ABSTRACT
PURPOSE: To examine whether isoflurane preconditioning (IsoP) has a protective effect against renal ischemia/reperfusion injury (I/RI) in diabetic conditions and to further clarify the underlying mechanisms. METHODS: Control and streptozotocin-induced diabetic rats were randomly assigned to five groups, as follows: normal sham, normal I/R, diabetic sham, diabetic I/R, and diabetic I/R + isoflurane. Renal I/RI was induced by clamping renal pedicle for 45 min followed by reperfusion for 24 h. IsoP was achieved by exposing the rats to 2% isoflurane for 30 min before vascular occlusion. Kidneys and blood were collected after reperfusion for further analysis. Renal histology, blood urea nitrogen, serum creatinine, oxidative stress, inflammatory cytokines, and renal cell apoptosis were assessed. Furthermore, the expression of brahma related gene 1 (Brg1), nuclear factor-erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and nuclear factor-κB (NF-κB) were determined. RESULTS: Compared with control, diabetic rats undergoing I/R presented more severe renal injury, oxidative stress, inflammatory reaction, and apoptosis with the impairment of Brg1/Nrf2/HO-1 signaling. All these alterations were significantly attenuated by pretreatment with isoflurane. CONCLUSIONS: These findings suggest that isoflurane could alleviate renal I/RI in diabetes, possibly through improving Brg1/Nrf2/HO-1 signaling.
Subject(s)
Apoptosis , Diabetes Mellitus, Experimental , Ischemic Preconditioning , Isoflurane , Reperfusion Injury , Signal Transduction , Transcription Factors , Animals , Male , Rats , Anesthetics, Inhalation/pharmacology , Apoptosis/drug effects , Diabetes Mellitus, Experimental/complications , DNA Helicases/metabolism , Heme Oxygenase-1/metabolism , Ischemic Preconditioning/methods , Isoflurane/pharmacology , Kidney/drug effects , Kidney/blood supply , Kidney/pathology , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Nuclear Proteins/metabolism , Oxidative Stress/drug effects , Random Allocation , Rats, Sprague-Dawley , Reperfusion Injury/prevention & control , Signal Transduction/drug effectsABSTRACT
This study aimed to assess the influence of streptozotocin (STZ)-induced diabetes on the nociceptive behavior evoked by the injection of hypertonic saline (HS) into the masseter muscle of rats. Forty male rats were equally divided into four groups: a) isotonic saline control, which received 0.9% isotonic saline (IS), (Ctrl-IS); b) hypertonic saline control, which received 5% HS (Ctrl-HS); c) STZ-induced diabetic, which received IS, (STZ-IS); d) STZ-induced diabetic, which received HS (STZ-HS). Experimental diabetes was induced by a single intraperitoneal injection of STZ at dose of 60 mg/kg dissolved in 0.1 M citrate buffer, and 100 µL of HS or IS were injected into the left masseter to measure the nociceptive behavior. Later on, muscle RNA was extracted to measure the relative expression of the following cytokines: cyclooxygenase-2 (COX-2), tumor necrosis factor (TNF-α), and interleukins (IL)-1ß, -2, -6, and -10. One-way analysis of variance (ANOVA) was applied to the data (p < 0.050). We observed a main effect of group on the nociceptive response (ANOVA: F = 11.60, p < 0.001), where the Ctrl-HS group presented the highest response (p < 0.001). However, nociceptive response was similar among the Ctrl-IS, STZ-IS, and STZ-HS group (p > 0.050). In addition, the highest relative gene expression of TNF-α and IL-6 was found in the masseter of control rats following experimental muscle pain (p < 0.050). In conclusion, the loss of somatosensory function can be observed in deep orofacial tissues of STZ-induced diabetic rats.
Subject(s)
Cytokines , Diabetes Mellitus, Experimental , Masseter Muscle , Rats, Wistar , Streptozocin , Animals , Male , Masseter Muscle/drug effects , Masseter Muscle/physiopathology , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/physiopathology , Analysis of Variance , Cytokines/analysis , Saline Solution, Hypertonic/pharmacology , Pain Measurement , Time Factors , Reproducibility of Results , Facial Pain/physiopathology , Random Allocation , RatsABSTRACT
BACKGROUND: Type-1 diabetes mellitus (T1DM) is associated with numerous health problems, including peripheral neuropathy, osteoporosis, and bone denervation, all of which diminish quality of life. However, there are relatively few therapies to treat these T1DM-related complications. Recent studies have shown that Janus kinase (JAK) inhibitors reverse aging- and rheumatoid arthritis-induced bone loss and reduce pain associated with peripheral nerve injuries, and rheumatoid arthritis. Thus, we assessed whether a JAK1/JAK2 inhibitor, baricitinib, ameliorates mechanical pain sensitivity (a measure of peripheral neuropathy), osteoporosis, and bone denervation in the femur of mice with T1DM. METHODS: Female ICR mice (13 weeks old) received five daily administrations of streptozotocin (ip, 50 mg/kg) to induce T1DM. At thirty-one weeks of age, mice were treated with baricitinib (po; 40 mg/kg/bid; for 28 days) or vehicle. Mechanical sensitivity was evaluated at 30, 33, and 35 weeks of age on the plantar surface of the right hind paw. At the end of the treatment, mice were sacrificed, and lower extremities were harvested for microcomputed tomography and immunohistochemistry analyses. RESULTS: Mice with T1DM exhibited greater blood glucose levels, hind paw mechanical hypersensitivity, trabecular bone loss, and decreased density of calcitonin gene-related peptide-positive and tyrosine hydroxylase-positive axons within the marrow of the femoral neck compared to control mice. Baricitinib treatment significantly reduced mechanical hypersensitivity and ameliorated sensory and sympathetic denervation at the femoral neck, but it did not reverse trabecular bone loss. CONCLUSIONS: Our findings suggest that baricitinib may represent a new therapeutic alternative to treat T1DM-induced peripheral neuropathy and bone denervation.
