Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.372
1.
Am Nat ; 204(1): 73-95, 2024 Jul.
Article En | MEDLINE | ID: mdl-38857346

AbstractDevelopmental plasticity allows organisms to increase the fit between their phenotype and their early-life environment. The extent to which such plasticity also enhances adult fitness is not well understood, however, particularly when early-life and adult environments differ substantially. Using a cross-factorial design that manipulated diet at two life stages, we examined predictions of major hypotheses-silver spoon, environmental matching, and thrifty phenotype-concerning the joint impacts of early-life and adult diets on adult morphology/display traits, survival, and reproductive allocation. Overall, results aligned with the silver spoon hypothesis, which makes several predictions based on the premise that development in poor-quality environments constrains adult performance. Males reared and bred on a low-protein diet had lower adult survivorship than other male treatment groups; females' survivorship was higher than males' and not impacted by early diet. Measures of allocation to reproduction primarily reflected breeding diet, but where natal diet impacted reproduction, results supported the silver spoon. Both sexes showed reduced expression of display traits when reared on a low-protein diet. Results accord with other studies in supporting the relevance of the silver spoon hypothesis to birds and point to significant ramifications of sex differences in early-life viability selection on the applicability/strength of silver spoon effects.


Finches , Reproduction , Animals , Male , Female , Finches/physiology , Longevity , Diet/veterinary , Phenotype , Diet, Protein-Restricted
2.
BMC Genomics ; 25(1): 557, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38834972

Reducing the levels of dietary protein is an effective nutritional approach in lowering feed cost and nitrogen emissions in ruminants. The purpose of this study was to evaluate the effects of dietary Lys/Met ratio in a low protein diet (10%, dry matter basis) on the growth performance and hepatic function (antioxidant capacity, immune status, and glycolytic activity) in Tibetan lambs. Ninety two-month-old rams with an average weight of 15.37 ± 0.92 kg were randomly assigned to LP-L (dietary Lys/Met = 1:1), LP-M (dietary Lys/Met = 2:1) and LP-H (dietary Lys/Met = 3:1) treatments. The trial was conducted over 100 d, including 10 d of adaption to the diets. Hepatic phenotypes, antioxidant capacity, immune status, glycolytic activity and gene expression profiling was detected after the conclusion of the feeding trials. The results showed that the body weight was higher in the LP-L group when compared to those on the LP-M group (P < 0.05). In addition, the activities of the catalase (CAT) and glutathione peroxidase (GSH-Px) in the LP-L group were significantly increased compared with the LP-M group (P < 0.05), while the malondialdehyde (MDA) levels in LP-H group were significantly decreased (P < 0.05). Compared with LP-H group, both hepatic glycogen (P < 0.01) and lactate dehydrogenase (LDH) (P < 0.05) were significantly elevated in LP-L group. For the LP-L group, the hepatocytes were arranged radially with the central vein in the center, and hepatic plates exhibited tight arrangement. Transcriptome analysis identified 29, 179, and 129 differentially expressed genes (DEGs) between the LP-M vs. LP-L, LP-H vs. LP-M, and LP-H vs. LP-L groups, respectively (Q-values < 0.05 and |log2Fold Change| > 1). Gene Ontology (GO) and correlation analyses showed that in the LP-L group, core genes (C1QA and JUNB) enriched in oxidoreductase activity were positively correlated with antioxidant indicators, while the MYO9A core gene enriched in the immune response was positively associated with immune indicators, and core genes enriched in molecular function (PDK3 and PDP2) were positively correlated with glycolysis indicators. In summary, low-protein diet with a low Lys/Met ratio (1:1) could reduce the hepatic oxidative stress and improve the glycolytic activity by regulating the expression of related genes of Tibetan sheep.


Antioxidants , Glycolysis , Liver , Methionine , Animals , Liver/metabolism , Liver/drug effects , Glycolysis/drug effects , Antioxidants/metabolism , Sheep , Methionine/pharmacology , Methionine/administration & dosage , Methionine/metabolism , Lysine/metabolism , Diet, Protein-Restricted/veterinary , Dietary Supplements , Animal Feed/analysis , Male
3.
Nutrients ; 16(10)2024 May 16.
Article En | MEDLINE | ID: mdl-38794736

