Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.855
1.
Front Immunol ; 15: 1393392, 2024.
Article En | MEDLINE | ID: mdl-38774880

This review provides a comprehensive analysis of the critical role played by macrophages and their underlying mechanisms in the progression of diabetic cardiomyopathy (DCM). It begins by discussing the origins and diverse subtypes of macrophages, elucidating their spatial distribution and modes of intercellular communication, thereby emphasizing their significance in the pathogenesis of DCM. The review then delves into the intricate relationship between macrophages and the onset of DCM, particularly focusing on the epigenetic regulatory mechanisms employed by macrophages in the context of DCM condition. Additionally, the review discusses various therapeutic strategies aimed at targeting macrophages to manage DCM. It specifically highlights the potential of natural food components in alleviating diabetic microvascular complications and examines the modulatory effects of existing hypoglycemic drugs on macrophage activity. These findings, summarized in this review, not only provide fresh insights into the role of macrophages in diabetic microvascular complications but also offer valuable guidance for future therapeutic research and interventions in this field.


Diabetic Cardiomyopathies , Macrophages , Diabetic Cardiomyopathies/immunology , Diabetic Cardiomyopathies/drug therapy , Diabetic Cardiomyopathies/etiology , Diabetic Cardiomyopathies/pathology , Humans , Macrophages/immunology , Macrophages/metabolism , Animals , Hypoglycemic Agents/therapeutic use , Epigenesis, Genetic
2.
J Transl Med ; 22(1): 494, 2024 May 24.
Article En | MEDLINE | ID: mdl-38790051

BACKGROUND: Diabetic cardiomyopathy (DCM), a serious complication of diabetes, leads to structural and functional abnormalities of the heart and ultimately evolves to heart failure. IL-37 exerts a substantial influence on the regulation of inflammation and metabolism. Whether IL-37 is involved in DCM is unknown. METHODS: The plasma samples were collected from healthy controls, diabetic patients and DCM patients, and the level of IL-37 and its relationship with heart function were observed. The changes in cardiac function, myocardial fibrosis and mitochondrial injury in DCM mice with or without IL-37 intervention were investigated in vivo. By an in vitro co-culture approach involving HG challenge of cardiomyocytes and fibroblasts, the interaction carried out by cardiomyocytes on fibroblast profibrotic activation was studied. Finally, the possible interactive mediator between cardiomyocytes and fibroblasts was explored, and the intervention role of IL-37 and its relevant molecular mechanisms. RESULTS: We showed that the level of plasma IL-37 in DCM patients was upregulated compared to that in healthy controls and diabetic patients. Both recombinant IL-37 administration or inducing IL-37 expression alleviated cardiac dysfunction and myocardial fibrosis in DCM mice. Mechanically, hyperglycemia impaired mitochondria through SIRT1/AMPK/PGC1α signaling, resulting in significant cardiomyocyte apoptosis and the release of extracellular vesicles containing mtDNA. Fibroblasts then engulfed these mtDNA-enriched vesicles, thereby activating TLR9 signaling and the cGAS-STING pathway to initiate pro-fibrotic process and adverse remodeling. However, the presence of IL-37 ameliorated mitochondrial injury by preserving the activity of SIRT1-AMPK-PGC1α axis, resulting in a reduction in release of mtDNA-enriched vesicle and ultimately attenuating the progression of DCM. CONCLUSIONS: Collectively, our study demonstrates a protective role of IL-37 in DCM, offering a promising therapeutic agent for this disease.


DNA, Mitochondrial , Diabetic Cardiomyopathies , Fibrosis , Interleukin-1 , Mice, Inbred C57BL , Myocytes, Cardiac , Animals , DNA, Mitochondrial/metabolism , Diabetic Cardiomyopathies/pathology , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/drug therapy , Humans , Interleukin-1/metabolism , Male , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Myocardium/pathology , Myocardium/metabolism , Fibroblasts/metabolism , Fibroblasts/drug effects , Signal Transduction/drug effects , Middle Aged , Mice , Sirtuin 1/metabolism , Apoptosis/drug effects , Female
3.
Cardiovasc Diabetol ; 23(1): 164, 2024 May 09.
Article En | MEDLINE | ID: mdl-38724987

Dynamin-related protein 1 (Drp1) is a crucial regulator of mitochondrial dynamics, the overactivation of which can lead to cardiovascular disease. Multiple distinct posttranscriptional modifications of Drp1 have been reported, among which S-nitrosylation was recently introduced. However, the detailed regulatory mechanism of S-nitrosylation of Drp1 (SNO-Drp1) in cardiac microvascular dysfunction in diabetes remains elusive. The present study revealed that mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) was consistently upregulated in diabetic cardiomyopathy (DCM) and promoted SNO-Drp1 in cardiac microvascular endothelial cells (CMECs), which in turn led to mitochondrial dysfunction and cardiac microvascular disorder. Further studies confirmed that MAP4K4 promoted SNO-Drp1 at human C644 (mouse C650) by inhibiting glutathione peroxidase 4 (GPX4) expression, through which MAP4K4 stimulated endothelial ferroptosis in diabetes. In contrast, inhibition of MAP4K4 via DMX-5804 significantly reduced endothelial ferroptosis, alleviated cardiac microvascular dysfunction and improved cardiac dysfunction in db/db mice by reducing SNO-Drp1. In parallel, the C650A mutation in mice abolished SNO-Drp1 and the role of Drp1 in promoting cardiac microvascular disorder and cardiac dysfunction. In conclusion, our findings demonstrate that MAP4K4 plays an important role in endothelial dysfunction in DCM and reveal that SNO-Drp1 and ferroptosis activation may act as downstream targets, representing potential therapeutic targets for DCM.