Subject(s)
Azetidines , Bone Diseases, Metabolic , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 1 , Hyperalgesia , Mice, Inbred ICR , Purines , Pyrazoles , Sulfonamides , Animals , Azetidines/pharmacology , Purines/pharmacology , Pyrazoles/pharmacology , Sulfonamides/pharmacology , Female , Mice , Hyperalgesia/drug therapy , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/complications , Bone Diseases, Metabolic/drug therapy , X-Ray Microtomography , Disease Models, AnimalABSTRACT
PURPOSE: To assess the effect of Amorphophallus campanulatus tuber (Ac) extract in the protection of diabetic nephropathy in streptozotocin (STZ) induced diabetic nephropathy (DN) rat model. METHODS: Diabetes was induced with STZ (60 mg/kg, i.p.), and DN was confirmed after six weeks of STZ administration with the estimation of kidney function test. Further rats were treated with Ac 250 and 500 mg/kg p.o. for next four week. Oxidative stress and level of inflammatory cytokines were estimated in the kidney tissue of DN rats. Histopathology of kidney tissue was performed using hematoxylin and eosin staining. RESULTS: There was improvement in the body weight of Ac treated groups than DN group of rats. Blood glucose level was observed to be reduced in Ac treated groups than DN group on 42nd and 70th day of protocol. Treatment with Ac ameliorated the altered level of kidney function tests (creatinine and BUN), enzymes of liver function (aspartate aminotransferase and alanine aminotransferase), and lipid profile in the serum of DN rats. Oxidative stress parameters (malondialdehyde and reactive oxygen species enhances and reduction in the level of glutathione and superoxide dismutase) and inflammatory cytokines such as interleukin-6, tumour necrosis factor-α, and monocyte chemoattractant protein-1 reduces in the tissue of Ac treated group than DN group. Treatment with Ac also attenuates the altered histopathological changes in the kidney tissue of DN rats. CONCLUSIONS: The report suggests that Ac protects renal injury in DN rats by regulating inflammatory cytokines and oxidative stress.
Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Oxidative Stress , Plant Extracts , Tumor Necrosis Factor-alpha , Animals , Oxidative Stress/drug effects , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/prevention & control , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Male , Streptozocin , Rats , Rats, Wistar , Kidney/drug effects , Kidney/pathology , Blood Glucose/drug effects , Blood Glucose/analysis , Disease Models, Animal , Reproducibility of Results , Plant Tubers/chemistryABSTRACT
Newly conducted research suggests that metabolic disorders, like diabetes and obesity, play a significant role as risk factors for psychiatric disorders. This connection presents a potential avenue for creating novel antidepressant medications by repurposing drugs originally developed to address antidiabetic conditions. Earlier investigations have shown that GLP-1 (Glucagon-like Peptide-1) analogs exhibit neuroprotective qualities in various models of neurological diseases, encompassing conditions such as Alzheimer's disease, Parkinson's disease, and stroke. Moreover, GLP-1 analogs have demonstrated the capability to enhance neurogenesis, a process recognized for its significance in memory formation and the cognitive and emotional aspects of information processing. Nonetheless, whether semaglutide holds efficacy as both an antidepressant and anxiolytic agent remains uncertain. To address this, our study focused on a mouse model of depression linked to type 2 diabetes induced by a High Fat Diet (HFD). In this model, we administered semaglutide (0.05 mg/Kg intraperitoneally) on a weekly basis to evaluate its potential as a therapeutic option for depression and anxiety. Diabetic mice had higher blood glucose, lipidic profile, and insulin resistance. Moreover, mice fed HFD showed higher serum interleukin (IL)-1ß and lipopolysaccharide (LPS) associated with impaired humor and cognition. The analysis of behavioral responses revealed that the administration of semaglutide effectively mitigated depressive- and anxiety-like behaviors, concurrently demonstrating an enhancement in cognitive function. Additionally, semaglutide treatment protected synaptic plasticity and reversed the hippocampal neuroinflammation induced by HFD fed, improving activation of the insulin pathway, demonstrating the protective effects of semaglutide. We also found that semaglutide treatment decreased astrogliosis and microgliosis in the dentate gyrus region of the hippocampus. In addition, semaglutide prevented the DM2-induced impairments of pro-opiomelanocortin (POMC), and G-protein-coupled receptor 43 (GPR43) and simultaneously increased the NeuN + and Glucagon-like Peptide-1 receptor (GLP-1R+) neurons in the hippocampus. Our data also showed that semaglutide increased the serotonin (5-HT) and serotonin transporter (5-HTT) and glutamatergic receptors in the hippocampus. At last, semaglutide changed the gut microbiota profile (increasing Bacterioidetes, Bacteroides acidifaciens, and Blautia coccoides) and decreased leaky gut, improving the gut-brain axis. Taken together, semaglutide has the potential to act as a therapeutic tool for depression and anxiety.