INTRODUCTION: Chronic kidney disease is a degenerative and increasingly prevalent condition that includes metabolic abnormalities and is associated with a higher risk of sarcopenia. The conservative approach points primarily to controlling metabolic issues and reducing the risk of malnutrition and sarcopenia, slowing the progression of kidney disease. The present study aims to evaluate the effect of a low-protein diet on malnutrition and sarcopenia. METHODS: A total of 45 patients (33 male and 12 female) aged over 70 with chronic kidney disease stage 4-5 in conservative management were considered. All patients had a dietary assessment and prescription of personalized low-protein dietary plans (≤0.6 g protein/kg) and a follow-up control between 4 and 6 months. In preliminary and follow-up evaluations, anthropometric data, blood examinations, body composition results, muscle strength, physical performance, and a 3-day food diary were collected. RESULTS: In the follow-up period, a significant weight loss (p = 0.001) and a decrease in body mass index (p = 0.002) were recorded. Food diaries revealed a significant reduction in protein, sodium, potassium, and phosphorus intake (p < 0.001), with a significant reduction in urea (p < 0.001) and proteinuria (p = 0.01) without any impact on lean mass (p = 0.66). Considerable variations in adherence between food diaries and the prescribed diet were also noted. CONCLUSIONS: Providing a personalized low-protein diet led to significant benefits in a short period without worsening the patient's nutritional status.


Diet, Protein-Restricted , Renal Insufficiency, Chronic , Sarcopenia , Humans , Male , Female , Renal Insufficiency, Chronic/diet therapy , Renal Insufficiency, Chronic/therapy , Aged , Sarcopenia/diet therapy , Diet, Protein-Restricted/methods , Aged, 80 and over , Conservative Treatment/methods , Body Mass Index , Body Composition , Nutritional Status , Malnutrition/diet therapy , Muscle Strength , Weight Loss
4.
Br J Hosp Med (Lond) ; 85(5): 1-5, 2024 May 30.
Article En | MEDLINE | ID: mdl-38815966

A low-protein diet (LPD) has become an important way to delay the progression of chronic kidney disease (CKD) and to delay the need for dialysis. A review of the literature reveals the low-protein diet's influence on the course of chronic kidney disease. An artificial low-protein food, wheat starch, for example, can not only increase the high-quality protein intake ratio, but can ensure adequate energy intake on a low-protein diet while meeting the nutritional needs of the body, effectively reducing the burden on the damaged kidneys. The purpose of this review is to provide a reference for the clinical implementation of diet and nutrition therapy in patients with chronic kidney disease.


Diet, Protein-Restricted , Disease Progression , Renal Insufficiency, Chronic , Humans , Diet, Protein-Restricted/methods , Renal Insufficiency, Chronic/diet therapy , Renal Insufficiency, Chronic/therapy , Dietary Proteins/administration & dosage
5.
Neuropharmacology ; 255: 110010, 2024 Sep 01.
Article En | MEDLINE | ID: mdl-38797244

Free-feeding animals navigate complex nutritional landscapes in which food availability, cost, and nutritional value can vary markedly. Animals have thus developed neural mechanisms that enable the detection of nutrient restriction, and these mechanisms engage adaptive physiological and behavioral responses that limit or reverse this nutrient restriction. This review focuses specifically on dietary protein as an essential and independently defended nutrient. Adequate protein intake is required for life, and ample evidence exists to support an active defense of protein that involves behavioral changes in food intake, food preference, and food motivation, likely mediated by neural changes that increase the reward value of protein foods. Available evidence also suggests that the circulating hormone fibroblast growth factor 21 (FGF21) acts in the brain to coordinate these adaptive changes in food intake, making it a unique endocrine signal that drives changes in macronutrient preference in the context of protein restriction. This article is part of the Special Issue on "Food intake and feeding states".


Eating , Fibroblast Growth Factors , Food Preferences , Fibroblast Growth Factors/metabolism , Animals , Food Preferences/physiology , Eating/physiology , Humans , Nutrients , Dietary Proteins/administration & dosage , Adaptation, Physiological/physiology , Diet, Protein-Restricted , Brain/metabolism , Brain/physiology
6.
BMJ Case Rep ; 17(5)2024 May 02.
Article En | MEDLINE | ID: mdl-38697679

Ornithine transcarbamylase deficiency (OTCD) is a rare, X linked disorder that can manifest in late adulthood in heterozygous females as severe hyperammonaemia following environmental stressors. We present a case of hyperammonaemic encephalopathy that was triggered by glucocorticoid administration in an adult woman with heterozygous OTCD with clinical response to haemodialysis, ammonia scavengers and a high-calorie, low-protein diet.