Diabetic Cardiomyopathies , Dynamins , Endothelial Cells , Mice, Inbred C57BL , Signal Transduction , Animals , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/genetics , Diabetic Cardiomyopathies/physiopathology , Diabetic Cardiomyopathies/pathology , Diabetic Cardiomyopathies/enzymology , Diabetic Cardiomyopathies/etiology , Humans , Dynamins/metabolism , Dynamins/genetics , Male , Endothelial Cells/metabolism , Endothelial Cells/pathology , Endothelial Cells/enzymology , Endothelial Cells/drug effects , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Ferroptosis/drug effects , Disease Models, Animal , Cells, Cultured , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology , Mitochondria, Heart/enzymology , Mice , Protein Processing, Post-Translational , Coronary Circulation , Intracellular Signaling Peptides and Proteins
4.
Sci Rep ; 14(1): 12119, 2024 05 27.
Article En | MEDLINE | ID: mdl-38802644

Despite its effectiveness in treating diabetic cardiomyopathy (DCM), Qigui Qiangxin Mixture (QGQXM) remains unclear in terms of its active ingredients and specific mechanism of action. The purpose of this study was to explore the active ingredients and mechanism of action of QGQXM in the treatment of DCM through the comprehensive strategy of serum pharmacology, network pharmacology and combined with experimental validation. The active ingredients of QGQXM were analyzed using Ultra-performance liquid chromatography coupled with quadrupole time of flight mass spectrometry (UPLC-Q/TOF-MS). Network pharmacology was utilized to elucidate the mechanism of action of QGQXM for the treatment of DCM. Finally, in vivo validation was performed by intraperitoneal injection of STZ combined with high-fat feeding-induced DCM rat model. A total of 25 active compounds were identified in the drug-containing serum of rats, corresponding to 121 DCM-associated targets. GAPDH, TNF, AKT1, PPARG, EGFR, CASP3, and HIF1 were considered as the core therapeutic targets. Enrichment analysis showed that QGQXM mainly treats DCM by regulating PI3K-AKT, MAPK, mTOR, Insulin, Insulin resistance, and Apoptosis signaling pathways. Animal experiments showed that QGQXM improved cardiac function, attenuated the degree of cardiomyocyte injury and fibrosis, and inhibited apoptosis in DCM rats. Meanwhile, QGQXM also activated the PI3K/AKT signaling pathway, up-regulated Bcl-2, and down-regulated Caspase9, which may be an intrinsic mechanism for its anti-apoptotic effect. This study preliminarily elucidated the mechanism of QGQXM in the treatment of DCM and provided candidate compounds for the development of new drugs for DCM.


Diabetic Cardiomyopathies , Drugs, Chinese Herbal , Network Pharmacology , Animals , Drugs, Chinese Herbal/pharmacology , Diabetic Cardiomyopathies/drug therapy , Diabetic Cardiomyopathies/metabolism , Rats , Male , Chromatography, High Pressure Liquid , Rats, Sprague-Dawley , Disease Models, Animal , Mass Spectrometry/methods , Signal Transduction/drug effects , Diabetes Mellitus, Experimental/drug therapy
5.
Am J Chin Med ; 52(3): 841-864, 2024.
Article En | MEDLINE | ID: mdl-38716618

A high-glucose environment is involved in the progression of diabetes mellitus (DM). This study aims to explore the regulatory effects of quercetin (QUE) on autophagy and apoptosis after myocardial injury in rats with DM. The type 2 DM rat models were constructed using low-dose streptozotocin (STZ) treatment combined with a high-carbohydrate (HC) diet in vivo. Compared with the control group, the body weight was decreased, whereas blood pressure, blood glucose, and the LVW/BW ratio were increased in the diabetic group. The results showed that the myocardial fibers were disordered in the diabetic group. Moreover, we found that the myocardial collagen fibers, PAS-positive cells, and apoptosis were increased, whereas the mitochondrial structure was destroyed and autophagic vacuoles were significantly reduced in the diabetic group compared with the control group. The expression levels of autophagy-related proteins LC3 and Beclin1 were decreased, whereas the expression levels of P62, Caspae-3, and Bax/Bcl-2 were increased in the diabetic group in vitro and in vivo. Moreover, QUE treatment alleviated the cellular oxidative stress reaction under high-glucose environments. The results of immunoprecipitation (IP) showed that the autophagy protein Beclin1 was bound to Bcl-2, and the binding capacity increased in the HG group, whereas it decreased after QUE treatment, suggesting that QUE inhibited the binding capacity between Beclin1 and Bcl-2, thus leading to the preservation of Beclin1-induced autophagy. In addition, the blood pressure, blood glucose, and cardiac function of rats were improved following QUE treatment. In conclusion, QUE suppressed diabetic myocardial injury and ameliorated cardiac function by regulating myocardial autophagy and inhibition of apoptosis in diabetes through the AMPK/mTOR signaling pathway.