Subject(s)
Anxiety , Brain-Gut Axis , Cognitive Dysfunction , Depression , Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Glucagon-Like Peptides , Mice, Inbred C57BL , Animals , Glucagon-Like Peptides/pharmacology , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/psychology , Diabetes Mellitus, Type 2/metabolism , Mice , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/prevention & control , Cognitive Dysfunction/etiology , Cognitive Dysfunction/metabolism , Depression/drug therapy , Depression/psychology , Depression/metabolism , Male , Anxiety/drug therapy , Anxiety/psychology , Anxiety/etiology , Gastrointestinal Microbiome/drug effects , Brain-Gut Axis/drug effects , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/psychology , Diabetes Mellitus, Experimental/metabolism , Disease Models, Animal , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic useABSTRACT
BACKGROUND: Diabetic neuropathy (DN) is recognized as a significant complication arising from diabetes mellitus (DM). Pathogenesis of DN is accelerated by endoplasmic reticulum (ER) stress, which inhibits autophagy and contributes to disease progression. Autophagy is a highly conserved mechanism crucial in mitigating cell death induced by ER stress. Chrysin, a naturally occurring flavonoid, can be found abundantly in honey, propolis, and various plant extracts. Despite possessing advantageous attributes such as being an antioxidant, anti-allergic, anti-inflammatory, anti-fibrotic, and anticancer agent, chrysin exhibits limited bioavailability. The current study aimed to produce a more bioavailable form of chrysin and discover how administering chrysin could alter the neuropathy induced by Alloxan in male rats. METHODS: Chrysin was formulated using PEGylated liposomes to boost its bioavailability and formulation. Chrysin PEGylated liposomes (Chr-PLs) were characterized for particle size diameter, zeta potential, polydispersity index, transmission electron microscopy, and in vitro drug release. Rats were divided into four groups: control, Alloxan, metformin, and Chr-PLs. In order to determine Chr- PLs' antidiabetic activity and, by extension, its capacity to ameliorate DN, several experiments were carried out. These included measuring acetylcholinesterase, fasting blood glucose, insulin, genes dependent on autophagy or stress in the endoplasmic reticulum, and histopathological analysis. RESULTS: According to the results, the prepared Chr-PLs exhibited an average particle size of approximately 134 nm. They displayed even distribution of particle sizes. The maximum entrapment efficiency of 90.48 ± 7.75% was achieved. Chr-PLs effectively decreased blood glucose levels by 67.7% and elevated serum acetylcholinesterase levels by 40% compared to diabetic rats. Additionally, Chr-PLs suppressed the expression of ER stress-related genes (ATF-6, CHOP, XBP-1, BiP, JNK, PI3K, Akt, and mTOR by 33%, 39.5%, 32.2%, 44.4%, 40.4%, 39.2%, 39%, and 35.9%, respectively). They also upregulated the miR-301a-5p expression levels by 513% and downregulated miR-301a-5p expression levels by 65%. They also boosted the expression of autophagic markers (AMPK, ULK1, Beclin 1, and LC3-II by 90.3%, 181%, 109%, and 78%, respectively) in the sciatic nerve. The histopathological analysis also showed that Chr-PLs inhibited sciatic nerve degeneration. CONCLUSION: The findings suggest that Chr-PLs may be helpful in the protection against DN via regulation of ER stress and autophagy.
Subject(s)
Autophagy , Diabetes Mellitus, Experimental , Diabetic Neuropathies , Endoplasmic Reticulum Stress , Flavonoids , Liposomes , Animals , Flavonoids/pharmacology , Flavonoids/administration & dosage , Autophagy/drug effects , Endoplasmic Reticulum Stress/drug effects , Male , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/complications , Rats , Diabetic Neuropathies/drug therapy , Diabetic Neuropathies/prevention & control , Polyethylene Glycols/pharmacology , Alloxan , Rats, Wistar , Rats, Sprague-DawleyABSTRACT
Acute kidney injury (AKI) is a public health concern associated with high rates of mortality, even in milder cases. One of the reasons for the difficulty in managing AKI in patients is due to its association with pre-existing comorbidities, such as diabetes. In fact, diabetes increases the susceptibility to develop more severe AKI after renal ischemia. However, the long-term effects of this association are not known. Thus, an experimental model was designed to evaluate the chronic effects of renal ischemia/reperfusion (IR) in streptozotocin (STZ)-treated mice. We focused on the glomerular and tubulointerstitial damage, as well as kidney function and metabolic profile. It was found that pre-existing diabetes may potentiate progressive kidney disease after AKI, mainly by exacerbating proinflammatory and sustaining fibrotic responses and altering renal glucose metabolism. To our knowledge, this is the first report that highlights the long-term effects of renal IR on diabetes. The findings of this study can support the management of AKI in clinical practice.NEW & NOTEWORTHY This study demonstrated that early diabetes potentiates progressive kidney disease after ischemia/reperfusion (IR)-induced acute kidney injury, mainly by exacerbating pro-inflammatory and sustaining fibrotic responses and altering renal glucose metabolism. Thus, these findings will contribute to the therapeutic support of patients with type 1 diabetes with eventual renal IR intervention in clinical practice.