Hyperammonemia , Ornithine Carbamoyltransferase Deficiency Disease , Humans , Female , Ornithine Carbamoyltransferase Deficiency Disease/complications , Ornithine Carbamoyltransferase Deficiency Disease/diagnosis , Hyperammonemia/chemically induced , Glucocorticoids/therapeutic use , Glucocorticoids/adverse effects , Renal Dialysis , Brain Diseases/chemically induced , Brain Diseases/etiology , Middle Aged , Diet, Protein-Restricted/adverse effects
7.
Sci Rep ; 14(1): 8528, 2024 04 12.
Article En | MEDLINE | ID: mdl-38609446

We tracked the consequences of in utero protein restriction in mice throughout their development and life course using a luciferase-based allelic reporter of imprinted Cdkn1c. Exposure to gestational low-protein diet (LPD) results in the inappropriate expression of paternally inherited Cdkn1c in the brains of embryonic and juvenile mice. These animals were characterised by a developmental delay in motor skills, and by behavioural alterations indicative of reduced anxiety. Exposure to LPD in utero resulted in significantly more tyrosine hydroxylase positive (dopaminergic) neurons in the midbrain of adult offspring as compared to age-matched, control-diet equivalents. Positron emission tomography (PET) imaging revealed an increase in striatal dopamine synthesis capacity in LPD-exposed offspring, where elevated levels of dopamine correlated with an enhanced sensitivity to cocaine. These data highlight a profound sensitivity of the developing epigenome to gestational protein restriction. Our data also suggest that loss of Cdkn1c imprinting and p57KIP2 upregulation alters the cellular composition of the developing midbrain, compromises dopamine circuitry, and thereby provokes behavioural abnormalities in early postnatal life. Molecular analyses showed that despite this phenotype, exposure to LPD solely during pregnancy did not significantly change the expression of key neuronal- or dopamine-associated marker genes in adult offspring.


Diet, Protein-Restricted , Dopamine , Animals , Female , Mice , Pregnancy , Alleles , Cyclin-Dependent Kinase Inhibitor p57 , Neurons , Behavior, Animal
8.
Sci Rep ; 14(1): 8612, 2024 04 14.
Article En | MEDLINE | ID: mdl-38616198

This study investigated the effects of Lactobacillus-fermented low-protein diet on the growth performance, nitrogen balance, fecal microbiota, and metabolomic profiles of finishing pigs. A total of 90 finishing pigs were assigned to one of three dietary treatments including a normal protein diet (CON) as well as two experimental diets in which a low-protein diet supplemented with 0 (LP) or 1% Lactobacillus-fermented low-protein feed (FLP). In comparison with CON, the LP and FLP significantly increased average daily gain (P = 0.044), significantly decreased feed to gain ratio (P = 0.021), fecal nitrogen (P < 0.01), urine nitrogen (P < 0.01), and total nitrogen (P < 0.01), respectively. The LP group exhibited increased abundances of unclassified_f_Selenomonadaceae, Coprococcus, Faecalibacterium, and Butyricicoccus, while the abundances of Verrucomicrobiae, Verrucomicrobiales, Akkermansiaceae, and Akkermansia were enriched in the FLP group. Low-protein diet-induced metabolic changes were enriched in sesquiterpenoid and triterpenoid biosynthesis and Lactobacillus-fermented low-protein feed-induced metabolic changes were enriched in phenylpropanoid biosynthesis and arginine biosynthesis. Overall, low-protein diet and Lactobacillus-fermented low-protein diet improved the growth performance and reduce nitrogen excretion, possibly via altering the fecal microbiota and metabolites in the finishing pigs. The present study provides novel ideas regarding the application of the low-protein diet and Lactobacillus-fermented low-protein diet in swine production.


Diet, Protein-Restricted , Microbiota , Animals , Swine , Metabolomics , Lactobacillus , Nitrogen
9.
Poult Sci ; 103(6): 103714, 2024 Jun.
Article En | MEDLINE | ID: mdl-38636202

We investigated the effects of supplementing low protein diets with methionine (Met) or threonine (Thr) during a mixed Eimeria (consisting of E. acervulina, E. maxima and E. tenella) challenge in broilers. All birds were fed the same starter diet (d1-9) and finisher diet (d28-35) which met Cobb 500 nutrient specifications. Birds were allocated to 1 of 4 dietary treatments from d9 to 28: a standard protein diet (19% CP); a low protein diet (16% CP); or the low protein diet supplemented with Met or Thr at 50% above recommendations. On d14, half of the birds were challenged, and half of the birds were unchallenged. From d14 to 28, feed intake was recorded daily and BW every 3 or 4 d. Oocyst excretion was measured daily from d18 to 27. On d21 and 28, 3 birds per pen were euthanized to assess nutrient digestibility, cytokine expression and intestinal histology. During the acute stage of the challenge, challenged birds reduced ADFI and ADG (P < 0.05). In the pre-patent and recovery stages, birds given the 16% CP diets increased ADFI (P < 0.05), meanwhile there were no differences in ADG in these stages (P > 0.05). Nutrient digestibility was reduced in challenged birds in the acute stage (P < 0.05) but tended to be greater than in unchallenged birds during the recovery stage. There was no significant effect of diet on oocyst excretion or intestinal histology (P > 0.05). Interactions were observed between diet and challenge on IL-10 and IL-21 expression in the cecal tonsils during the acute stage of the challenge (P < 0.05), due to reduced IL-10 expression in challenged Thr birds and greater IL-21 expression in challenged Met birds. Supplementation with Thr or Met had limited effects on the outcomes of a mixed Eimeria challenge but provides benefits to the host by enhancing their immune response.


