV when bound to this site. Therefore, these four non-conserved residues can influence MDPV selectivity not only by stabilizing binding, but also by controlling access to its binding site at DAT.


Subject(s)
Benzodioxoles/pharmacology , Designer Drugs/chemistry , Designer Drugs/pharmacology , Dopamine Plasma Membrane Transport Proteins/drug effects , Pyrrolidines/pharmacology , Serotonin Plasma Membrane Transport Proteins/drug effects , Animals , Benzodioxoles/chemistry , Biological Transport/drug effects , Calcium Channels/drug effects , Cell Line , Dopamine Uptake Inhibitors/pharmacology , Drosophila melanogaster , Molecular Docking Simulation , Pyrrolidines/chemistry , Synthetic Cathinone
12.
Cells ; 10(4)2021 04 12.
Article in English | MEDLINE | ID: mdl-33921365

ABSTRACT

It is important to investigate the sex-dependent roles of microglia in pain hypersensitivity as reactive microglia within the spinal dorsal horn (DH) have been reported to be pivotal in neuropathic pain induction in male rodents upon nerve injury. Here, we aimed at determining the role of sex differences in the behavioral and functional outcomes of the chemogenetic activation of spinal microglia using Gq-designer receptors exclusively activated by designer drugs (Gq-DREADD) driven by the microglia-specific Cx3cr1 promoter. CAG-LSL-human Gq-coupled M3 muscarinic receptors (hM3Dq)-DREADD mice were crossed with CX3C chemokine receptor 1 (CX3CR1)-Cre mice, and immunohistochemistry images revealed that hM3Dq was selectively expressed on Iba1+ microglia, but not on astrocytes and neurons. Intrathecal (i.t.) administration of clozapine-N-oxide (CNO) elicited mechanical allodynia exclusively in male mice. Furthermore, the reactive microglia-dominant molecules that contributed to pain hypersensitivity in CX3CR1-hM3Dq were upregulated in mice of both sexes. The degree of upregulation was greater in male than in female mice. Depletion of spinal microglia using pexidartinib (PLX3397), a colony stimulating factor-1 receptor inhibitor, alleviated the male CX3CR1-hM3Dq mice from pain hypersensitivity and compromised the expression of inflammatory molecules. Thus, the chemogenetic activation of spinal microglia resulted in pain hypersensitivity in male mice, suggesting the sex-dependent molecular aspects of spinal microglia in the regulation of pain.


Subject(s)
CX3C Chemokine Receptor 1/metabolism , Designer Drugs/chemistry , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , Hyperalgesia/pathology , Microglia/metabolism , Spinal Cord/metabolism , Animals , Clozapine/analogs & derivatives , Inflammation Mediators/metabolism , Male , Mice, Transgenic , Up-Regulation
13.
Cell ; 184(10): 2779-2792.e18, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33915107

ABSTRACT

Ligands can induce G protein-coupled receptors (GPCRs) to adopt a myriad of conformations, many of which play critical roles in determining the activation of specific signaling cascades associated with distinct functional and behavioral consequences. For example, the 5-hydroxytryptamine 2A receptor (5-HT2AR) is the target of classic hallucinogens, atypical antipsychotics, and psychoplastogens. However, currently available methods are inadequate for directly assessing 5-HT2AR conformation both in vitro and in vivo. Here, we developed psychLight, a genetically encoded fluorescent sensor based on the 5-HT2AR structure. PsychLight detects behaviorally relevant serotonin release and correctly predicts the hallucinogenic behavioral effects of structurally similar 5-HT2AR ligands. We further used psychLight to identify a non-hallucinogenic psychedelic analog, which produced rapid-onset and long-lasting antidepressant-like effects after a single administration. The advent of psychLight will enable in vivo detection of serotonin dynamics, early identification of designer drugs of abuse, and the development of 5-HT2AR-dependent non-hallucinogenic therapeutics.