Subject(s)
Acute Kidney Injury , Diabetes Mellitus, Experimental , Diabetic Nephropathies , Disease Progression , Kidney , Reperfusion Injury , Animals , Reperfusion Injury/metabolism , Reperfusion Injury/complications , Reperfusion Injury/pathology , Mice , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Acute Kidney Injury/etiology , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Male , Kidney/metabolism , Kidney/pathology , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Diabetic Nephropathies/etiology , Mice, Inbred C57BL , Streptozocin , FibrosisABSTRACT
Induction of the adenosine receptor A2B (A2BAR) expression in diabetic glomeruli correlates with an increased abundance of its endogenous ligand adenosine and the progression of kidney dysfunction. Remarkably, A2BAR antagonism protects from proteinuria in experimental diabetic nephropathy. We found that A2BAR antagonism preserves the arrangement of podocytes on the glomerular filtration barrier, reduces diabetes-induced focal adhesion kinase (FAK) activation, and attenuates podocyte foot processes effacement. In spreading assays using human podocytes in vitro, adenosine enhanced the rate of cell body expansion on laminin-coated glass and promoted peripheral pY397-FAK subcellular distribution, while selective A2BAR antagonism impeded these effects and attenuated the migratory capability of podocytes. Increased phosphorylation of the Myosin2A light chain accompanied the effects of adenosine. Furthermore, when the A2BAR was stimulated, the cells expanded more broadly and more staining of pS19 myosin was detected which co-localized with actin cables, suggesting increased contractility potential in cells planted onto a matrix with a stiffness similar to of the glomerular basement membrane. We conclude that A2BAR is involved in adhesion dynamics and contractile actin bundle formation, leading to podocyte foot processes effacement. The antagonism of this receptor may be an alternative to the intervention of glomerular barrier deterioration and proteinuria in the diabetic kidney disease.
Subject(s)
Cell Adhesion , Diabetes Mellitus, Experimental , Focal Adhesion Protein-Tyrosine Kinases , Podocytes , Proteinuria , Receptor, Adenosine A2B , Animals , Humans , Male , Rats , Adenosine/metabolism , Adenosine/pharmacology , Adenosine A2 Receptor Antagonists/pharmacology , Cell Adhesion/drug effects , Cell Movement/drug effects , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Diabetic Nephropathies/drug therapy , Focal Adhesion Protein-Tyrosine Kinases/drug effects , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Myosin Light Chains/metabolism , Phosphorylation/drug effects , Podocytes/metabolism , Podocytes/drug effects , Podocytes/pathology , Proteinuria/metabolism , Receptor, Adenosine A2B/drug effects , Receptor, Adenosine A2B/metabolismABSTRACT
Protectin DX (PDX), a specialized pro-resolving lipid mediator, presents potential therapeutic applications across various medical conditions due to its anti-inflammatory and antioxidant properties. Since type-1 diabetes mellitus (T1DM) is a disease with an inflammatory and oxidative profile, exploring the use of PDX in addressing T1DM and its associated comorbidities, including diabetic neuropathic pain, depression, and anxiety becomes urgent. Thus, in the current study, after 2 weeks of T1DM induction with streptozotocin (60 mg/kg) in Wistar rats, PDX (1, 3, and 10 ng/animal; i.p. injection of 200 µl/animal) was administered specifically on days 14, 15, 18, 21, 24, and 27 after T1DM induction. We investigated the PDX's effectiveness in alleviating neuropathic pain (mechanical allodynia; experiment 1), anxiety-like and depressive-like behaviors (experiment 2). Also, we studied whether the PDX treatment would induce antioxidant effects in the blood plasma, hippocampus, and prefrontal cortex (experiment 3), brain areas involved in the modulation of emotions. For evaluating mechanical allodynia, animals were repeatedly submitted to the Von Frey test; while for studying anxiety-like responses, animals were submitted to the elevated plus maze (day 26) and open field (day 28) tests. To analyze depressive-like behaviors, the animals were tested in the modified forced swimming test (day 28) immediately after the open field test. Our data demonstrated that PDX consistently increased the mechanical threshold throughout the study at the two highest doses, indicative of antinociceptive effect. Concerning depressive-like and anxiety-like behavior, all PDX doses effectively prevented these behaviors when compared to vehicle-treated T1DM rats. The PDX treatment significantly protected against the increased oxidative stress parameters in blood plasma and in hippocampus and prefrontal cortex. Interestingly, treated animals presented improvement on diabetes-related parameters by promoting weight gain and reducing hyperglycemia in T1DM rats. These findings suggest that PDX improved diabetic neuropathic pain, and induced antidepressant-like and anxiolytic-like effects, in addition to improving parameters related to the diabetic condition. It is worth noting that PDX also presented a protective action demonstrated by its antioxidant effects. To conclude, our findings suggest PDX treatment may be a promising candidate for improving the diabetic condition per se along with highly disabling comorbidities such as diabetic neuropathic pain and emotional disturbances associated with T1DM.