Animal Feed , Chickens , Coccidiosis , Diet, Protein-Restricted , Dietary Supplements , Eimeria , Methionine , Poultry Diseases , Threonine , Animals , Methionine/administration & dosage , Coccidiosis/veterinary , Coccidiosis/parasitology , Eimeria/physiology , Animal Feed/analysis , Threonine/administration & dosage , Poultry Diseases/parasitology , Dietary Supplements/analysis , Diet, Protein-Restricted/veterinary , Male , Diet/veterinary , Random Allocation
10.
Pak J Biol Sci ; 27(3): 113-118, 2024 Mar.
Article En | MEDLINE | ID: mdl-38686732

<b>Background and Objective:</b> Malnutrition and stunting are major unresolved problems in Indonesia. Protein deficiency can cause stunted growth, as well as make physical and cognitive abilities cannot reach their maximum potential. During childhood the need for protein must be fulfilled so that the peak of bone formation during adolescence can be perfect. In malnourished children, a low protein diet will lead to thinning of the bone cortex. Due to the high rate of stunting and malnutrition in children due to protein deficiency, a study was conducted on the effects of feeding low protein diet on rat bones. <b>Materials and Methods:</b> Male Wistar rats (n = 10) at 6-8 weeks old (body weight around 250 g), control groups were fed a normal chow diet and low protein diet groups were given low protein chow diet (protein 5%) for 18 weeks, then the rats were sacrificed and the femoral bones were isolated. Body weight, femur weight, femur length were checked and bone density was examined using X-ray. <b>Results:</b> The body proportions of the low protein group rats were smaller and thinner than those of the control group. This difference is supported by the significant weight loss starting from the sixth week after low protein feeding. There are significant differences in body weight and femur weight between the control and low protein diet groups. Bone density decreases significantly in low protein diet group. Macroscopically, the femur length of the low protein group was shorter than the control group, however the femur length did not show significant differences statistically between the two groups. <b>Conclusion:</b> A low protein diet decreased the body weight of the rats, also causing impaired bone growth characterized by decreasing femur weight. The low protein diet also caused osteoporosis in the bones.


Bone Density , Diet, Protein-Restricted , Femur , Rats, Wistar , Animals , Male , Femur/metabolism , Rats , Body Weight , Bone Development , Bone and Bones/metabolism , Dietary Proteins/administration & dosage , Dietary Proteins/metabolism
11.
Int J Mol Sci ; 25(8)2024 Apr 15.
Article En | MEDLINE | ID: mdl-38673954

The objective was to assess whether low-protein (LP) diets regulate food intake (FI) and thermogenesis differently during thermoneutral (TN) and heat stress (HS) conditions. Two-hundred-day-old male broiler chicks were weight-matched and assigned to 36 pens with 5-6 chicks/pen. After 2 weeks of acclimation, birds were subjected into four groups (9 pens/group) including (1) a normal-protein diet under TN (ambient temperature), (2) an LP diet under TN, (3) a normal-protein diet under HS (35 °C for 7 h/day), and (4) an LP diet under HS, for 4 weeks. During HS, but not TN, LP tended to decrease FI, which might be associated with a lower mRNA abundance of duodenal ghrelin and higher GIP during HS. The LP group had a higher thermal radiation than NP under TN, but during HS, the LP group had a lower thermal radiation than NP. This was linked with higher a transcript of muscle ß1AR and AMPKα1 during TN, but not HS. Further, LP increased the gene expression of COX IV during TN but reduced COX IV and the sirtuin 1 abundance during HS. The dietary protein content differentially impacted plasma metabolome during TN and HS with divergent changes in amino acids such as tyrosine and tryptophan. Compared to NP, LP had increased abundances of p_Tenericutes, c_Mollicutes, c_Mollicutes_RF9, and f_tachnospiraceae under HS. Overall, LP diets may mitigate the negative outcome of heat stress on the survivability of birds by reducing FI and heat production. The differential effect of an LP diet on energy balance during TN and HS is likely regulated by gut and skeletal muscle and alterations in plasma metabolites and cecal microbiota.