Subject(s)
Biosensing Techniques , Designer Drugs/chemistry , Designer Drugs/pharmacology , Drug Discovery/methods , Hallucinogens/chemistry , Hallucinogens/pharmacology , Receptor, Serotonin, 5-HT2A/chemistry , Animals , Drug Evaluation, Preclinical/methods , Female , Fluorescence , Fluorescent Dyes/chemistry , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Photometry , Protein Conformation , Protein Engineering , Receptor, Serotonin, 5-HT2A/genetics , Receptor, Serotonin, 5-HT2A/metabolism , Serotonin/metabolism , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology
14.
Drug Test Anal ; 13(8): 1516-1526, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33835674

ABSTRACT

The emerging market of new psychoactive substances (NPSs) is a global-scale phenomenon, and their identification in biological samples is challenging because of the lack of information about their metabolism and pharmacokinetic. In this study, we performed in silico metabolic pathway prediction and in vivo metabolism experiments, in order to identify the main metabolites of mephtetramine (MTTA), an NPS found in seizures since 2013. MetaSite™ software was used for in silico metabolism predictions and subsequently the presence of metabolites in the blood, urine, and hair of mice after MTTA administration was verified. The biological samples were analyzed by liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS) using a benchtop Orbitrap instrument. This confirmed the concordance between software prediction and experimental results in biological samples. The metabolites were identified by their accurate masses and fragmentation patterns. LC-HRMS analysis identified the dehydrogenated and demethylated-dehydrogenated metabolites, together with unmodified MTTA in the blood samples. Besides unmodified MTTA, 10 main metabolites were detected in urine. In hair samples, only demethyl MTTA was detected along with MTTA. The combination of Metasite™ prediction and in vivo experiment was a powerful tool for studying MTTA metabolism. This approach enabled the development of the analytical method for the detection of MTTA and its main metabolites in biological samples. The development of analytical methods for the identification of new drugs and their main metabolites is extremely useful for the detection of NPS in biological specimens. Indeed, high throughput methods are precious to uncover the actual extent of use of NPS and their toxicity.


Subject(s)
Designer Drugs/metabolism , Designer Drugs/toxicity , Naphthalenes/metabolism , Naphthalenes/toxicity , Psychotropic Drugs/metabolism , Psychotropic Drugs/toxicity , Animals , Biotransformation , Chromatography, High Pressure Liquid , Computer Simulation , Designer Drugs/chemistry , Hair/chemistry , Hydrogenation , Male , Mass Spectrometry , Mice , Mice, Inbred ICR , Naphthalenes/chemistry , Psychotropic Drugs/chemistry , Software , Tandem Mass Spectrometry
15.
Molecules ; 26(4)2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33672087

ABSTRACT

Testosterone derivatives and related compounds (such as anabolic-androgenic steroids-AAS) are frequently misused by athletes (both professional and amateur) wishing to promote muscle development and strength or to cover AAS misuse. Even though these agents are vastly regarded as abusive material, they have important pharmacological activities that cannot be easily replaced by other drugs and have therapeutic potential in a range of conditions (e.g., wasting syndromes, severe burns, muscle and bone injuries, anemia, hereditary angioedema). Testosterone and related steroids have been in some countries treated as controlled substances, which may affect the availability of these agents for patients who need them for therapeutic reasons in a given country. Although these agents are currently regarded as rather older generation drugs and their use may lead to serious side-effects, they still have medicinal value as androgenic, anabolic, and even anti-androgenic agents. This review summarizes and revisits the medicinal use of compounds based on the structure and biological activity of testosterone, with examples of specific compounds. Additionally, some of the newer androgenic-anabolic compounds are discussed such as selective androgen receptor modulators, the efficacy/adverse-effect profiles of which have not been sufficiently established and which may pose a greater risk than conventional androgenic-anabolic agents.


Subject(s)
Steroids/therapeutic use , Testosterone/therapeutic use , Animals , Designer Drugs/chemistry , Designer Drugs/therapeutic use , Humans , Plants/chemistry , Prodrugs/chemistry , Prodrugs/therapeutic use , Steroids/chemistry , Testosterone/agonists , Testosterone/analogs & derivatives , Testosterone/chemistry
16.
Anal Bioanal Chem ; 413(8): 2257-2273, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33575815