AMP-Activated Protein Kinases , Apoptosis , Autophagy , Diabetes Mellitus, Experimental , Quercetin , Signal Transduction , TOR Serine-Threonine Kinases , Animals , Autophagy/drug effects , Apoptosis/drug effects , TOR Serine-Threonine Kinases/metabolism , Quercetin/pharmacology , Signal Transduction/drug effects , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Male , AMP-Activated Protein Kinases/metabolism , Rats, Sprague-Dawley , Rats , Disease Models, Animal , Myocardium/metabolism , Myocardium/pathology , Streptozocin , Diabetic Cardiomyopathies/etiology , Diabetic Cardiomyopathies/drug therapy , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/prevention & control , Phytotherapy , Beclin-1/metabolism , Oxidative Stress/drug effects , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/complications
6.
Cell Mol Life Sci ; 81(1): 228, 2024 May 22.
Article En | MEDLINE | ID: mdl-38777955

Diabetic cardiomyopathy (DCM) is a prevalent complication of type 2 diabetes (T2D). 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) is a glycolysis regulator. However, the potential effects of PFKFB3 in the DCM remain unclear. In comparison to db/m mice, PFKFB3 levels decreased in the hearts of db/db mice. Cardiac-specific PFKFB3 overexpression inhibited myocardial oxidative stress and cardiomyocyte apoptosis, suppressed mitochondrial fragmentation, and partly restored mitochondrial function in db/db mice. Moreover, PFKFB3 overexpression stimulated glycolysis. Interestingly, based on the inhibition of glycolysis, PFKFB3 overexpression still suppressed oxidative stress and apoptosis of cardiomyocytes in vitro, which indicated that PFKFB3 overexpression could alleviate DCM independent of glycolysis. Using mass spectrometry combined with co-immunoprecipitation, we identified optic atrophy 1 (OPA1) interacting with PFKFB3. In db/db mice, the knockdown of OPA1 receded the effects of PFKFB3 overexpression in alleviating cardiac remodeling and dysfunction. Mechanistically, PFKFB3 stabilized OPA1 expression by promoting E3 ligase NEDD4L-mediated atypical K6-linked polyubiquitination and thus prevented the degradation of OPA1 by the proteasomal pathway. Our study indicates that PFKFB3/OPA1 could be potential therapeutic targets for DCM.


Diabetic Cardiomyopathies , GTP Phosphohydrolases , Myocytes, Cardiac , Phosphofructokinase-2 , Ubiquitination , Phosphofructokinase-2/metabolism , Phosphofructokinase-2/genetics , Animals , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/pathology , Diabetic Cardiomyopathies/genetics , Mice , GTP Phosphohydrolases/metabolism , GTP Phosphohydrolases/genetics , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Male , Oxidative Stress , Apoptosis/genetics , Myocardium/metabolism , Myocardium/pathology , Mice, Inbred C57BL , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/genetics , Glycolysis , Humans , Protein Stability
7.
Sci Rep ; 14(1): 10311, 2024 05 05.
Article En | MEDLINE | ID: mdl-38705920

Diabetic individuals with diabetic cardiomyopathy (DbCM) present with abnormal myocardial structure and function. DbCM cannot be accurately diagnosed due to the lack of suitable diagnostic biomarkers. In this study, 171 eligible participants were divided into a healthy control (HC), type 2 diabetes mellitus (T2DM) patients without DbCM (T2DM), or DbCM group. Serum fibrinogen-like protein 1 (FGL-1) and other biochemical parameters were determined for all participants. Serum FGL-1 levels were significantly higher in patients with DbCM compared with those in the T2DM group and HCs. Serum FGL-1 levels were negatively correlated with left ventricular fractional shortening and left ventricular ejection fraction (LVEF) and positively correlated with left ventricular mass index in patients with DbCM after adjusting for age, sex and body mass index. Interaction of serum FGL-1 and triglyceride levels on LVEF was noted in patients with DbCM. A composite marker including serum FGL-1 and triglycerides could differentiate patients with DbCM from those with T2DM and HCs with an area under the curve of 0.773 and 0.789, respectively. Composite marker levels were negatively correlated with N-terminal B-type natriuretic peptide levels in patients with DbCM. Circulating FGL-1 may therefore be a valuable index reflecting cardiac functions in DbCM and to diagnose DbCM.