Chickens , Diet, Protein-Restricted , Energy Metabolism , Heat-Shock Response , Animals , Chickens/metabolism , Male , Thermogenesis , Animal Feed , Eating
12.
Fish Shellfish Immunol ; 149: 109555, 2024 Jun.
Article En | MEDLINE | ID: mdl-38615703

Developing a low-protein feed is important for the sustainable advancement of aquaculture. The aim of this study was to investigate the effects of essential amino acid (EAA) supplementation in a low-protein diet on the growth, intestinal health, and microbiota of the juvenile blotched snakehead, Channa maculata in an 8-week trial conducted in a recirculating aquaculture system. Three isoenergetic diets were formulated to include a control group (48.66 % crude protein (CP), HP), a low protein group (42.54 % CP, LP), and a low protein supplementation EAA group (44.44 % CP, LP-AA). The results showed that significantly lower weight gain (WG), specific growth rate (SGR), protein efficiency ratio (PER), and feed efficiency ratio (FER) were observed in fish that were fed LP than in the HP and LP-AA groups (P < 0.05). The HP and LP-AA groups exhibited a significant increase in intestinal villus length, villus width, and muscular thickness compared to the LP group (P < 0.05). Additionally, the HP and LP-AA groups demonstrated significantly higher levels of intestinal total antioxidant capacity (T-AOC), catalase (CAT), and superoxide dismutase (SOD) and lower levels of malondialdehyde (MDA) compared to the LP group (P < 0.05). The apoptosis rate of intestinal cells in the LP group was significantly higher than those in the LP and HP groups (P < 0.05). The mRNA expression levels of superoxide dismutase (sod), nuclear factor kappa B p65 subunit (nfκb-p65), heat shock protein 70 (hsp70), and inhibitor of NF-κBα (iκba) in the intestine were significantly higher in the LP group than those in the HP and LP-AA groups (P < 0.05). The 16s RNA analysis indicated that EAA supplementation significantly increased the growth of Desulfovibrio and altered the intestinal microflora. The relative abundances of Firmicutes and Cyanobacteria were positively correlated with antioxidant parameters (CAT and T-AOC), whereas Desulfobacterota was negatively correlated with sod and T-AOC. The genera Bacillus, Bacteroides, and Rothia were associated with the favorable maintenance of gut health. In conclusion, dietary supplementation with EAAs to achieve a balanced amino acid profile could potentially reduce the dietary protein levels from 48.66 % to 44.44 % without adversely affecting the growth and intestinal health of juvenile blotched snakeheads.


Amino Acids, Essential , Animal Feed , Dietary Supplements , Gastrointestinal Microbiome , Intestines , Animals , Animal Feed/analysis , Dietary Supplements/analysis , Gastrointestinal Microbiome/drug effects , Amino Acids, Essential/administration & dosage , Perciformes/growth & development , Perciformes/immunology , Diet, Protein-Restricted/veterinary , Diet/veterinary , Random Allocation , Fishes/growth & development , Aquaculture , Channa punctatus
13.
BMC Genomics ; 25(1): 374, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38627644

BACKGROUND: Fatty liver hemorrhagic syndrome (FLHS) in the modern poultry industry is primarily caused by nutrition. Despite encouraging progress on FLHS, the mechanism through which nutrition influences susceptibility to FLHS is still lacking in terms of epigenetics. RESULTS: In this study, we analyzed the genome-wide patterns of trimethylated lysine residue 27 of histone H3 (H3K27me3) enrichment by chromatin immunoprecipitation-sequencing (ChIP-seq), and examined its association with transcriptomes in healthy and FLHS hens. The study results indicated that H3K27me3 levels were increased in the FLHS hens on a genome-wide scale. Additionally, H3K27me3 was found to occupy the entire gene and the distant intergenic region, which may function as silencer-like regulatory elements. The analysis of transcription factor (TF) motifs in hypermethylated peaks has demonstrated that 23 TFs are involved in the regulation of liver metabolism and development. Transcriptomic analysis indicated that differentially expressed genes (DEGs) were enriched in fatty acid metabolism, amino acid, and carbohydrate metabolism. The hub gene identified from PPI network is fatty acid synthase (FASN). Combined ChIP-seq and transcriptome analysis revealed that the increased H3K27me3 and down-regulated genes have significant enrichment in the ECM-receptor interaction, tight junction, cell adhesion molecules, adherens junction, and TGF-beta signaling pathways. CONCLUSIONS: Overall, the trimethylation modification of H3K27 has been shown to have significant regulatory function in FLHS, mediating the expression of crucial genes associated with the ECM-receptor interaction pathway. This highlights the epigenetic mechanisms of H3K27me3 and provides insights into exploring core regulatory targets and nutritional regulation strategies in FLHS.


