Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 5.081
1.
Carbohydr Polym ; 339: 122275, 2024 Sep 01.
Article En | MEDLINE | ID: mdl-38823933

Diabetic kidney disease (DKD) is the main cause of end-stage renal disease, and few therapeutic options are available. The root of Achyranthis bidentatae (AB) is commonly used for DKD treatment in Traditional Chinese medicine. However, its mechanisms are still unclear. Here, a graminan type fructan ABPW1 with molecular weight of 3998 Da was purified from AB. It was composed of ß-1,2-linked Fruf, ß-2,6-linked-Fruf and ß-1,2,6-linked-Fruf backbone, and terminated with T-Glcp and 2-Fruf residues. ABPW1 protected against kidney injuries and intestinal barrier disruption in Streptozotocin (STZ)/High fat diet (HFD) mice. It could modulate gut microbiota composition, evidenced by a rise in the abundance of Bacteroide and decreases of Rikenella, Alistipes, Laedolimicola and Faecalibaculum. ABPW1 intervention promoted short chain fatty acids (SCFAs) production in STZ/HFD mice, especially propionate and isobutyric acid. Antibiotic treatment further demonstrated the key role of gut microbiota in the renal protective action of ABPW1. In addition, in vitro simulated digestion and fermentation together with in vivo fluorescent labeling studies demonstrated ABPW1 was indigestible in upper digestive tract but could reach the colon and be degraded into SCFAs by gut microbiota there. Overall, these data suggested ABPW1 has the potential application on DKD prevention.


Achyranthes , Diabetes Mellitus, Experimental , Diabetic Nephropathies , Fructans , Gastrointestinal Microbiome , Animals , Gastrointestinal Microbiome/drug effects , Achyranthes/chemistry , Mice , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/complications , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/prevention & control , Male , Fructans/pharmacology , Fructans/chemistry , Mice, Inbred C57BL , Diet, High-Fat/adverse effects , Streptozocin , Kidney/drug effects , Kidney/pathology , Fatty Acids, Volatile/metabolism
2.
Drug Des Devel Ther ; 18: 1439-1457, 2024.
Article En | MEDLINE | ID: mdl-38707616

Background: Acteoside, an active ingredient found in various medicinal herbs, is effective in the treatment of diabetic kidney disease (DKD); however, the intrinsic pharmacological mechanism of action of acteoside in the treatment of DKD remains unclear. This study utilizes a combined approach of network pharmacology and experimental validation to investigate the potential molecular mechanism systematically. Methods: First, acteoside potential targets and DKD-associated targets were aggregated from public databases. Subsequently, utilizing protein-protein interaction (PPI) networks, alongside GO and KEGG pathway enrichment analyses, we established target-pathway networks to identify core potential therapeutic targets and pathways. Further, molecular docking facilitated the confirmation of interactions between acteoside and central targets. Finally, the conjectured molecular mechanisms of acteoside against DKD were verified through experimentation on unilateral nephrectomy combined with streptozotocin (STZ) rat model. The underlying downstream mechanisms were further investigated. Results: Network pharmacology identified 129 potential intersected targets of acteoside for DKD treatment, including targets such as AKT1, TNF, Casp3, MMP9, SRC, IGF1, EGFR, HRAS, CASP8, and MAPK8. Enrichment analyses indicated the PI3K-Akt, MAPK, Metabolic, and Relaxin signaling pathways could be involved in this therapeutic context. Molecular docking revealed high-affinity binding of acteoside to PIK3R1, AKT1, and NF-κB1. In vivo studies validated the therapeutic efficacy of acteoside, demonstrating reduced blood glucose levels, improved serum Scr and BUN levels, decreased 24-hour urinary total protein (P<0.05), alongside mitigated podocyte injury (P<0.05) and ameliorated renal pathological lesions. Furthermore, this finding indicates that acteoside inhibits the expression of pyroptosis markers NLRP3, Caspase-1, IL-1ß, and IL-18 through the modulation of the PI3K/AKT/NF-κB pathway. Conclusion: Acteoside demonstrates renoprotective effects in DKD by regulating the PI3K/AKT/NF-κB signaling pathway and alleviating pyroptosis. This study explores the pharmacological mechanism underlying acteoside's efficacy in DKD treatment, providing a foundation for further basic and clinical research.