Biomarkers , Diabetes Mellitus, Type 2 , Diabetic Cardiomyopathies , Fibrinogen , Humans , Male , Female , Fibrinogen/metabolism , Fibrinogen/analysis , Diabetic Cardiomyopathies/blood , Diabetic Cardiomyopathies/diagnosis , Biomarkers/blood , Middle Aged , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/complications , Aged , Ventricular Function, Left , Case-Control Studies , Stroke Volume , Triglycerides/blood
8.
Cardiovasc Diabetol ; 23(1): 160, 2024 May 07.
Article En | MEDLINE | ID: mdl-38715043

BACKGROUND: Diabetic cardiomyopathy (DCM) is a crucial complication of long-term chronic diabetes that can lead to myocardial hypertrophy, myocardial fibrosis, and heart failure. There is increasing evidence that DCM is associated with pyroptosis, a form of inflammation-related programmed cell death. Growth differentiation factor 11 (GDF11) is a member of the transforming growth factor ß superfamily, which regulates oxidative stress, inflammation, and cell survival to mitigate myocardial hypertrophy, myocardial infarction, and vascular injury. However, the role of GDF11 in regulating pyroptosis in DCM remains to be elucidated. This research aims to investigate the role of GDF11 in regulating pyroptosis in DCM and the related mechanism. METHODS AND RESULTS: Mice were injected with streptozotocin (STZ) to induce a diabetes model. H9c2 cardiomyocytes were cultured in high glucose (50 mM) to establish an in vitro model of diabetes. C57BL/6J mice were preinjected with adeno-associated virus 9 (AAV9) intravenously via the tail vein to specifically overexpress myocardial GDF11. GDF11 attenuated pyroptosis in H9c2 cardiomyocytes after high-glucose treatment. In diabetic mice, GDF11 alleviated cardiomyocyte pyroptosis, reduced myocardial fibrosis, and improved cardiac function. Mechanistically, GDF11 inhibited pyroptosis by preventing inflammasome activation. GDF11 achieved this by specifically binding to apoptosis-associated speck-like protein containing a CARD (ASC) and preventing the assembly and activation of the inflammasome. Additionally, the expression of GDF11 during pyroptosis was regulated by peroxisome proliferator-activated receptor α (PPARα). CONCLUSION: These findings demonstrate that GDF11 can treat diabetic cardiomyopathy by alleviating pyroptosis and reveal the role of the PPARα-GDF11-ASC pathway in DCM, providing ideas for new strategies for cardioprotection.


Diabetes Mellitus, Experimental , Diabetic Cardiomyopathies , Fibrosis , Growth Differentiation Factors , Inflammasomes , Mice, Inbred C57BL , Myocytes, Cardiac , Pyroptosis , Signal Transduction , Animals , Pyroptosis/drug effects , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/pathology , Diabetic Cardiomyopathies/prevention & control , Diabetic Cardiomyopathies/etiology , Diabetic Cardiomyopathies/physiopathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Myocytes, Cardiac/drug effects , Diabetes Mellitus, Experimental/metabolism , Cell Line , Inflammasomes/metabolism , Male , Growth Differentiation Factors/metabolism , Rats , Blood Glucose/metabolism , Mice , Glucose/metabolism , Glucose/toxicity , Bone Morphogenetic Proteins , PPAR alpha
9.
Phytomedicine ; 129: 155619, 2024 Jul.
Article En | MEDLINE | ID: mdl-38723524

BACKGROUND: As a common complication of diabetes, diabetic cardiomyopathy (DCM) often leads to further damage to the heart muscle. Curcumin has been proven to have a variety of cardioprotective effects, however, the protective effect against DCM has not been systematically reviewed. PURPOSE: In this study, we aimed to analyze the preclinical (animal model) evidence of curcumin's therapeutic effects in DCM. METHODS: Eight databases and two registry systems were searched from the time of library construction to 1 November 2023. We performed rigorous data extraction and quality assessment. The included studies' methodological quality was appraised using the SYRCLE RoB tool, statistical analyses were carried out using RevMan 5.4 software, and Funnel plots and Egger's test were performed using Stata 17.0 software to assess publication bias. RESULTS: This study included 32 trials with a total of 681 animals. Meta-analysis showed that curcumin significantly improved cardiac function indices (LVEF, LVFS, and LVSd) (p < 0.01), decreased markers of myocardial injury, HW/BW ratio, and randomized blood glucose compared to the control group, in addition to showing beneficial effects on mechanistic indices of myocardial oxidation, inflammation, apoptosis, and autophagy (p < 0.05). CONCLUSIONS: Curcumin may exert cardioprotective effects in DCM through its antioxidant, anti-inflammatory, autophagy-enhancing, and anti-apoptotic effects. Its protective effect is proportional to the dose, and the efficacy may be further increased at a concentration of more than 200 mg/kg, and further validation is needed.