Abnormalities, Multiple , Craniofacial Abnormalities , Diet, Protein-Restricted , Fatty Liver , Growth Disorders , Heart Septal Defects, Ventricular , Animals , Female , Histones/metabolism , Chickens/genetics , Chickens/metabolism , Epigenesis, Genetic , Fatty Liver/genetics , Fatty Liver/veterinary , Hemorrhage/genetics , Transcriptome
14.
Nutr J ; 23(1): 35, 2024 Mar 13.
Article En | MEDLINE | ID: mdl-38481332

BACKGROUND: Dietary patterns, encompassing an overall view of individuals' dietary intake, are suggested as a suitable means of assessing nutrition's role in chronic disease development. The aim of this study was to evaluate the validity and reproducibility of a food frequency questionnaire (FFQ) designed for use in the Prospective Epidemiological Research Studies in IrAN (PERSIAN), by comparing major dietary patterns assessed by the FFQ with a reference method. METHODS: Study participants included men and women who enrolled in the PERSIAN Cohort Study at seven of the eighteen centers. These centers were chosen to include dietary variations observed among the different Iranian ethnic populations. Two FFQ were completed for each participant over a one-year study period (FFQ1 upon enrollment and FFQ2 at the end of the study), with 24 interviewer-administered 24-hour dietary recalls (24 h) being completed monthly in between. Spearman correlation coefficients (SCC) were used comparing FFQs 1 and 2 to the 24 h to assess validity, while FFQ1 was compared to FFQ2 to assess reproducibility of the questionnaire. RESULTS: Three major dietary patterns-Healthy, Low Protein/High Carb and Unhealthy-were identified, accounting for 70% of variance in the study population. Corrected SCC ranged from 0.31 to 0.61 in the validity and from 0.34 to 0.57 in reproducibility analyses, with the first two patterns, which accounted for over 50% of population variance, correlated at above 0.5 in both parameters, showing acceptable findings. CONCLUSIONS: The PERSIAN Cohort FFQ is suitable for identification of major dietary patterns in the populations it is used for, in order to assess diet-disease relationships.


Diet , Dietary Patterns , Male , Humans , Female , Iran , Prospective Studies , Cohort Studies , Reproducibility of Results , Surveys and Questionnaires , Diet, Protein-Restricted , Diet Surveys , Diet Records
15.
Invest Ophthalmol Vis Sci ; 65(3): 2, 2024 Mar 05.
Article En | MEDLINE | ID: mdl-38441890

Purpose: Tear fluid is a complex and dynamic biological fluid that plays essential roles in maintaining ocular homeostasis and protecting against the external environment. Owing to the small sample volume, studying the tear proteome is challenging. However, advances in high-resolution mass spectrometry have expanded tear proteome profiling, revealing >500 unique proteins. Tears are emerging as a noninvasive source of biomarkers for both ocular and systemic diseases; nevertheless, intraday variability of proteins in tear fluid remains questionable. This study investigates intraday variations in the tear fluid proteome to identify stable proteins that could act as candidate biomarkers. Methods: Tear samples from 15 individuals at four time points (10 am, 12 pm, 2 pm, and 4 pm) were analyzed using mass spectrometry to evaluate protein variation during these intervals. Technical variation was assessed by analyzing pooled samples and was subtracted from the total variation to isolate biological variability. Results: Owing to high technical variation, low-abundant proteins were filtered, and only 115 proteins met the criteria for further analysis. These criteria include being detected at all four time points in at least eight subjects, having a mean peptide-spectrum match count greater than 5, and having a technical variation less than 0.10. Lactotransferrin, lipocalin-1, and several immunoglobulins were among the 51 stable proteins (mean biological coefficient of variation < 0.10). Additionally, 43 proteins displayed significant slopes across the 4 time points, with 17 increasing and 26 decreasing over time. Conclusions: These findings contribute to the understanding of tear fluid dynamics and further expand our knowledge of the tear proteome.


Diet, Protein-Restricted , Proteome , Humans , Correlation of Data , Eye , Biomarkers
16.
J Nutr Biochem ; 128: 109618, 2024 Jun.
Article En | MEDLINE | ID: mdl-38462210

A maternal low-protein diet during pregnancy can increase children's susceptibility to diabetes mellitus in adulthood. However, whether long noncoding RNAs (lncRNAs) in islets participate in the development of diabetes in adult offspring following maternal protein restriction is not fully understood. Female mice were fed a low-protein (LP) diet or control diet throughout gestation and lactation. The male offspring were then randomly divided into two groups according to maternal diet: offspring from control diet group dams (Ctrl group) and offspring from LP group dams (LP group). We observed the glucose metabolism of adult offspring. A lncRNA microarray was constructed for the islets from the LP group and Ctrl group to explore the differently expressed lncRNAs. Gene ontology enrichment and Kyoto Encyclopedia of Genes and Genomes analyses were subsequently used to predict the functions of the differently expressed lncRNAs. The body weight from birth to 12 weeks of age was significantly lower in the LP offspring. Adult LP offspring exhibited impaired glucose tolerance and decreased insulin secretion, consistent with the reduction in ß-cell proliferation. According to the lncRNA microarray, four lncRNAs, three upregulated lncRNAs, and one downregulated lncRNA were differently expressed in LP offspring islets compared with Ctrl offspring. Gene ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed that these differentially expressed lncRNAs were mostly associated with the hypoxia-inducible factor-1α signaling pathway. Additionally, we validated the expression of these four differentially expressed lncRNAs via quantitative real-time polymerase chain reaction. Our findings demonstrated the expression patterns of lncRNAs in islets from adult offspring of mothers who consumed a maternal low-protein diet.