Diabetes Mellitus, Experimental , Diabetic Nephropathies , Glucosides , Molecular Docking Simulation , Network Pharmacology , Phenols , Polyphenols , Streptozocin , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Animals , Rats , Glucosides/pharmacology , Glucosides/chemistry , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Male , Phenols/pharmacology , Phenols/chemistry , Rats, Sprague-Dawley
3.
G Ital Nefrol ; 41(2)2024 Apr 29.
Article It | MEDLINE | ID: mdl-38695228

Immunoglobulin A (IgA) nephropathy is a common glomerulonephritis, but its treatment remains matter of debate. Recommendation for corticosteroids has been supported, but renin-angiotensin inhibitors, RAAS, and sodium-glucose co-transporter 2 inhibitors (SGLT2i) are increasingly used because of a better benefit/safety balance in comparison with systemic steroids and immunosuppressive treatments. In this case report, a patient with type 2 diabetes (T2DM) and biopsy-proven nephrotic IgA-related nephropathy documented a rapid meaningful reduction of proteinuria and the effect was persistent for 2 years, after receiving the treatment with a GLP1-RA on top of the previous treatment with ACE-inhibitors and SGLT2-i. Considering the beneficial effects of GLP1-RA in diabetes related chronic kidney disease, the present case report supports the notion that these drugs could also represent a beneficial treatment option in IgA nephropathy.


Diabetic Nephropathies , Drug Therapy, Combination , Glomerulonephritis, IGA , Sodium-Glucose Transporter 2 Inhibitors , Humans , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetic Nephropathies/drug therapy , Glomerulonephritis, IGA/drug therapy , Glomerulonephritis, IGA/complications , Glucagon-Like Peptide-1 Receptor/agonists , Proteinuria/drug therapy , Proteinuria/etiology , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use
4.
Front Endocrinol (Lausanne) ; 15: 1351497, 2024.
Article En | MEDLINE | ID: mdl-38742196

Diabetic nephropathy (DKD) is a common chronic complication of diabetes mellitus and an important cause of cardiovascular-related death. Oxidative stress is a key mechanism leading to diabetic nephropathy. However, the current main therapeutic approach remains combination therapy and lacks specific therapies targeting oxidative stress. With the development of nanotechnology targeting ROS, therapeutic fluids regarding their treatment of diabetic nephropathy have attracted attention. In this review, we provide a brief overview of various ROS-based nanomaterials for DKD, including ROS-scavenging nanomaterials, ROS-associated nanodelivery materials, and ROS-responsive nanomaterials. In addition, we summarize and discuss key factors that should be considered when designing ROS-based nanomaterials, such as biosafety, efficacy, targeting, and detection and monitoring of ROS.


Diabetic Nephropathies , Nanostructures , Oxidative Stress , Reactive Oxygen Species , Humans , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Reactive Oxygen Species/metabolism , Nanostructures/therapeutic use , Oxidative Stress/drug effects , Animals
5.
Front Endocrinol (Lausanne) ; 15: 1381746, 2024.
Article En | MEDLINE | ID: mdl-38726340

Background: A serious consequence of diabetes is diabetic nephropathy (DN), which is commonly treated by statins. Studies evaluating the effects of statin medication have yielded inconsistent results regarding the potential association with diabetic nephropathy. To manage diabetic nephropathy's onset and improve the quality of life of patients, it is imperative to gain a comprehensive understanding of its contributing factors. Data and methods: Our study was conducted using the National Health and Nutrition Examination Survey (NHANES) as well as weighted multivariate logistic regression models to determine the odds ratio (OR) and 95% confidence intervals (95%CI) for diabetic nephropathy. We conducted stratified analyses to examine the impact of statins and the duration of their usage on diabetic nephropathy in different subgroups. A nomogram model and the receiver operating characteristic (ROC) curve were also developed to predict DN risk. Results: Statin use significantly increased the incidence of DN (OR=1.405, 95%CI (1.199,1.647), p<0.001). Individuals who used statins for 5 to 7 years were more likely to develop diabetic nephropathy (OR=1.472, 95%CI (1.057,2.048), p=0.022) compared to those who used statins for 1-3 years (OR=1.334, 95%CI (1.058,1.682), p=0.015) or <1 year (OR=1.266, 95%CI (1.054,1.522), p = 0.012). Simvastatin has a greater incidence of diabetic nephropathy (OR=1.448, 95%CI(1.177, 1.78), P < 0.001). Conclusion: Taking statins long-term increases the risk of DN. Statin use is associated with an increased risk of DN. Caution should be exercised when prescribing atorvastatin and simvastatin for long-term statin therapy.