Cardiotonic Agents , Curcumin , Diabetic Cardiomyopathies , Curcumin/pharmacology , Curcumin/therapeutic use , Diabetic Cardiomyopathies/drug therapy , Diabetic Cardiomyopathies/prevention & control , Animals , Cardiotonic Agents/pharmacology , Cardiotonic Agents/therapeutic use , Apoptosis/drug effects
10.
Int J Mol Sci ; 25(9)2024 May 05.
Article En | MEDLINE | ID: mdl-38732253

Diabetes mellitus (DM) is known as the first non-communicable global epidemic. It is estimated that 537 million people have DM, but the condition has been properly diagnosed in less than half of these patients. Despite numerous preventive measures, the number of DM cases is steadily increasing. The state of chronic hyperglycaemia in the body leads to numerous complications, including diabetic cardiomyopathy (DCM). A number of pathophysiological mechanisms are behind the development and progression of cardiomyopathy, including increased oxidative stress, chronic inflammation, increased synthesis of advanced glycation products and overexpression of the biosynthetic pathway of certain compounds, such as hexosamine. There is extensive research on the treatment of DCM, and there are a number of therapies that can stop the development of this complication. Among the compounds used to treat DCM are antiglycaemic drugs, hypoglycaemic drugs and drugs used to treat myocardial failure. An important element in combating DCM that should be kept in mind is a healthy lifestyle-a well-balanced diet and physical activity. There is also a group of compounds-including coenzyme Q10, antioxidants and modulators of signalling pathways and inflammatory processes, among others-that are being researched continuously, and their introduction into routine therapies is likely to result in greater control and more effective treatment of DM in the future. This paper summarises the latest recommendations for lifestyle and pharmacological treatment of cardiomyopathy in patients with DM.


Diabetic Cardiomyopathies , Humans , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/therapy , Diabetic Cardiomyopathies/drug therapy , Diabetic Cardiomyopathies/etiology , Hypoglycemic Agents/therapeutic use , Oxidative Stress , Antioxidants/therapeutic use , Diabetes Mellitus/metabolism , Diabetes Mellitus/drug therapy , Animals
11.
BMC Med ; 22(1): 195, 2024 May 14.
Article En | MEDLINE | ID: mdl-38745169

BACKGROUND: Diabetic cardiomyopathy (DbCM) is characterized by asymptomatic stage B heart failure (SBHF) caused by diabetes-related metabolic alterations. DbCM is associated with an increased risk of progression to overt heart failure (HF). The prevalence of DbCM in patients with type 2 diabetes (T2D) is not well established. This study aims to determine prevalence of DbCM in adult T2D patients in real-world clinical practice. METHODS: Retrospective multi-step review of electronic medical records of patients with the diagnosis of T2D who had echocardiogram at UC San Diego Medical Center (UCSD) within 2010-2019 was conducted to identify T2D patients with SBHF. We defined "pure" DbCM when SBHF is associated solely with T2D and "mixed" SBHF when other medical conditions can contribute to SBHF. "Pure" DbCM was diagnosed in T2D patients with echocardiographic demonstration of SBHF defined as left atrial (LA) enlargement (LAE), as evidenced by LA volume index ≥ 34 mL/m2, in the presence of left ventricular ejection fraction (LVEF) ≥ 45%, while excluding overt HF and comorbidities that can contribute to SBHF. RESULTS: Of 778,314 UCSD patients in 2010-2019, 45,600 (5.9%) had T2D diagnosis. In this group, 15,182 T2D patients (33.3%) had echocardiogram and, among them, 13,680 (90.1%) had LVEF ≥ 45%. Out of 13,680 patients, 4,790 patients had LAE. Of them, 1,070 patients were excluded due to incomplete data and/or a lack of confirmed T2D according to the American Diabetes Association recommendations. Thus, 3,720 T2D patients with LVEF ≥ 45% and LAE were identified, regardless of HF symptoms. In this group, 1,604 patients (43.1%) had overt HF and were excluded. Thus, 2,116 T2D patients (56.9% of T2D patients with LVEF ≥ 45% and LAE) with asymptomatic SBHF were identified. Out of them, 1,773 patients (83.8%) were diagnosed with "mixed" SBHF due to comorbidities such as hypertension (58%), coronary artery disease (36%), and valvular heart disease (17%). Finally, 343 patients met the diagnostic criteria of "pure" DbCM, which represents 16.2% of T2D patients with SBHF, i.e., at least 2.9% of the entire T2D population in this study. CONCLUSIONS: Our findings provide insights into prevalence of DbCM in real-world clinical practice and indicate that DbCM affects a significant portion of T2D patients.


Academic Medical Centers , Diabetes Mellitus, Type 2 , Diabetic Cardiomyopathies , Humans , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/complications , Male , Female , Diabetic Cardiomyopathies/epidemiology , Middle Aged , Retrospective Studies , Prevalence , Aged , Echocardiography , Adult , Heart Failure/epidemiology , Heart Failure/complications
12.
Cardiovasc Diabetol ; 23(1): 169, 2024 May 15.
Article En | MEDLINE | ID: mdl-38750502

Diabetic heart disease (DHD) is a serious complication in patients with diabetes. Despite numerous studies on the pathogenic mechanisms and therapeutic targets of DHD, effective means of prevention and treatment are still lacking. The pathogenic mechanisms of DHD include cardiac inflammation, insulin resistance, myocardial fibrosis, and oxidative stress. Macrophages, the primary cells of the human innate immune system, contribute significantly to these pathological processes, playing an important role in human disease and health. Therefore, drugs targeting macrophages hold great promise for the treatment of DHD. In this review, we examine how macrophages contribute to the development of DHD and which drugs could potentially be used to target macrophages in the treatment of DHD.