Subject(s)
Anxiety , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 1 , Docosahexaenoic Acids , Rats, Wistar , Animals , Male , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/psychology , Rats , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/psychology , Docosahexaenoic Acids/pharmacology , Docosahexaenoic Acids/therapeutic use , Anxiety/drug therapy , Anxiety/etiology , Depression/drug therapy , Depression/etiology , Antioxidants/pharmacology , Antioxidants/therapeutic use , Hyperalgesia/drug therapy , Behavior, Animal/drug effects , Hippocampus/drug effects , Hippocampus/metabolism , Prefrontal Cortex/drug effects , Diabetic Neuropathies/drug therapyABSTRACT
Diabetes mellitus (DM) affects the wound healing process, resulting in impaired healing or aberrant scarring. DM increases reactive oxygen species (ROS) production, fibroblast senescence and angiogenesis abnormalities, causing exacerbated inflammation accompanied by low levels of TGF-ß and an increase in Matrix metalloproteinases (MMPs). Propolis has been proposed as a healing alternative for diabetic patients because it has antimicrobial, anti-inflammatory, antioxidant and proliferative effects and important properties in the healing process. An ethanolic extract of Chihuahua propolis (ChEEP) was obtained and fractionated, and the fractions were subjected to High-Performance Liquid Chromatography with diode-array (HPLC-DAD), High-Performance Liquid Chromatography-Mass Spectrometry (HPLC-MS) and Gas Chromatography-Mass Spectrometry (GC-MS) analyses and 46 compounds were detected. Deep wounds were made in a murine DM model induced by streptozotocin, and the speed of closure and the wound tensile strength were evaluated by the tensiometric method, which showed that ChEEP had similar activity to Recoveron, improving the speed of healing and increasing the wound tensile strength needed to open the wound again. A histological analysis of the wounds was performed using H&E staining, and when Matrix metalloproteinase 9 (MMP9) and α-actin were quantified by immunohistochemistry, ChEEP was shown to be associated with improved histological healing, as indicated by the reduced MMP9 and α-actin expression. In conclusion, topical ChEEP application enhances wound healing in diabetic mice.
Subject(s)
Diabetes Mellitus, Experimental , Propolis , Humans , Mice , Animals , Propolis/pharmacology , Propolis/therapeutic use , Matrix Metalloproteinase 9/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/complications , Disease Models, Animal , Actins , Wound HealingABSTRACT
PURPOSE: To determine the effect of gallic acid or its combination with glibenclamide on some biochemical markers and histology of the cornea of streptozotocin (STZ) induced diabetic rats. METHODS: Following induction of diabetes, 24 male albino rats were divided into four groups of six rats each. Groups 1 and 2 (control and diabetic) received rat pellets and distilled water; group 3 (gallic acid) received rat pellets and gallic acid (10 mg/kg, orally) dissolved in the distilled water; and group 4 (gallic acid + glibenclamide) received rat pellets, gallic acid (10 mg/kg, orally), and glibenclamide (5 mg/kg, orally) dissolved in the distilled water. The treatments were administered for three months after which the rats were sacrificed after an overnight fast. Blood and sera were collected for the determination of biochemical parameters, while their eyes were excised for histology. RESULTS: STZ administration to the rats induced insulin resistance, hyperglycemia, microprotenuria, loss of weight, oxidative stress, inflammation, and alteration of their cornea histology, which was abolished following supplementation with gallic acid or its combination with glibenclamide. CONCLUSIONS: The study showed the potentials of gallic acid and glibenclamide in mitigating systemic complication and histological changes in the cornea of diabetic rats induced with STZ.
Subject(s)
Diabetes Mellitus, Experimental , Glyburide , Rats , Male , Animals , Glyburide/adverse effects , Hypoglycemic Agents/adverse effects , Gallic Acid/adverse effects , Streptozocin/adverse effects , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Cornea/pathology , Water/adverse effects , Blood GlucoseABSTRACT
We have studied the effects of individual and combined treatment of insulin (I) and naringin (NAR) on the bone structure and biomechanical properties of femurs from streptozotocin (STZ)-induced diabetic rats. Male Wistar rats were divided into five groups: (1) controls, (2) STZ-induced diabetic rats, (3) STZ-induced diabetic rats treated with I, (4) STZ-induced diabetic rats treated with NAR, and (5) STZ-induced diabetic rats treated with I + NAR. Bone mineral density (BMD), bone histomorphometry, biomechanical testing, and bone biomarker expressions were accomplished in femur of all animals, as well as serum biochemical analyses. The combined treatment of I + NAR increased the body weight and the femur BMD from STZ-induced diabetic rats. The bone biomechanical properties and the bone morphology of the femurs from STZ-induced diabetic rats were also improved by the combined treatment. The increased number of osteoclasts in STZ-induced diabetic rats was partially prevented by I, NAR, or I + NAR. NAR or I + NAR completely blocked the decrease in the number of osteocalcin (+) cells in the femur from STZ-induced diabetic rats. RUNX family transcription factor 2 immunostaining was much lower in STZ-induced diabetic rats than in control animals; the combination of I + NAR totally blocked this effect. The combined treatment not only ameliorated bone quality and function, but also normalized the variables related to glucose metabolism. Therefore, the combination of I + NAR might be a better therapeutic strategy than the individual I or NAR administration to reduce bone complications in diabetic patients.
Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 1 , Flavanones , Humans , Rats , Male , Animals , Diabetes Mellitus, Type 1/complications , Insulin , Rats, Wistar , Diabetes Mellitus, Experimental/complications , Bone DensityABSTRACT
PURPOSE: To evaluate the neuroprotective effects of Rilmenidine on diabetic peripheral neuropathy (DPN) in a rat model of diabetes induced by streptozotocin (STZ). METHODS: STZ (60 mg/kg) was administered to adult Sprague-Dawley rats to induce diabetes. On the 30th day after STZ administration, electromyography (EMG) and motor function tests confirmed the presence of DPN. Group 1: Control (n = 10), Group 2: DM + 0.1 mg/kg Rilmenidine (n = 10), and Group 3: DM + 0.2 mg/kg Rilmenidine (n = 10) were administered via oral lavage for four weeks. EMG, motor function test, biochemical analysis, and histological and immunohistochemical analysis of sciatic nerves were then performed. RESULTS: The administration of Rilmenidine to diabetic rats substantially reduced sciatic nerve inflammation and fibrosis and prevented electrophysiological alterations. Immunohistochemistry of sciatic nerves from saline-treated rats revealed increased perineural thickness, HMGB-1, tumor necrosis factor-α, and a decrease in nerve growth factor (NGF), LC-3. In contrast, Rilmendine significantly inhibited inflammation markers and prevented the reduction in NGF expression. In addition, Rilmenidine significantly decreased malondialdehyde and increased diabetic rats' total antioxidative capacity. CONCLUSIONS: The findings of this study suggest that Rilmenidine may have therapeutic effects on DNP by modulating antioxidant and autophagic pathways.
Subject(s)
Diabetes Mellitus, Experimental , Diabetic Neuropathies , Rats , Animals , Diabetic Neuropathies/drug therapy , Diabetic Neuropathies/pathology , Rats, Sprague-Dawley , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/pathology , Rilmenidine/pharmacology , Rilmenidine/therapeutic use , Nerve Growth Factor/metabolism , Nerve Growth Factor/pharmacology , Nerve Growth Factor/therapeutic use , Sciatic Nerve/pathology , Antioxidants/therapeutic use , Inflammation/pathologyABSTRACT
Diabetic neuropathic pain is one of the complications that affect a wide variety of the diabetic population and is often difficult to treat. Only a small number of patients experience pain relief, which usually comes with onerous side effects and low levels of satisfaction. The search for new analgesic drugs is necessary, given the limitations that current drugs present. Combining drugs to treat neuropathic pain has been attracting interest to improve their efficacy compared to single-drug monotherapies while also reducing dose sizes to minimize side effects. The aim of our study was to verify the antinociceptive effect of a synthetic peptide, PnPP-15, alone and combined with pregabalin, in male Swiss diabetic mice using the von Frey method. PnPP-15 is a synthetic peptide derived from PnPP19, a peptide representing a discontinuous epitope of the primary structure of the toxin PnTx2-6 from the venom of the spider Phoneutria nigriventer. The antinociceptive activity of both compounds was dose-dependent and showed synergism, which was verified by isobolographic analysis. Treatment with PnPP-15 did not cause spontaneous or forced motor changes and did not cause any damage or signs of toxicity in the analyzed organs (pancreas, lung, heart, kidney, brain, or liver). In conclusion, PnPP-15 is a great candidate for an analgesic drug against neuropathic pain caused by diabetes and exerts a synergistic effect when combined with pregabalin, allowing for even more efficient treatment.
Subject(s)
Diabetes Mellitus, Experimental , Neuralgia , Spider Venoms , Humans , Rats , Mice , Male , Animals , Pregabalin/pharmacology , Pregabalin/therapeutic use , Rats, Wistar , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Spider Venoms/therapeutic use , Spider Venoms/toxicity , Spider Venoms/chemistry , Peptides/pharmacology , Peptides/therapeutic use , Analgesics/pharmacology , Analgesics/therapeutic use , Neuralgia/drug therapyABSTRACT
Glycolytic overload in diabetes causes large accumulation of the highly reactive dicarbonyl compound methylglyoxal (MGO) and overproduction of advanced glycation end products (AGEs), which interact with their receptors (RAGE), leading to diabetes-associated macrovascular complications. The bladder is an organ that stays most in contact with dicarbonyl species, but little is known about the importance of the MGO-AGEs-RAGE pathway to diabetes-associated bladder dysfunction. Here, we aimed to investigate the role of the MGO-AGEs-RAGE pathway in bladder dysfunction of diabetic male and female ob/ob mice compared with wild-type (WT) lean mice. Diabetic ob/ob mice were treated with the AGE breaker alagebrium (ALT-711, 1 mg/kg) for 8 wk in drinking water. Compared with WT animals, male and female ob/ob mice showed marked hyperglycemia and insulin resistance, whereas fluid intake remained unaltered. Levels of total AGEs, MGO-derived hydroimidazolone 1, and RAGE in bladder tissues, as well as fluorescent AGEs in serum, were significantly elevated in ob/ob mice of either sex. Collagen content was also markedly elevated in the bladders of ob/ob mice. Void spot assays in filter paper in conscious mice revealed significant increases in total void volume and volume per void in ob/ob mice with no alterations of spot number. Treatment with ALT-711 significantly reduced the levels of MGO, AGEs, RAGE, and collagen content in ob/ob mice. In addition, ALT-711 treatment normalized the volume per void and increased the number of spots in ob/ob mice. Activation of AGEs-RAGE pathways by MGO in the bladder wall may contribute to the pathogenesis of diabetes-associated bladder dysfunction.NEW & NOTEWORTHY The involvement of methylglyoxal (MGO) and advanced glycation end products (AGEs) in bladder dysfunction of diabetic ob/ob mice treated with the AGE breaker ALT-711 was investigated here. Diabetic mice exhibited high levels of MGO, AGEs, receptor for AGEs (RAGE), and collagen in serum and/or bladder tissues along with increased volume per void, all of which were reduced by ALT-711. Activation of the MGO-AGEs-RAGE pathway in the bladder wall contributes to the pathogenesis of diabetes-associated bladder dysfunction.
Subject(s)
Diabetes Mellitus, Experimental , Glycation End Products, Advanced , Male , Female , Mice , Animals , Receptor for Advanced Glycation End Products , Glycation End Products, Advanced/metabolism , Pyruvaldehyde/metabolism , Diabetes Mellitus, Experimental/complications , Urinary Bladder/metabolism , Magnesium Oxide , Obesity/complications , Mice, Inbred StrainsABSTRACT
Diabetic cardiomyopathy (DCM) is a serious complication of diabetes caused by oxidative stress, inflammation, insulin resistance, myocardial fibrosis, and lipotoxicity; its nature is insidious, complex and difficult to treat. NLRP3 inflammasome triggers the maturation and release of pro-inflammatory cytokines, participates in pathophysiological processes such as insulin resistance and myocardial fibrosis, in addition to being closely related to the development and progression of diabetic cardiomyopathy. The development of inhibitors targeting specific aspects of inflammation suggests that NLRP3 inflammasome can be used to treat diabetic cardiomyopathy. This paper aims to summarize NLRP3 inflammasome mechanism and therapeutic targets in diabetic cardiomyopathy, and to provide new suggestions for the treatment of this disease.
La cardiomiopatía diabética es una complicación grave de la diabetes causada por estrés oxidativo, inflamación, resistencia a la insulina, fibrosis miocárdica y lipotoxicidad. Se trata de un padecimiento insidioso, complejo y difícil de tratar. El inflamasoma NLRP3 desencadena la maduración y liberación de citoquinas proinflamatorias, participa en procesos fisiopatológicos como la resistencia a la insulina y la fibrosis miocárdica, además de estar estrechamente relacionado con la aparición y progresión de la cardiomiopatía diabética. El desarrollo de inhibidores dirigidos a aspectos específicos de la inflamación sugiere que el inflamasoma NLRP3 puede utilizarse para tratar la cardiomiopatía diabética. Este artículo pretende resumir el mecanismo y las dianas terapéuticas del inflamasoma NLRP3 en la cardiomiopatía diabética, así como aportar nuevas sugerencias para el tratamiento de esta enfermedad.
Subject(s)
Diabetes Mellitus, Experimental , Diabetic Cardiomyopathies , Insulin Resistance , Animals , Humans , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Diabetic Cardiomyopathies/etiology , Diabetic Cardiomyopathies/complications , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Inflammation/etiology , FibrosisABSTRACT
BACKGROUND: Diabetic kidney disease (DKD) remains one of the main causes of end-stage renal disease (ESRD) and mortality in diabetic patients worldwide. Vitamin D deficiency (VitDD) is one of the main consequences of different chronic kidney disease (CKD) types and is associated with rapid progression to ESRD. Nevertheless, the mechanisms that lead to this process are poorly understood. This study aimed to characterize a model of diabetic nephropathy progression in VitDD and the epithelial-mesenchymal-transition (EMT) role in these processes. METHODS: Wistar Hannover rats received a diet with or without VitD before type 1 diabetes (T1D) induction. After this procedure, the rats were accompanied for 12 and 24 weeks after T1D induction and the renal function, structure, cell transdifferentiating markers and zinc finger e-box binding homeobox 1/2 (ZEB1/ZEB2) contribution to kidney damage were evaluated during the DKD progression. RESULTS: The results showed an increase in glomerular tuft, mesangial and interstitial relative areas and renal function impairment in VitD-deficient diabetic rats compared to diabetic rats that received a VitD-containing diet. These alterations can be associated with increased expression of EMT markers, ZEB1 gene expression, ZEB2 protein expression and TGF-ß1 urinary excretion. Decreased miR-200b expression, an important post-transcriptional regulator of ZEB1 and ZEB2 was also observed. CONCLUSION: Our data demonstrated that VitD deficiency contributes to the rapid development and progression of DKD in diabetic rats induced by increase ZEB1/ZEB2 expressions and miR-200b downregulation.
Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 1 , Diabetic Nephropathies , Kidney Failure, Chronic , MicroRNAs , Vitamin D Deficiency , Animals , Rats , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Type 1/complications , Rats, Wistar , Vitamin D , Vitamin D Deficiency/complications , VitaminsABSTRACT
Individuals with diabetes mellitus present a skeletal muscle myopathy characterized by atrophy. However, the mechanism underlying this muscular alteration remains elusive, which makes it difficult to design a rational treatment that could avoid the negative consequences in muscles due to diabetes. In the present work, the atrophy of skeletal myofibers from streptozotocin-induced diabetic rats was prevented with boldine, suggesting that non-selective channels inhibited by this alkaloid are involved in this process, as has previously shown for other muscular pathologies. Accordingly, we found a relevant increase in sarcolemma permeability of skeletal myofibers of diabetic animals in vivo and in vitro due to de novo expression of functional connexin hemichannels (Cx HCs) containing connexins (Cxs) 39, 43, and 45. These cells also expressed P2X7 receptors, and their inhibition in vitro drastically reduced sarcolemma permeability, suggesting their participation in the activation of Cx HCs. Notably, sarcolemma permeability of skeletal myofibers was prevented by boldine treatment that blocks Cx43 and Cx45 HCs, and now we demonstrated that it also blocks P2X7 receptors. In addition, the skeletal muscle alterations described above were not observed in diabetic mice with myofibers deficient in Cx43/Cx45 expression. Moreover, murine myofibers cultured for 24 h in high glucose presented a drastic increase in sarcolemma permeability and levels of NLRP3, a molecular member of the inflammasome, a response that was also prevented by boldine, suggesting that, in addition to the systemic inflammatory response found in diabetes, high glucose can promote the expression of functional Cx HCs and activation of the inflammasome in skeletal myofibers. Therefore, Cx43 and Cx45 HCs play a critical role in myofiber degeneration, and boldine could be considered a potential therapeutic agent to treat muscular complications due to diabetes.
Subject(s)
Connexin 43 , Diabetes Mellitus, Experimental , Mice , Rats , Animals , Connexin 43/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Inflammasomes/metabolism , Muscular Atrophy/drug therapy , Muscular Atrophy/etiology , Muscular Atrophy/metabolism , Muscle, Skeletal/metabolism , Connexins/metabolism , Glucose/metabolismABSTRACT
Diabetes mellitus increases the risk of obstetric complications, morbidity, and infant mortality. Controlled nutritional therapy with micronutrients has been employed. However, the effect of calcium (Ca2+) supplementation on diabetic pregnancy is unclear. We aimed to evaluate whether diabetic rats supplemented with Ca2+ during pregnancy present better glucose tolerance, redox status, embryonic and fetal development, newborn weight, and the prooxidant and antioxidant balance of male and female pups. For this, newborn rats received the beta-cytotoxic drug streptozotocin for inducing diabetes on the day of birth. In adulthood, these rats were mated and treated with Ca2+ twice a day from day 0 to day 20 of pregnancy. On day 17, the pregnant rats were submitted to the oral glucose tolerance test (OGTT). At the end of pregnancy, they were anesthetized and killed to collect blood and pancreas samples. The uterine horns were exposed for an evaluation of maternal reproductive outcomes and embryofetal development, and the offspring's liver samples were collected for redox status measurement. Nondiabetic and diabetic rats supplemented with Ca2+ showed no influence on glucose tolerance, redox status, insulin synthesis, serum calcium levels, and embryofetal losses. The reduced rate of newborns classified as adequate for gestational age (AGA) and higher rates of LGA (large) and small (LGA) newborns and higher -SH and GSH-Px antioxidant activities in female pups were observed in diabetic dams, regardless of supplementation. Thus, maternal supplementation caused no improvement in glucose tolerance, oxidative stress biomarkers, embryofetal growth and development, and antioxidants in pups from diabetic mothers.
Subject(s)
Calcium , Diabetes Mellitus, Experimental , Pregnancy , Rats , Animals , Male , Female , Antioxidants/pharmacology , Diabetes Mellitus, Experimental/complications , Rats, Wistar , Oxidative Stress , Dietary Supplements , Glucose/pharmacology , Blood GlucoseABSTRACT
We have studied the effects of naringin (NAR), a flavonoid from citric fruits, on morphology, ultrastructure and function of the kidney in streptozotocin (STZ)-induced diabetic rats. Two groups of animals were used: (1) control rats and (2) STZ rats (60 mg STZ/kg b.w.). At 3 days after induction, one group of STZ-treated rats received 40 mg NAR/kg b.w. daily. NAR blocked completely alterations in the biochemical renal markers in STZ rats except the increase in serum urea that was partially avoided by the flavonoid. NAR ameliorated the kidney morphological lesions from STZ rats. STZ treatment induced round and smaller mitochondria, which was avoided by NAR. Citrate synthase, isocitrate and malate dehydrogenases, enzyme activities of the Krebs cycle, were decreased in STZ rats. NAR abolished this decrease in the latter proteins. NAR also prevented a decrease in the ATP synthase activity of the mitochondria from renal cortex by about 49% in STZ rats, returning the enzyme activity to control values. The nephroprotection caused by NAR is mediated through counteraction of oxidative stress in mitochondria of proximal tubules. NAR might be a therapeutic strategy to reduce the complication of diabetic nephropathy in type 1 diabetic patients.