Diet, Protein-Restricted , Islets of Langerhans , Maternal Nutritional Physiological Phenomena , RNA, Long Noncoding , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Female , Pregnancy , Male , Islets of Langerhans/metabolism , Prenatal Exposure Delayed Effects , Mice , Mice, Inbred C57BL , Insulin/metabolism , Glucose/metabolism , Glucose Intolerance/metabolism
17.
Poult Sci ; 103(5): 103572, 2024 May.
Article En | MEDLINE | ID: mdl-38428355

An experiment was conducted to determine the effect of feeding reduced crude protein (CP) diets to Ross × Ross 708 male broilers while providing adequate essential amino acid (AA) concentrations on growth performance, nitrogen (N) and ammonia output, and carcass characteristics from d 1 to 33 post hatch. Birds received 1 of 6 dietary treatments (10 replicate pens per treatment) varying in CP content. Diet 1 (control) was formulated with DL-Met, L-Lys, and L-Thr (23.2, 20.7, and 19.1% CP) in the starter (1-14 d of age), grower (15-25 d of age), and finisher (26-33 d of age) periods, respectively. Dietary L-Val, Gly (only in starter period), L-Ile, L-Arg, and L-Trp were sequentially supplemented in the order of limitation in Diets 2 through 6. Dietary CP was reduced gradually across the dietary treatments resulting in a CP reduction in Diets 1 to 6 by 3.4, 3.4, and 2.3% points in the starter, grower, and finisher periods, respectively. At d 14, 25, and 33 posthatch, feed conversion decreased (P < 0.05) with L-Val addition (Diet 2) and increased (P < 0.01) with L-Val to L-Trp addition (Diet 6) to the control. Dietary treatments did not alter weights and yields of carcass, breast, drum, or thighs. Dietary CP reduction with added L-Val (Diet 2), L-Val to L-Arg (Diet 5), or L-Val to L-Trp (Diet 6) increased abdominal fat (P < 0.01) compared with control. Nitrogen excretion (g/bird; P = 0.003) and equilibrium ammonia concentration (mg/kg; P = 0.041) at day 33 reduced by 16% and 48% respectively in birds fed reduced-CP diets with L-Val to L-Trp (Diet 6) compared with control-fed birds. This study indicated that sequential addition of supplemental AA in the order of limitation from DL-Met to L-Arg allowed reduction of dietary CP beyond 2%-point without depressing growth performance and meat yield of broilers from day 1 to 33 while reducing nitrogen excretion and ammonia emissions.


Amino Acids, Essential , Ammonia , Animal Feed , Animal Nutritional Physiological Phenomena , Chickens , Diet , Nitrogen , Animals , Chickens/growth & development , Chickens/physiology , Animal Feed/analysis , Male , Nitrogen/metabolism , Ammonia/metabolism , Diet/veterinary , Amino Acids, Essential/administration & dosage , Amino Acids, Essential/metabolism , Animal Nutritional Physiological Phenomena/drug effects , Diet, Protein-Restricted/veterinary , Dietary Proteins/metabolism , Dietary Proteins/administration & dosage , Random Allocation , Meat/analysis , Dietary Supplements/analysis
18.
Mol Cell Endocrinol ; 588: 112223, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38556160

Maternal malnutrition can alter developmental biology, programming health and disease in offspring. The increase in sugar consumption during the peripubertal period, a worldwide concern, also affects health through adulthood. Studies have shown that maternal exposure to a low protein diet (LPD) is associated with an increase in prostate disease with aging. However, the combined effects of maternal LPD and early postnatal sugar consumption on offspring prostate disorders were not investigated. The effects on aging were evaluated using a maternal gestational model with lactational LPD (6% protein) and sugar consumption (10%) from postnatal day (PND) 21-90, associating the consequences on ventral prostate (VP) rats morphophysiology on PND540. An increase was shown in mast cells and in the VP of the CTR + SUG and Gestational and Lactational Low Protein (GLLP) groups. In GLLP + SUG, a significant increase was shown in TGF-ß1 expression in both the systemic and intra-prostatic forms, and SMAD2/3p had increased. The study identified maternal LPD and sugar consumption as risk factors for prostatic homeostasis in senility, activating the TGFß1-SMAD2/3 pathway, a signaling pathway with potential markers for prostatic disorders.


Malnutrition , Maternal Nutritional Physiological Phenomena , Prenatal Exposure Delayed Effects , Prostate , Prostatic Diseases , Animals , Male , Female , Pregnancy , Prenatal Exposure Delayed Effects/metabolism , Prostatic Diseases/pathology , Prostatic Diseases/etiology , Prostatic Diseases/metabolism , Malnutrition/complications , Prostate/metabolism , Prostate/pathology , Rats , Inflammation/pathology , Inflammation/metabolism , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/genetics , Diet, Protein-Restricted/adverse effects , Smad2 Protein/metabolism , Rats, Wistar , Smad3 Protein/metabolism , Smad3 Protein/genetics , Signal Transduction , Animals, Newborn , Mast Cells/metabolism
19.
Nutrients ; 16(5)2024 Feb 24.
Article En | MEDLINE | ID: mdl-38474760

The prevalence of chronic kidney disease (CKD) is rising, especially in elderly individuals. The overlap between CKD and aging is associated with body composition modification, metabolic abnormalities, and malnutrition. Renal care guidelines suggest treating CKD patient with a low-protein diet according to the renal disease stage. On the other hand, geriatric care guidelines underline the need for a higher protein intake to prevent malnutrition. The challenge remains of how to reconcile a low dietary protein intake with insuring a favorable nutritional status in geriatric CKD populations. Therefore, this study aims to evaluate the effect of a low-protein adequate energy intake (LPAE) diet on nutritional risk and nutritional status among elderly CKD (stage 3-5) patients and then to assess its impact on CKD metabolic abnormalities. To this purpose, 42 subjects [age ≥ 65, CKD stage 3-5 in conservative therapy, and Geriatric Nutritional Risk Index (GNRI) ≥ 98] were recruited and the LPAE diet was prescribed. At baseline and after 6 months of the LPAE diet, the following data were collected: age, sex, biochemical parameters, anthropometric measurements, body composition, and the GNRI. According to their dietary compliance, the subjects were divided into groups: compliant and non-compliant. For the compliant group, the results obtained show no increased malnutrition risk incidence but, rather, an improvement in body composition and metabolic parameters, suggesting that the LPAE diet can provide a safe tool in geriatric CKD patients.


Malnutrition , Renal Insufficiency, Chronic , Humans , Aged , Nutritional Status , Dietary Proteins , Renal Insufficiency, Chronic/complications , Malnutrition/complications , Diet, Protein-Restricted , Nutrition Assessment , Geriatric Assessment/methods
20.
Eur Rev Med Pharmacol Sci ; 28(2): 709-720, 2024 Jan.
Article En | MEDLINE | ID: mdl-38305613

OBJECTIVE: The purpose of this meta-analysis is to evaluate the efficacy of a keto-supplemented low-protein diet (sLPD) in enhancing nutritional status among individuals undergoing peritoneal dialysis (PD) compared to a low-protein diet (LPD). MATERIALS AND METHODS: Studies from PubMed, EMBASE, Cochrane Library, China National Knowledge Infrastructure (CNKI), and Wanfang Data were searched and reviewed up to January 2023. Randomized controlled trials (RCTs) were enrolled and analyzed using STATA MP 17. In this review, serum albumin (Alb), body mass index (BMI), and serum prealbumin (PA) were included for efficacy evaluation and serum calcium (CA) for safety evaluation. Potential heterogeneity was detected using subgroup analyses. RESULTS: 7 RCTs were included. Compared with LPD, sLPD can improve the Alb [Weighted Mean Difference (WMD)=4.16; 95% CI: 2.50, 5.83; p<0.0001), BMI [WMD=1.35; 95% CI: 0.59, 2.11; p<0.0001] and PA [WMD=0.07; 95% CI: 0.04, 0.10; p<0.0001] level of patients undergoing PD. Subgroup analyses showed that, although Alb had no difference with LPD within 12 months of PD duration, sLPD treatment could improve the levels of Alb and PA regardless of PD duration or course of treatment. sLPD can improve the BMI of patients with a PD duration of more than 24 months, regardless of the duration of treatment. CONCLUSIONS: A sLPD is an effective intervention for improving the nutritional status of PD patients. It is suggested that patients undergoing PD should initiate sLPD at the beginning of PD to ensure sufficient nutritional intake.


Nutritional Status , Peritoneal Dialysis , Humans , Diet, Protein-Restricted , Renal Dialysis , Randomized Controlled Trials as Topic , Peritoneal Dialysis/adverse effects
...