ABSTRACT

The popularity of new psychoactive substances among drug users has become a public health concern worldwide. Among them, synthetic cannabinoids (SCs) represent the largest, most diversified and fastest growing group. Commonly known as 'synthetic marijuana' as an alternative to cannabis, these synthetic compounds are easily accessible via the internet and are sold as 'herbal incenses' under different brand names with no information about the chemical composition. In the present work, we aim to integrate gas chromatography-tandem mass spectrometry (GC-MS) and nuclear magnetic resonance (NMR) data as useful strategy for the identification and confirmation of synthetic cannabinoids present in nine seized herbal incenses. The analysis of all samples allowed the initial identification of 9 SCs, namely 5 napthoylindoles (JWH-018, JWH-073, JWH-122, JWH-210, MAM-2201), APINACA, XLR-11 and CP47,497-C8 and its enantiomer. JWH-018 was the most frequently detected synthetic compound (8 of 9 samples), while APINACA and XLR-11 were only identified in one herbal product. Other non-cannabinoid drugs, including oleamide, vitamin E and vitamin E acetate, have also been detected. Oleamide and vitamin E are two adulterants, frequently added to herbal products to mask the active ingredients or added as preservatives. However, to our knowledge, no analytical data about vitamin E acetate was reported in herbal products, being the first time that this compound is identified on this type of samples. The integration data obtained from the used analytical technologies proved to be useful, allowing the preliminary identification of the different SCs in the mixture. Furthermore, the examination of mass spectral fragment ions, as well as the results of both 1D and 2D NMR experiments, enabled the identification and confirmation of the molecular structure of SCs.


Subject(s)
Cannabinoids/analysis , Designer Drugs/chemistry , Plants, Medicinal/chemistry , Psychotropic Drugs/analysis , Gas Chromatography-Mass Spectrometry/methods , Humans , Tandem Mass Spectrometry
17.
Ann N Y Acad Sci ; 1489(1): 48-77, 2021 04.
Article in English | MEDLINE | ID: mdl-32396701

ABSTRACT

During 2012-2018, the clandestine manufacture of new psychoactive substances (NPS) designed to circumvent substance control regulations increased exponentially worldwide, with concomitant increase in fatalities. This review focuses on three compound classes identified as synthetic opioids, synthetic amphetamines, and synthetic cannabinoids and highlights the medicinal chemistry precedents utilized by clandestine laboratories to develop new NPS with increased brain penetration, longer duration of action, and greater potency. Chemical approaches to illicit drug abuse treatment options, particularly for opioid use disorder, are also discussed.


Subject(s)
Chemistry, Pharmaceutical/trends , Designer Drugs/therapeutic use , Psychotropic Drugs/therapeutic use , Substance-Related Disorders/drug therapy , Analgesics, Opioid/chemistry , Analgesics, Opioid/therapeutic use , Designer Drugs/chemistry , Humans , Illicit Drugs , Psychotropic Drugs/chemistry , Substance-Related Disorders/epidemiology
18.
J Med Chem ; 64(1): 385-403, 2021 01 14.
Article in English | MEDLINE | ID: mdl-33382613

ABSTRACT

Synthetic cannabinoids, as exemplified by SDB-001 (1), bind to both CB1 and CB2 receptors and exert cannabimimetic effects similar to (-)-trans-Δ9-tetrahydrocannabinol, the main psychoactive component present in the cannabis plant. As CB1 receptor ligands were found to have severe adverse psychiatric effects, increased attention was turned to exploiting the potential therapeutic value of the CB2 receptor. In our efforts to discover novel and selective CB2 receptor agonists, 1 was selected as a starting point for hit molecule identification and a class of 1H-pyrazole-3-carboxamide derivatives were thus designed, synthesized, and biologically evaluated. Systematic structure-activity relationship investigations resulted in the identification of the most promising compound 66 as a selective CB2 receptor agonist with favorable pharmacokinetic profiles. Especially, 66 treatment significantly attenuated dermal inflammation and fibrosis in a bleomycin-induced mouse model of systemic sclerosis, supporting that CB2 receptor agonists might serve as potential therapeutics for treating systemic sclerosis.