Diabetic Cardiomyopathies , Macrophages , Oxidative Stress , Signal Transduction , Humans , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Diabetic Cardiomyopathies/immunology , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/drug therapy , Diabetic Cardiomyopathies/etiology , Animals , Oxidative Stress/drug effects , Fibrosis , Anti-Inflammatory Agents/therapeutic use , Myocardium/pathology , Myocardium/metabolism , Myocardium/immunology , Insulin Resistance , Inflammation Mediators/metabolism , Molecular Targeted Therapy
13.
J Cell Mol Med ; 28(10): e18324, 2024 May.
Article En | MEDLINE | ID: mdl-38760897

Early research suggested that bone morphogenetic protein 10 (BMP10) is primarily involved in cardiac development and congenital heart disease processes. BMP10 is a newly identified cardiac-specific protein. In recent years, reports have emphasized the effects of BMP10 on myocardial apoptosis, fibrosis and immune response, as well as its synergistic effects with BMP9 in vascular endothelium and role in endothelial dysfunction. We believe that concentrating on this aspect of the study will enhance our knowledge of the pathogenesis of diabetes and the cardiovascular field. However, there have been no reports of any reviews discussing the role of BMP10 in diabetes and cardiovascular disease. In addition, the exact pathogenesis of diabetic cardiomyopathy is not fully understood, including myocardial energy metabolism disorders, microvascular changes, abnormal apoptosis of cardiomyocytes, collagen structural changes and myocardial fibrosis, all of which cause cardiac function impairment directly or indirectly and interact with one another. This review summarizes the research results of BMP10 in cardiac development, endothelial function and cardiovascular disease in an effort to generate new ideas for future research into diabetic cardiomyopathy.


Bone Morphogenetic Proteins , Cardiovascular Diseases , Diabetes Mellitus , Diabetic Cardiomyopathies , Humans , Animals , Bone Morphogenetic Proteins/metabolism , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/pathology , Diabetes Mellitus/metabolism , Diabetes Mellitus/pathology , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/pathology , Myocardium/metabolism , Myocardium/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Apoptosis
14.
J Pharm Pharm Sci ; 27: 12568, 2024.
Article En | MEDLINE | ID: mdl-38706718

Unhealthy sources of fats, ultra-processed foods with added sugars, and a sedentary lifestyle make humans more susceptible to developing overweight and obesity. While lipids constitute an integral component of the organism, excessive and abnormal lipid accumulation that exceeds the storage capacity of lipid droplets disrupts the intracellular composition of fatty acids and results in the release of deleterious lipid species, thereby giving rise to a pathological state termed lipotoxicity. This condition induces endoplasmic reticulum stress, mitochondrial dysfunction, inflammatory responses, and cell death. Recent advances in omics technologies and analytical methodologies and clinical research have provided novel insights into the mechanisms of lipotoxicity, including gut dysbiosis, epigenetic and epitranscriptomic modifications, dysfunction of lipid droplets, post-translational modifications, and altered membrane lipid composition. In this review, we discuss the recent knowledge on the mechanisms underlying the development of lipotoxicity and lipotoxic cardiometabolic disease in obesity, with a particular focus on lipotoxic and diabetic cardiomyopathy.


Diabetic Cardiomyopathies , Obesity , Humans , Obesity/metabolism , Obesity/drug therapy , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/drug therapy , Animals , Lipid Metabolism/drug effects
15.
Zhongguo Zhong Yao Za Zhi ; 49(7): 1905-1914, 2024 Apr.
Article Zh | MEDLINE | ID: mdl-38812203

This study aimed to explore the mechanism of Shexiang Tongxin Dropping Pills(STDP) in treating diabetic cardiomyopathy(DCM) based on network pharmacology, molecular docking, and animal experiments. BATMAN, TCMSP, and GeneCards were searched for the active ingredients and targets of STDP against DCM. STRING and Cytoscape were used to build the protein-protein interaction(PPI) network and "drug-active ingredient-target" network. Gene Ontology(GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analysis of the targets were carried out based on DAVID. The molecular docking of key receptor proteins with corresponding active ingredients was performed using AutoDock Vina. The rat model of DCM was established by a high-fat diet combined with intraperitoneal injection of streptozotocin. Rats were assigned into control, model, low-(20 mg·kg~(-1)) and high-dose(40 mg·kg~(-1)) STDP, and metformin(200 mg·kg~(-1)) groups. After 8 weeks of continuous administration, the cardiac function, myocardial pathological changes, and myocardial collagen fiber deposition of rats in each group were detected by echocardiography, hematoxylin-eosin(HE) staining, and Sirius red staining, respectively. The myocardial hypertrophy was detected by WGA staining. The expression levels of p38 mitogen-activated protein kinase(p38), phosphorylation-p38(p-p38), c-Jun N-terminal kinase(JNK), phosphorylation-JNK(p-JNK), caspase-3, and C-caspase-3 in the myocardial tissue of rats in each group were measured by Western blot. The network pharmacology predicted 199 active ingredients and 1 655 targets of STDP and 463 targets of DCM. One hundred and thirty-four potential targets of STDP for treating DCM were obtained, and the AGE-RAGE signaling pathway in diabetic complications was screened out. Molecular docking results showed that miltirone, dehydromiltirone, and tryptanthrin had strong binding affinity with RAGE. The results of animal experiments confirmed that STDP effectively protected the cardiac function of DCM rats. Compared with the DCM model group, the STDP groups showed significantly down-regulated protein levels of p-p38, p-JNK, and C-caspase-3. To sum up, STDP may protect the cardiac function of DCM rats by regulating the AGE-RAGE signaling pathway.


Diabetic Cardiomyopathies , Drugs, Chinese Herbal , Molecular Docking Simulation , Network Pharmacology , Animals , Diabetic Cardiomyopathies/drug therapy , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/genetics , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/administration & dosage , Rats , Male , Rats, Sprague-Dawley , Humans
16.
Int Heart J ; 65(3): 537-547, 2024 May 31.
Article En | MEDLINE | ID: mdl-38749744

Cardiomyocyte lipotoxicity and ferroptosis are the key to the development of diabetic cardiomyopathy (DCM). Perilipin 5 (PLIN5) is perceived as a significant target of DCM. This study aimed to focus on the role and mechanism of PLIN5 on lipotoxicity and ferroptosis in DCM.Following transfection, mouse cardiomyocytes HL-1 were induced by 0.1 mM palmitic acid (PA) to set up lipotoxic cardiomyocyte models. The cell viability and lipid accumulation were evaluated by cell counting kit-8 assay and Oil red O staining, respectively. Ferrous ion (Fe2+), glutathione (GSH), malondialdehyde (MDA), and reactive oxygen species (ROS) levels were determined to verify the effects of PLIN5 or Pirin (PIR) on ferroptosis. Quantitative real-time reverse transcription polymerase chain reaction or Western blot was performed for quantitative analysis.PLIN5 overexpression promoted the viability, GSH level, and expression of GPX4/PIR/intracellular P65, yet suppressed lipid accumulation, level of Fe2+/MDA/ROS, and expression of interleukin (IL)-1ß/IL-18/intranuclear P65 in PA-stimulated HL-1 cells. PIR silencing counteracted the roles of PLIN5 overexpression in PA-stimulated HL-1 cells.PLIN5 suppresses lipotoxicity and ferroptosis in cardiomyocyte via modulating PIR/NF-κB axis, hinting its potential as a therapeutic target in DCM.


Diabetic Cardiomyopathies , Ferroptosis , Myocytes, Cardiac , NF-kappa B , Perilipin-5 , Animals , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Mice , Perilipin-5/metabolism , Diabetic Cardiomyopathies/metabolism , NF-kappa B/metabolism , Reactive Oxygen Species/metabolism , Cell Survival , Palmitic Acid/pharmacology , Signal Transduction
17.
Biomed Pharmacother ; 175: 116790, 2024 Jun.
Article En | MEDLINE | ID: mdl-38776677

Diabetic cardiomyopathy (DCM) is a cardiac microvascular complication caused by metabolic disorders. It is characterized by myocardial remodeling and dysfunction. The pathogenesis of DCM is associated with abnormal cellular metabolism and organelle accumulation. Autophagy is thought to play a key role in the diabetic heart, and a growing body of research suggests that modulating autophagy may be a potential therapeutic strategy for DCM. Here, we have summarized the major signaling pathways involved in the regulation of autophagy in DCM, including Adenosine 5'-monophosphate-activated protein kinase (AMPK), mechanistic target of rapamycin (mTOR), Forkhead box subfamily O proteins (FOXOs), Sirtuins (SIRTs), and PTEN-inducible kinase 1 (PINK1)/Parkin. Given the significant role of autophagy in DCM, we further identified natural products and chemical drugs as regulators of autophagy in the treatment of DCM. This review may help to better understand the autophagy mechanism of drugs for DCM and promote their clinical application.


Autophagy , Diabetic Cardiomyopathies , Signal Transduction , Diabetic Cardiomyopathies/drug therapy , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/pathology , Humans , Autophagy/drug effects , Animals , Signal Transduction/drug effects
18.
Int J Med Sci ; 21(7): 1194-1203, 2024.
Article En | MEDLINE | ID: mdl-38818468

This study aims to elucidate the roles of Phosphoglycerate Mutase Family Member 5 (Pgam5) and Prohibitin 2 (Phb2) in the context of hyperglycemia-induced myocardial dysfunction, a critical aspect of diabetic cardiomyopathy. The research employed primary cardiomyocytes, which were then subjected to hyperglycemia treatment to mimic diabetic conditions. We used siRNA transfection to knock down Pgam5 and overexpressed Phb2 using adenovirus transfection to assess their individual and combined effects on cardiomyocyte health. Mitochondrial function was evaluated through measurements of mitochondrial membrane potential using the JC-1 probe, and levels of mitochondrial reactive oxygen species (ROS) were assessed. Additionally, the study involved qPCR analysis to quantify the transcriptional changes in genes related to mitochondrial fission and mitophagy. Our findings indicate that hyperglycemia significantly reduces cardiomyocyte viability and impairs mitochondrial function, as evidenced by decreased mitochondrial membrane potential and increased ROS levels. Pgam5 knockdown was observed to mitigate these adverse effects, preserving mitochondrial function and cardiomyocyte viability. On the molecular level, Pgam5 was found to regulate genes associated with mitochondrial fission (such as Drp1, Mff, and Fis1) and mitophagy (including Parkin, Bnip3, and Fundc1). Furthermore, overexpression of Phb2 countered the hyperglycemia-induced mitochondrial dysfunction and normalized the levels of key mitochondrial antioxidant enzymes. The combined data suggest a protective role for both Pgam5 knockdown and Phb2 overexpression against hyperglycemia-induced cellular and mitochondrial damage. The study elucidates the critical roles of Pgam5 and Phb2 in regulating mitochondrial dynamics in the setting of hyperglycemia-induced myocardial dysfunction. By modulating mitochondrial fission and mitophagy, Pgam5 and Phb2 emerge as key players in preserving mitochondrial integrity and cardiomyocyte health under diabetic conditions. These findings contribute significantly to our understanding of the molecular mechanisms underlying diabetic cardiomyopathy and suggest potential therapeutic targets for mitigating myocardial dysfunction in diabetes.


Diabetic Cardiomyopathies , Hyperglycemia , Membrane Potential, Mitochondrial , Mitochondrial Dynamics , Myocytes, Cardiac , Prohibitins , Reactive Oxygen Species , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Mitochondrial Dynamics/genetics , Hyperglycemia/metabolism , Hyperglycemia/complications , Hyperglycemia/genetics , Humans , Diabetic Cardiomyopathies/genetics , Diabetic Cardiomyopathies/pathology , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/etiology , Reactive Oxygen Species/metabolism , Animals , Mitophagy/genetics , Phosphoprotein Phosphatases/genetics , Phosphoprotein Phosphatases/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Mitochondria, Heart/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Rats
19.
Cardiovasc Diabetol ; 23(1): 116, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38566123

BACKGROUND: Diabetic cardiomyopathy (DCM) is a serious complication in patients with type 1 diabetes mellitus (T1DM), which still lacks adequate therapy. Irisin, a cleavage peptide off fibronectin type III domain-containing 5, has been shown to preserve cardiac function in cardiac ischemia-reperfusion injury. Whether or not irisin plays a cardioprotective role in DCM is not known. METHODS AND RESULTS: T1DM was induced by multiple low-dose intraperitoneal injections of streptozotocin (STZ). Our current study showed that irisin expression/level was lower in the heart and serum of mice with STZ-induced TIDM. Irisin supplementation by intraperitoneal injection improved the impaired cardiac function in mice with DCM, which was ascribed to the inhibition of ferroptosis, because the increased ferroptosis, associated with increased cardiac malondialdehyde (MDA), decreased reduced glutathione (GSH) and protein expressions of solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4), was ameliorated by irisin. In the presence of erastin, a ferroptosis inducer, the irisin-mediated protective effects were blocked. Mechanistically, irisin treatment increased Sirtuin 1 (SIRT1) and decreased p53 K382 acetylation, which decreased p53 protein expression by increasing its degradation, consequently upregulated SLC7A11 and GPX4 expressions. Thus, irisin-mediated reduction in p53 decreases ferroptosis and protects cardiomyocytes against injury due to high glucose. CONCLUSION: This study demonstrated that irisin could improve cardiac function by suppressing ferroptosis in T1DM via the SIRT1-p53-SLC7A11/GPX4 pathway. Irisin may be a therapeutic approach in the management of T1DM-induced cardiomyopathy.


Diabetes Mellitus, Type 1 , Diabetic Cardiomyopathies , Ferroptosis , Humans , Animals , Mice , Diabetic Cardiomyopathies/drug therapy , Diabetic Cardiomyopathies/etiology , Diabetic Cardiomyopathies/prevention & control , Sirtuin 1 , Fibronectins , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/drug therapy , Tumor Suppressor Protein p53 , Myocytes, Cardiac
20.
Clin Epigenetics ; 16(1): 52, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38581056

Diabetic cardiomyopathy (DCM) is a critical complication that poses a significant threat to the health of patients with diabetes. The intricate pathological mechanisms of DCM cause diastolic dysfunction, followed by impaired systolic function in the late stages. Accumulating researches have revealed the association between DCM and various epigenetic regulatory mechanisms, including DNA methylation, histone modifications, non-coding RNAs, and other epigenetic molecules. Recently, a profound understanding of epigenetics in the pathophysiology of DCM has been broadened owing to advanced high-throughput technologies, which assist in developing potential therapeutic strategies. In this review, we briefly introduce the epigenetics regulation and update the relevant progress in DCM. We propose the role of epigenetic factors and non-coding RNAs (ncRNAs) as potential biomarkers and drugs in DCM diagnosis and treatment, providing a new perspective and understanding of epigenomics in DCM.


Diabetes Mellitus , Diabetic Cardiomyopathies , Humans , Diabetic Cardiomyopathies/genetics , DNA Methylation , Epigenomics , Epigenesis, Genetic , Histone Code , Diabetes Mellitus/genetics
...