Diabetic Nephropathies , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Nutrition Surveys , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Diabetic Nephropathies/epidemiology , Diabetic Nephropathies/drug therapy , Male , Female , Middle Aged , United States/epidemiology , Adult , Aged , Incidence , Risk Factors
6.
Mol Biol Rep ; 51(1): 620, 2024 May 06.
Article En | MEDLINE | ID: mdl-38709349

BACKGROUND: Recent years of evidence suggest the crucial role of renal tubular cells in developing diabetic kidney disease. Scopoletin (SCOP) is a plant-based coumarin with numerous biological activities. This study aimed to determine the effect of SCOP on renal tubular cells in developing diabetic kidney disease and to elucidate mechanisms. METHODS AND RESULTS: In this study, SCOP was evaluated in vitro using renal proximal tubular (HK-2) cells under hyperglycemic conditions to understand its mechanism of action. In HK-2 cells, SCOP alleviated the high glucose-generated reactive oxygen species (ROS), restored the levels of reduced glutathione, and decreased lipid peroxidation. High glucose-induced alteration in the mitochondrial membrane potential was markedly restored in the SCOP-treated cells. Moreover, SCOP significantly reduced the high glucose-induced apoptotic cell population in the Annexin V-FITC flow cytometry study. Furthermore, high glucose markedly elevated the mRNA expression of fibrotic and extracellular matrix (ECM) components, namely, transforming growth factor (TGF)-ß, alfa-smooth muscle actin (α-SMA), collagen I, and collagen III, in HK-2 cells compared to the untreated cells. SCOP treatment reduced these mRNA expressions compared to the high glucose-treated cells. Collagen I and TGF-ß protein levels were also significantly reduced in the SCOP-treated cells. Further findings in HK-2 cells revealed that SCOP interfered with the epithelial-mesenchymal transition (EMT) in the high glucose-treated HK-2 cells by normalizing E-cadherin and downregulating the vimentin and α-SMA proteins. CONCLUSIONS: In conclusion, SCOP modulates the high glucose-generated renal tubular cell oxidative damage and accumulation of ECM components and may be a promising molecule against diabetic nephropathy.


Diabetic Nephropathies , Epithelial-Mesenchymal Transition , Glucose , Kidney Tubules, Proximal , Oxidative Stress , Reactive Oxygen Species , Scopoletin , Humans , Epithelial-Mesenchymal Transition/drug effects , Glucose/metabolism , Glucose/pharmacology , Glucose/toxicity , Kidney Tubules, Proximal/drug effects , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Oxidative Stress/drug effects , Scopoletin/pharmacology , Cell Line , Reactive Oxygen Species/metabolism , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/drug therapy , Apoptosis/drug effects , Fibrosis , Membrane Potential, Mitochondrial/drug effects , Lipid Peroxidation/drug effects
7.
Mol Biol Rep ; 51(1): 677, 2024 May 25.
Article En | MEDLINE | ID: mdl-38796641

BACKGROUND: One of the main causes of diabetic nephropathy is oxidative stress induced by hyperglycemia. Apelin inhibits insulin secretion. Besides, renal expression of TGF-ß is increased in diabetes mellitus (DM). The preventive effect of quercetin (Q) against renal functional disorders and tissue damage developed by DM in rats was assessed. METHODS: Forty male Wistar rats were grouped into normal control (NC), normal + quercetin (NQ: quercetin, 50 mg/kg/day by gavage), diabetic control (DC: streptozotocin, 65 mg/kg, i.p.), diabetic + quercetin pretreatment (D + Qpre), and diabetic + quercetin post-treatment (D + Qpost). All samples (24-hour urine, plasma, pancreatic, and renal tissues) were obtained at the terminal of the experiment. RESULTS: Compared to NC and NQ groups, DM ended in elevated plasma and glucose levels, decreased plasma insulin level, kidney dysfunction, augmented levels of malondialdehyde, decreased level of reduced glutathione, reduced enzymatic activities of superoxide dismutase and catalase, elevated gene expression levels of apelin and TGF-ß, also renal and pancreatic histological damages. Quercetin administration diminished entire the changes. However, the measure of improvement in the D + Qpre group was higher than that of the D + Qpost group. CONCLUSION: Quercetin prevents renal dysfunction induced by DM, which might be related to the diminution of lipid peroxidation, strengthening of antioxidant systems, and prevention of the apelin/ TGF-ß signaling pathway.


Apelin , Diabetes Mellitus, Experimental , Diabetic Nephropathies , Kidney , Oxidative Stress , Quercetin , Rats, Wistar , Transforming Growth Factor beta , Animals , Quercetin/pharmacology , Rats , Male , Transforming Growth Factor beta/metabolism , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/drug therapy , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/prevention & control , Diabetic Nephropathies/drug therapy , Apelin/metabolism , Oxidative Stress/drug effects , Blood Glucose/metabolism , Blood Glucose/drug effects , Antioxidants/pharmacology , Antioxidants/metabolism , Insulin/metabolism , Insulin/blood , Diabetes Mellitus, Type 1/metabolism , Gene Expression Regulation/drug effects
8.
J Vis Exp ; (207)2024 May 10.
Article En | MEDLINE | ID: mdl-38801274

We aimed to delve into the mechanisms underpinning Jiawei Shengjiang San's (JWSJS) action in treating diabetic nephropathy and deploying network pharmacology. Employing network pharmacology and molecular docking techniques, we predicted the active components and targets of JWSJS and constructed a meticulous "drug-component-target" network. Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analyses were utilized to discern the therapeutic pathways and targets of JWSJS. Autodock Vina 1.2.0 was deployed for molecular docking verification, and a 100-ns molecular dynamics simulation was conducted to affirm the docking results, followed by in vivo animal verification. The findings revealed that JWSJS shared 227 intersecting targets with diabetic nephropathy, constructing a protein-protein interaction network topology. KEGG enrichment analysis denoted that JWSJS mitigates diabetic nephropathy by modulating lipids and atherosclerosis, the PI3K-Akt signaling pathway, apoptosis, and the HIF-1 signaling pathway, with mitogen-activated protein kinase 1 (MAPK1), MAPK3, epidermal growth factor receptor (EGFR), and serine/threonine-protein kinase 1 (AKT1) identified as collective targets of multiple pathways. Molecular docking asserted that the core components of JWSJS (quercetin, palmitoleic acid, and luteolin) could stabilize conformation with three pivotal targets (MAPK1, MAPK3, and EGFR) through hydrogen bonding. In vivo examinations indicated notable augmentation in body weight and reductions in glycated serum protein (GSP), low-density lipoprotein cholesterol (LDL-C), uridine triphosphate (UTP), and fasting blood glucose (FBG) levels due to JWSJS. Electron microscopy coupled with hematoxylin and eosin (HE) and Periodic acid-Schiff (PAS) staining highlighted the potential of each treatment group in alleviating kidney damage to diverse extents, exhibiting varied declines in p-EGFR, p-MAPK3/1, and BAX, and increments in BCL-2 expression in the kidney tissues of the treated rats. Conclusively, these insights suggest that the protective efficacy of JWSJS on diabetic nephropathy might be associated with suppressing the activation of the EGFR/MAPK3/1 signaling pathway and alleviating renal cell apoptosis.


Diabetes Mellitus, Experimental , Diabetic Nephropathies , Drugs, Chinese Herbal , ErbB Receptors , Molecular Docking Simulation , Signal Transduction , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/drug therapy , Animals , Rats , ErbB Receptors/metabolism , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/drug therapy , Signal Transduction/drug effects , Mitogen-Activated Protein Kinase 3/metabolism , Male , MAP Kinase Signaling System/drug effects , Rats, Sprague-Dawley , Mitogen-Activated Protein Kinase 1/metabolism , Network Pharmacology/methods , Disease Models, Animal
9.
Carbohydr Res ; 540: 109125, 2024 Jun.
Article En | MEDLINE | ID: mdl-38703663

Di-d-psicose anhydride (DPA), derived from functional rare saccharide as d-psicose, is investigated for its strong chelating ability. Methylglyoxal (MGO), an important precursor of advanced glycation end-products (AGEs), promotes obesity, and causes complications such as diabetic nephropathy. On mesangial cells, DPA can substantially reduce the negative effects of MGO. DPA effectively trapping MGO in mesangial cells. The bonding properties of the DPA-MGO adduct were discussed by mass spectrometry and nuclear magnetic resonance (NMR). The NMR spectra of the DPA-MGO adduct provide evidence for chelation bonding. The inhibition of AGE formation and the mass spectrometry results of the DPA-MGO adduct indicate that DPA can scavenge MGO at a molar ratio of 1:1. DPA suppressed 330 % of the up-regulated receptor for an AGEs protein expression to a normal level and restored the suppressed glyoxalase 1 level to 86 % of the normal group. This research provides important evidence and theoretical basis for the development of AGE inhibitors derived from rare saccharide.


Diabetic Nephropathies , Glycation End Products, Advanced , Pyruvaldehyde , Pyruvaldehyde/chemistry , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/prevention & control , Glycation End Products, Advanced/metabolism , Glycation End Products, Advanced/antagonists & inhibitors , Mesangial Cells/drug effects , Mesangial Cells/metabolism , Lactoylglutathione Lyase/antagonists & inhibitors , Lactoylglutathione Lyase/metabolism , Humans , Receptor for Advanced Glycation End Products/metabolism , Receptor for Advanced Glycation End Products/antagonists & inhibitors , Anhydrides/chemistry , Chelating Agents/chemistry , Chelating Agents/pharmacology
10.
Cells ; 13(10)2024 May 16.
Article En | MEDLINE | ID: mdl-38786068

Induction of the adenosine receptor A2B (A2BAR) expression in diabetic glomeruli correlates with an increased abundance of its endogenous ligand adenosine and the progression of kidney dysfunction. Remarkably, A2BAR antagonism protects from proteinuria in experimental diabetic nephropathy. We found that A2BAR antagonism preserves the arrangement of podocytes on the glomerular filtration barrier, reduces diabetes-induced focal adhesion kinase (FAK) activation, and attenuates podocyte foot processes effacement. In spreading assays using human podocytes in vitro, adenosine enhanced the rate of cell body expansion on laminin-coated glass and promoted peripheral pY397-FAK subcellular distribution, while selective A2BAR antagonism impeded these effects and attenuated the migratory capability of podocytes. Increased phosphorylation of the Myosin2A light chain accompanied the effects of adenosine. Furthermore, when the A2BAR was stimulated, the cells expanded more broadly and more staining of pS19 myosin was detected which co-localized with actin cables, suggesting increased contractility potential in cells planted onto a matrix with a stiffness similar to of the glomerular basement membrane. We conclude that A2BAR is involved in adhesion dynamics and contractile actin bundle formation, leading to podocyte foot processes effacement. The antagonism of this receptor may be an alternative to the intervention of glomerular barrier deterioration and proteinuria in the diabetic kidney disease.


Cell Adhesion , Diabetes Mellitus, Experimental , Focal Adhesion Protein-Tyrosine Kinases , Podocytes , Proteinuria , Receptor, Adenosine A2B , Podocytes/metabolism , Podocytes/drug effects , Podocytes/pathology , Animals , Humans , Proteinuria/metabolism , Rats , Receptor, Adenosine A2B/metabolism , Cell Adhesion/drug effects , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Male , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Diabetic Nephropathies/drug therapy , Adenosine A2 Receptor Antagonists/pharmacology , Adenosine/metabolism , Adenosine/pharmacology , Cell Movement/drug effects , Phosphorylation/drug effects , Myosin Light Chains/metabolism
11.
Cardiovasc Diabetol ; 23(1): 184, 2024 May 29.
Article En | MEDLINE | ID: mdl-38811998

BACKGROUND: Use of sodium-glucose-cotransporter-2 (SGLT2) inhibitors often causes an initial decline in glomerular filtration rate (GFR). This study addresses the question whether the initial decline of renal function with SGLT2 inhibitor treatment is related to vascular changes in the systemic circulation. METHODS: We measured GFR (mGFR) and estimated GFR (eGFR) in 65 patients with type 2 diabetes (T2D) at baseline and after 12 weeks of treatment randomized either to a combination of empagliflozin and linagliptin (SGLT2 inhibitor based treatment group) (n = 34) or metformin and insulin (non-SGLT2 inhibitor based treatment group) (n = 31). mGFR was measured using the gold standard clearance technique by constant infusion of inulin. In addition to blood pressure (BP), we measured pulse wave velocity (PWV) under standardized conditions reflecting vascular compliance of large arteries, as PWV is considered to be one of the most reliable vascular parameter of cardiovascular (CV) prognosis. RESULTS: Both mGFR and eGFR decreased significantly after initiating treatment, but no correlation was found between change in mGFR and change in eGFR in either treatment group (SGLT2 inhibitor based treatment group: r=-0.148, p = 0.404; non-SGLT2 inhibitor based treatment group: r = 0.138, p = 0.460). Noticeably, change in mGFR correlated with change in PWV (r = 0.476, p = 0.005) in the SGLT2 inhibitor based treatment group only and remained significant after adjustment for the change in systolic BP and the change in heart rate (r = 0.422, p = 0.018). No such correlation was observed between the change in eGFR and the change in PWV in either treatment group. CONCLUSIONS: Our main finding is that after initiating a SGLT2 inhibitor based therapy an exaggerated decline in mGFR was related with improved vascular compliance of large arteries reflecting the pharmacologic effects of SGLT2 inhibitor in the renal and systemic vascular bed. Second, in a single patient with T2D, eGFR may not be an appropriate parameter to assess the true change of renal function after receiving SGLT2 inhibitor based therapy. TRIAL REGISTRATION: clinicaltrials.gov (NCT02752113).


Benzhydryl Compounds , Diabetes Mellitus, Type 2 , Glomerular Filtration Rate , Glucosides , Kidney , Linagliptin , Pulse Wave Analysis , Sodium-Glucose Transporter 2 Inhibitors , Humans , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/adverse effects , Glomerular Filtration Rate/drug effects , Male , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/physiopathology , Diabetes Mellitus, Type 2/diagnosis , Middle Aged , Female , Benzhydryl Compounds/therapeutic use , Benzhydryl Compounds/adverse effects , Aged , Treatment Outcome , Kidney/drug effects , Kidney/physiopathology , Glucosides/therapeutic use , Glucosides/adverse effects , Time Factors , Linagliptin/therapeutic use , Linagliptin/adverse effects , Metformin/therapeutic use , Insulin , Diabetic Nephropathies/physiopathology , Diabetic Nephropathies/diagnosis , Diabetic Nephropathies/drug therapy , Vascular Stiffness/drug effects , Drug Therapy, Combination , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/adverse effects , Biomarkers/blood , Clinical Relevance , Sodium-Glucose Transporter 2
12.
BMJ Open Diabetes Res Care ; 12(3)2024 May 30.
Article En | MEDLINE | ID: mdl-38816204

INTRODUCTION: We compared the kidney outcomes between patients with diabetic kidney disease (DKD) aged ≥75 years initiating sodium-glucose cotransporter 2 (SGLT2) inhibitors versus other glucose-lowering drugs, additionally presenting with or without proteinuria. RESEARCH DESIGN AND METHODS: Using the Japan Chronic Kidney Disease Database, we developed propensity scores, implementing a 1:1 matching protocol. The primary outcome included the decline rate in estimated glomerular filtration rate (eGFR), and secondary outcomes incorporated a composite of a 40% reduction in eGFR or progression to end-stage kidney disease. RESULTS: At baseline, the mean age at initiation of SGLT2 inhibitors (n=348) or other glucose-lowering medications (n=348) was 77.7 years. The mean eGFR was 59.3 mL/min/1.73m2 and proteinuria was 230 (33.0%) patients. Throughout the follow-up period, the mean annual rate of eGFR change was -0.80 mL/min/1.73 m2/year (95% CI -1.05 to -0.54) among SGLT2 inhibitors group and -1.78 mL/min/1.73 m2/year (95% CI -2.08 to -1.49) in other glucose-lowering drugs group (difference in the rate of eGFR decline between the groups was 0.99 mL/min/1.73 m2/year (95% CI 0.5 to 1.38)), favoring SGLT2 inhibitors (p<0.001). Composite renal outcomes were observed 38 in the SGLT2 inhibitors group and 57 in the other glucose-lowering medications group (HR 0.64, 95% CI 0.42 to 0.97). There was no evidence of an interaction between SGLT2 inhibitors initiation and proteinuria. CONCLUSIONS: The benefits of SGLT2 inhibitors on renal outcomes are also applicable to older patients with DKD aged≥75 years.


Databases, Factual , Diabetic Nephropathies , Glomerular Filtration Rate , Sodium-Glucose Transporter 2 Inhibitors , Humans , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Female , Male , Aged , Japan/epidemiology , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/epidemiology , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/epidemiology , Aged, 80 and over , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/complications , Follow-Up Studies , Disease Progression , Hypoglycemic Agents/therapeutic use , Prognosis , Treatment Outcome
13.
Phytomedicine ; 129: 155646, 2024 Jul.
Article En | MEDLINE | ID: mdl-38733903

BACKGROUND: Astragalus membranaceus (AM) shows potential therapeutic benefits for managing diabetic kidney disease (DKD), a leading cause of kidney failure with no cure. However, its comprehensive effects on renal outcomes and plausible mechanisms remain unclear. PURPOSE: This systematic review and meta-analysis aimed to synthesize the effects and mechanisms of AM on renal outcomes in DKD animal models. METHODS: Seven electronic databases were searched for animal studies until September 2023. Risk of bias was assessed based on SYRCLE's Risk of Bias tool. Standardized mean difference (SMD) or mean difference (MD) were estimated for the effects of AM on serum creatinine (SCr), blood urea nitrogen (BUN), albuminuria, histological changes, oxidative stress, inflammation, fibrosis and glucolipids. Effects were pooled using random-effects models. Heterogeneity was presented as I2. Subgroup analysis investigated treatment- and animal-related factors for renal outcomes. Publication bias was assessed using funnel plots and Egger's test. Sensitivity analysis was performed to assess the results' robustness. RevMan 5.3 and Stata MP 15 software were used for statistical analysis. RESULTS: Forty studies involving 1543 animals were identified for analysis. AM treatment significantly decreased SCr (MD = -19.12 µmol/l, 95 % CI: -25.02 to -13.23), BUN (MD = -6.72 mmol/l, 95 % CI: -9.32 to -4.12), urinary albumin excretion rate (SMD = -2.74, 95 % CI: -3.57, -1.90), histological changes (SMD = -2.25, 95 % CI: -3.19 to -1.32). AM treatment significantly improved anti-oxidative stress expression (SMD = 1.69, 95 % CI: 0.97 to 2.41), and decreased inflammation biomarkers (SMD = -3.58, 95 % CI: -5.21 to -1.95). AM treatment also decreased fibrosis markers (i.e. TGF-ß1, CTGF, collagen IV, Wnt4 and ß-catenin) and increased anti-fibrosis marker BMP-7. Blood glucose, lipids and kidney size were also improved compared with the DM control group. CONCLUSION: AM could improve renal outcomes and alleviate injury through multiple signaling pathways. This indicates AM may be an option to consider for the development of future DKD therapeutics.


Astragalus propinquus , Diabetic Nephropathies , Disease Models, Animal , Oxidative Stress , Animals , Albuminuria/drug therapy , Astragalus propinquus/chemistry , Blood Urea Nitrogen , Creatinine/blood , Diabetic Nephropathies/drug therapy , Fibrosis/drug therapy , Kidney/drug effects , Kidney/pathology , Oxidative Stress/drug effects , Plant Extracts/pharmacology
14.
J Diabetes Res ; 2024: 1222395, 2024.
Article En | MEDLINE | ID: mdl-38725443

This study is aimed at assessing the impact of soluble dietary fiber inulin on the treatment of diabetes-related chronic inflammation and kidney injury in mice with type 2 diabetes (T2DM). The T2DM model was created by feeding the Institute of Cancer Research (ICR) mice a high-fat diet and intraperitoneally injecting them with streptozotocin (50 mg/kg for 5 consecutive days). The thirty-six ICR mice were divided into three dietary groups: the normal control (NC) group, the T2DM (DM) group, and the DM + inulin diet (INU) group. The INU group mice were given inulin at the dose of 500 mg/kg gavage daily until the end of the 12th week. After 12 weeks, the administration of inulin resulted in decreased serum levels of fasting blood glucose (FBG), low-density lipoprotein cholesterol (LDL-C), blood urea nitrogen (BUN), and creatinine (CRE). The administration of inulin not only ameliorated renal injury but also resulted in a reduction in the mRNA expressions of inflammatory factors in the spleen and serum oxidative stress levels, when compared to the DM group. Additionally, inulin treatment in mice with a T2DM model led to a significant increase in the concentrations of three primary short-chain fatty acids (SCFAs) (acetic acid, propionic acid, and butyric acid), while the concentration of advanced glycation end products (AGEs), a prominent inflammatory factor in diabetes, exhibited a significant decrease. The results of untargeted metabolomics indicate that inulin has the potential to alleviate inflammatory response and kidney damage in diabetic mice. This beneficial effect is attributed to its impact on various metabolic pathways, including glycerophospholipid metabolism, taurine and hypotaurine metabolism, arginine biosynthesis, and tryptophan metabolism. Consequently, oral inulin emerges as a promising treatment option for diabetes and kidney injury.


Blood Glucose , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Inflammation , Inulin , Kidney , Metabolomics , Mice, Inbred ICR , Oxidative Stress , Animals , Inulin/pharmacology , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Mice , Male , Blood Glucose/metabolism , Blood Glucose/drug effects , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Oxidative Stress/drug effects , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/blood , Diabetic Nephropathies/pathology , Fatty Acids, Volatile/metabolism , Diet, High-Fat , Blood Urea Nitrogen
15.
Pak J Pharm Sci ; 37(1): 65-70, 2024 Jan.
Article En | MEDLINE | ID: mdl-38741401

Diabetic nephropathy (DN), a micro vascular complication of diabetes, is the main cause of end-stage renal disease, with a morbidity over 40% of diabetes. High glucose and lipid metabolism dysfunction are the leading cause of the development of DN. Previous study demonstrated that increased expression or activation of SREBPs in models of DN. Leonuride (LE), as an active constituent of Leonurus japonicus Houttuyn, has multiple biological activities, including antioxidant and anti-inflammatory effects. Previous studies showed that increasing the degradation of mature SREBPs is a robust way of lowering lipids and improve lipid metabolism dysfunction. However, effective regulation method of SREBPs degradation are still lacking. Herein, this study indicated that LE can effectively improve glucose and lipid metabolism disorders. In addition, the kidney function was also improved by inhibition of SREBPs activities in streptozocin (STZ)-induced type II diabetic mice. To our knowledge, this is the first time to describe the detailed mechanism of LE on the inhibition of precursor SREBPs, which would present a new direction for diabetic nephropathy treatment.


Diabetes Mellitus, Experimental , Diabetic Nephropathies , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/prevention & control , Animals , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/complications , Male , Mice , Lipid Metabolism/drug effects , Blood Glucose/drug effects , Blood Glucose/metabolism , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Signal Transduction/drug effects , Mice, Inbred C57BL , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/complications
16.
Zhongguo Zhong Yao Za Zhi ; 49(8): 2188-2196, 2024 Apr.
Article Zh | MEDLINE | ID: mdl-38812234

This study aims to investigate the protective effect of salidroside(SAL) on renal damage in diabetic nephropathy(DN) mice based on the receptor for advanced glycation end products/janus activated kinase 1/signal transduction and activator of transcription 3(RAGE/JAK1/STAT3) signaling pathway. The mouse DN model was established by high-fat/high-sucrose diets combined with intraperitoneal injection of streptozocin(STZ). Mice were randomly divided into normal group, model group, low-dose SAL group(20 mg·kg~(-1)), high-dose SAL group(100 mg·kg~(-1)), and metformin group(140 mg·kg~(-1)), with 12 mice in each group. After establishing the DN model, mice were given drugs or solvent intragastrically, once a day for consecutive 10 weeks. Body weight, daily water intake, and fasting blood glucose(FBG) were measured every two weeks. After the last dose, the glucose tolerance test was performed, and the samples of 24-hour urine, serum, and kidney tissue were collected. The levels of 24 hours urinary total protein(24 h-UTP), serum creatinine(Scr), blood urea nitrogen(BUN), triglyceride(TG), total cholesterol(TC), low density lipoprotein cholesterol(LDL-C), and high density lipoprotein cholesterol(HDL-C) were detected by biochemical tests. Periodic acid-schiff(PAS) staining was used to observe the pathological changes in the kidney tissue. The protein expressions of α-smooth muscle actin(α-SMA), vimentin, and advanced glycation end products(AGEs) in kidneys were detected by immunohistochemical staining. The activities of superoxide dismutase(SOD), catalase(CAT), glutathione peroxidase(GSH-PX), and the level of malondialdehyde(MDA) in kidneys were detected by using a corresponding detection kit. Enzyme-linked immunosorbent assay(ELISA) was used to detect the levels of AGEs, carboxymethyllysine(CML), and carboxyethyllysine(CEL) in serum. The protein expressions of RAGE and the phosphorylation level of JAK1 and STAT3 in kidneys were detected by Western blot. Compared with the normal group, the levels of FBG, the area under the curve of glucose(AUCG), water intake, kidney index, 24 h-UTP, tubular injury score, extracellular matrix deposition ratio of the renal glomerulus, the serum levels of Scr, BUN, TG, LDL-C, AGEs, CEL, and CML, the level of MDA, the protein expressions of α-SMA, vimentin, AGEs, and RAGE, and the phosphorylation level of JAK1 and STAT3 in kidney tissue were increased significantly(P<0.01), while the level of HDL-C in serum and the activity of SOD, CAT, and GSH-PX in kidney tissue were decreased significantly(P<0.01). Compared with the model group, the above indexes of the high-dose SAL group were reversed significantly(P<0.05 or P<0.01). In conclusion, this study suggests that SAL can alleviate oxidative stress and renal fibrosis by inhibiting the activation of AGEs-mediated RAGE/JAK1/STAT3 signaling axis, thus playing a potential role in the treatment of DN.


Diabetic Nephropathies , Glucosides , Janus Kinase 1 , Kidney , Phenols , Receptor for Advanced Glycation End Products , STAT3 Transcription Factor , Signal Transduction , Animals , Mice , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Glucosides/pharmacology , Glucosides/administration & dosage , Receptor for Advanced Glycation End Products/metabolism , Receptor for Advanced Glycation End Products/genetics , Signal Transduction/drug effects , Male , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Phenols/pharmacology , Janus Kinase 1/metabolism , Janus Kinase 1/genetics , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Protective Agents/pharmacology , Protective Agents/administration & dosage , Humans , Mice, Inbred C57BL , Blood Glucose/metabolism , Blood Glucose/drug effects
...