Subject(s)
Designer Drugs/chemistry , Drug Discovery , Receptor, Cannabinoid, CB2/agonists , Scleroderma, Systemic/drug therapy , Designer Drugs/pharmacokinetics , Humans , Structure-Activity Relationship
19.
Proc Natl Acad Sci U S A ; 117(49): 31376-31385, 2020 12 08.
Article in English | MEDLINE | ID: mdl-33229526

ABSTRACT

For a myriad of different reasons most antimicrobial peptides (AMPs) have failed to reach clinical application. Different AMPs have different shortcomings including but not limited to toxicity issues, potency, limited spectrum of activity, or reduced activity in situ. We synthesized several cationic peptide mimics, main-chain cationic polyimidazoliums (PIMs), and discovered that, although select PIMs show little acute mammalian cell toxicity, they are potent broad-spectrum antibiotics with activity against even pan-antibiotic-resistant gram-positive and gram-negative bacteria, and mycobacteria. We selected PIM1, a particularly potent PIM, for mechanistic studies. Our experiments indicate PIM1 binds bacterial cell membranes by hydrophobic and electrostatic interactions, enters cells, and ultimately kills bacteria. Unlike cationic AMPs, such as colistin (CST), PIM1 does not permeabilize cell membranes. We show that a membrane electric potential is required for PIM1 activity. In laboratory evolution experiments with the gram-positive Staphylococcus aureus we obtained PIM1-resistant isolates most of which had menaquinone mutations, and we found that a site-directed menaquinone mutation also conferred PIM1 resistance. In similar experiments with the gram-negative pathogen Pseudomonas aeruginosa, PIM1-resistant mutants did not emerge. Although PIM1 was efficacious as a topical agent, intraperitoneal administration of PIM1 in mice showed some toxicity. We synthesized a PIM1 derivative, PIM1D, which is less hydrophobic than PIM1. PIM1D did not show evidence of toxicity but retained antibacterial activity and showed efficacy in murine sepsis infections. Our evidence indicates the PIMs have potential as candidates for development of new drugs for treatment of pan-resistant bacterial infections.


Subject(s)
Anti-Bacterial Agents/pharmacology , Designer Drugs/pharmacology , Imidazoles/pharmacology , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/therapeutic use , Cell Death/drug effects , Cell Line , Cell Membrane/drug effects , Designer Drugs/chemistry , Designer Drugs/therapeutic use , Humans , Hydrophobic and Hydrophilic Interactions , Imidazoles/chemistry , Imidazoles/therapeutic use , Membrane Potentials/drug effects , Mice , Microbial Sensitivity Tests , Microbial Viability/drug effects , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Pseudomonas Infections/pathology , Pseudomonas aeruginosa/drug effects , Sepsis/drug therapy , Sepsis/prevention & control , Skin/drug effects , Skin/microbiology , Skin/pathology
20.
J Mass Spectrom ; 55(10): e4596, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32729201

ABSTRACT

The consumption of design drugs, frequently known as new psychoactive substances (NPS), has increased considerably worldwide, becoming a severe issue for the responsible governmental agencies. These illicit substances can be defined as synthetic compounds produced in clandestine laboratories in order to act as analogs of schedule drugs mimetizing its chemical structure and improving its pharmacological effects while hampering the control and making regulation more complicated. In this way, the development of new methodologies for chemical analysis of NPS drugs is indispensable to determine a novel class of drugs arising from the underground market. Therefore, this work shows the use of high-resolution mass spectrometry Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) applying different ionization sources such as paper spray ionization (PSI) and electrospray ionization (ESI) in the evaluation of miscellaneous of seized drugs samples as blotter paper (n = 79) and tablet (n = 100). Also, an elucidative analysis was performed by ESI(+)MS/MS experiments, and fragmentation mechanisms were proposed to confirm the chemical structure of compounds identified. Besides, the results of ESI(+) and PSI(+)-FT-ICR MS were compared with those of GC-MS, revealing that ESI(+)MS showed greater detection efficiency among the methodologies employed in this study. Moreover, this study stands out as a guide for the chemical analysis of NPS drugs, highlighting the differences between the techniques of ESI(+)-FT-ICR MS, PSI(+)-FT-ICR MS, and GC-MS.


Subject(s)
Designer Drugs/chemistry , Illicit Drugs/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Gas Chromatography-Mass Spectrometry , Paper , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL