Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 11.995
1.
J Vis Exp ; (207)2024 May 17.
Article En | MEDLINE | ID: mdl-38829110

PyDesigner is a Python-based software package based on the original Diffusion parameter EStImation with Gibbs and NoisE Removal (DESIGNER) pipeline (Dv1) for dMRI preprocessing and tensor estimation. This software is openly provided for non-commercial research and may not be used for clinical care. PyDesigner combines tools from FSL and MRtrix3 to perform denoising, Gibbs ringing correction, eddy current motion correction, brain masking, image smoothing, and Rician bias correction to optimize the estimation of multiple diffusion measures. It can be used across platforms on Windows, Mac, and Linux to accurately derive commonly used metrics from DKI, DTI, WMTI, FBI, and FBWM datasets as well as tractography ODFs and .fib files. It is also file-format agnostic, accepting inputs in the form of .nii, .nii.gz, .mif, and dicom format. User-friendly and easy to install, this software also outputs quality control metrics illustrating signal-to-noise ratio graphs, outlier voxels, and head motion to evaluate data integrity. Additionally, this dMRI processing pipeline supports multiple echo-time dataset processing and features pipeline customization, allowing the user to specify which processes are employed and which outputs are produced to meet a variety of user needs.


Diffusion Magnetic Resonance Imaging , Software , Humans , Diffusion Magnetic Resonance Imaging/methods , Image Processing, Computer-Assisted/methods , Brain/diagnostic imaging
2.
Radiol Clin North Am ; 62(4): 661-678, 2024 Jul.
Article En | MEDLINE | ID: mdl-38777541

Considering the high cost of dynamic contrast-enhanced MR imaging and various contraindications and health concerns related to administration of intravenous gadolinium-based contrast agents, there is emerging interest in non-contrast-enhanced breast MR imaging. Diffusion-weighted MR imaging (DWI) is a fast, unenhanced technique that has wide clinical applications in breast cancer detection, characterization, prognosis, and predicting treatment response. It also has the potential to serve as a non-contrast MR imaging screening method. Standardized protocols and interpretation strategies can help to enhance the clinical utility of breast DWI. A variety of other promising non-contrast MR imaging techniques are in development, but currently, DWI is closest to clinical integration, while others are still mostly used in the research setting.


Breast Neoplasms , Breast , Magnetic Resonance Imaging , Humans , Breast Neoplasms/diagnostic imaging , Female , Breast/diagnostic imaging , Magnetic Resonance Imaging/methods , Diffusion Magnetic Resonance Imaging/methods , Contrast Media
3.
Hum Brain Mapp ; 45(8): e26722, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38780442

In this study we explore the spatio-temporal trajectory and clinical relevance of microstructural white matter changes within and beyond subcortical stroke lesions detected by free-water imaging. Twenty-seven patients with subcortical infarct with mean age of 66.73 (SD 11.57) and median initial NIHSS score of 4 (IQR 3-7) received diffusion MRI 3-5 days, 1 month, 3 months, and 12 months after symptom-onset. Extracellular free-water and fractional anisotropy of the tissue (FAT) were averaged within stroke lesions and the surrounding tissue. Linear models showed increased free-water and decreased FAT in the white matter of patients with subcortical stroke (lesion [free-water/FAT, mean relative difference in %, ipsilesional vs. contralesional hemisphere at 3-5 days, 1 month, 3 months, and 12 months after symptom-onset]: +41/-34, +111/-37, +208/-26, +251/-18; perilesional tissue [range in %]: +[5-24]/-[0.2-7], +[2-20]/-[3-16], +[5-43]/-[2-16], +[10-110]/-[2-12]). Microstructural changes were most prominent within the lesion and gradually became less pronounced with increasing distance from the lesion. While free-water elevations continuously increased over time and peaked after 12 months, FAT decreases were most evident 1 month post-stroke, gradually returning to baseline values thereafter. Higher perilesional free-water and higher lesional FAT at baseline were correlated with greater reductions in lesion size (rho = -0.51, p = .03) in unadjusted analyses only, while there were no associations with clinical measures. In summary, we find a characteristic spatio-temporal pattern of extracellular and cellular alterations beyond subcortical stroke lesions, indicating a dynamic parenchymal response to ischemia characterized by vasogenic edema, cellular damage, and white matter atrophy.


Diffusion Magnetic Resonance Imaging , Ischemic Stroke , White Matter , Humans , Male , Aged , Female , Middle Aged , Ischemic Stroke/diagnostic imaging , Ischemic Stroke/pathology , White Matter/diagnostic imaging , White Matter/pathology , Diffusion Magnetic Resonance Imaging/methods , Longitudinal Studies , Water , Brain/diagnostic imaging , Brain/pathology , Anisotropy
4.
Tomography ; 10(5): 773-788, 2024 May 17.
Article En | MEDLINE | ID: mdl-38787019

Background: The purpose of this study was to investigate the dependence of Intravoxel Incoherent Motion (IVIM) parameters measured in the human calf on B0. Methods: Diffusion-weighted image data of eight healthy volunteers were acquired using five b-values (0-600 s/mm2) at rest and after muscle activation at 0.55 and 7 T. The musculus gastrocnemius mediale (GM, activated) was assessed. The perfusion fraction f and diffusion coefficient D were determined using segmented fits. The dependence on field strength was assessed using Student's t-test for paired samples and the Wilcoxon signed-rank test. A biophysical model built on the three non-exchanging compartments of muscle, venous blood, and arterial blood was used to interpret the data using literature relaxation times. Results: The measured perfusion fraction of the GM was significantly lower at 7 T, both for the baseline measurement and after muscle activation. For 0.55 and 7 T, the mean f values were 7.59% and 3.63% at rest, and 14.03% and 6.92% after activation, respectively. The biophysical model estimations for the mean proton-density-weighted perfusion fraction were 3.37% and 6.50% for the non-activated and activated states, respectively. Conclusions: B0 may have a significant effect on the measured IVIM parameters. The blood relaxation times suggest that 7 T IVIM may be arterial-weighted whereas 0.55 T IVIM may exhibit an approximately equal weighting of arterial and venous blood.


Diffusion Magnetic Resonance Imaging , Muscle, Skeletal , Humans , Diffusion Magnetic Resonance Imaging/methods , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/physiology , Male , Adult , Female , Leg/diagnostic imaging , Leg/blood supply , Magnetic Fields , Motion , Healthy Volunteers , Young Adult
5.
Sci Rep ; 14(1): 9965, 2024 04 30.
Article En | MEDLINE | ID: mdl-38693152

To quantitatively assess the diagnostic efficacy of multiple parameters derived from multi-b-value diffusion-weighted imaging (DWI) using turbo spin echo (TSE)-based acquisition techniques in patients with solitary pulmonary lesions (SPLs). A total of 105 patients with SPLs underwent lung DWI using single-shot TSE-based acquisition techniques and multiple b values. The apparent diffusion coefficient (ADC), intravoxel incoherent motion (IVIM) parameters, and lesion-to-spinal cord signal intensity ratio (LSR), were analyzed to compare the benign and malignant groups using the Mann-Whitney U test and receiver operating characteristic analysis. The Dstar values observed in lung cancer were slightly lower than those observed in pulmonary benign lesions (28.164 ± 31.950 versus 32.917 ± 34.184; Z = -2.239, p = 0.025). The LSR values were significantly higher in lung cancer than in benign lesions (1.137 ± 0.581 versus 0.614 ± 0.442; Z = - 4.522, p < 0.001). Additionally, the ADC800, ADCtotal, and D values were all significantly lower in lung cancer than in the benign lesions (Z = - 5.054, -5.370, and -6.047, respectively, all p < 0.001), whereas the f values did not exhibit any statistically significant difference between the two groups. D had the highest area under the curve (AUC = 0.887), followed by ADCtotal (AUC = 0.844), ADC800 (AUC = 0.824), and LSR (AUC = 0.789). The LSR, ADC800, ADCtotal, and D values did not differ statistically significantly in diagnostic effectiveness. Lung DWI using TSE is feasible for differentiating SPLs. The LSR method, conventional DWI, and IVIM have comparable diagnostic efficacy for assessing SPLs.


Diffusion Magnetic Resonance Imaging , Lung Neoplasms , Humans , Diffusion Magnetic Resonance Imaging/methods , Male , Female , Middle Aged , Diagnosis, Differential , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/diagnosis , Lung Neoplasms/pathology , Aged , Adult , ROC Curve , Solitary Pulmonary Nodule/diagnostic imaging , Solitary Pulmonary Nodule/pathology , Solitary Pulmonary Nodule/diagnosis , Aged, 80 and over , Lung/diagnostic imaging , Lung/pathology
6.
Sci Rep ; 14(1): 12135, 2024 05 27.
Article En | MEDLINE | ID: mdl-38802446

To compare diffusion-kurtosis imaging (DKI) and diffusion-weighted imaging (DWI) parameters of single-shot echo-planar imaging (ss-EPI) and readout-segmented echo-planar imaging (rs-EPI) in the differentiation of luminal vs. non-luminal breast cancer using histogram analysis. One hundred and sixty women with 111 luminal and 49 non-luminal breast lesions were enrolled in this study. All patients underwent ss-EPI and rs-EPI sequences on a 3.0T scanner. Histogram metrics were derived from mean kurtosis (MK), mean diffusion (MD) and the apparent diffusion coefficient (ADC) maps of two DWI sequences respectively. Student's t test or Mann-Whitney U test was performed for differentiating luminal subtype from non-luminal subtype. The ROC curves were plotted for evaluating the diagnostic performances of significant histogram metrics in differentiating luminal from non-luminal BC. The histogram metrics MKmean, MK50th, MK75th of luminal BC were significantly higher than those of non-luminal BC for both two DWI sequences (all P<0.05). Histogram metrics from rs-EPI sequence had better diagnostic performance in differentiating luminal from non-Luminal breast cancer compared to those from ss-EPI sequence. MK75th derived from rs-EPI sequence was the most valuable single metric (AUC, 0.891; sensitivity, 78.4%; specificity, 87.8%) for differentiating luminal from non-luminal BC among all the histogram metrics. Histogram metrics of MK derived from rs-EPI yielded better diagnostic performance for distinguishing luminal from non-luminal BC than that from ss-EPI. MK75th was the most valuable metric among all the histogram metrics.


Breast Neoplasms , Diffusion Magnetic Resonance Imaging , Echo-Planar Imaging , Humans , Female , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Echo-Planar Imaging/methods , Middle Aged , Adult , Diffusion Magnetic Resonance Imaging/methods , Aged , Diagnosis, Differential , ROC Curve
7.
Indian J Ophthalmol ; 72(6): 844-848, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38804801

PURPOSE: To find a correlation between the clinical (vision-inflammation-strabismus-appearance [VISA] score) and radiological (apparent diffusion coefficient [ADC] values) scores for evaluating disease activity in patients with thyroid-associated orbitopathy. DESIGN: A prospective comparative study. METHODS: Our study was performed for consecutively diagnosed thyroid-associated orbitopathy (TAO) patients. Clinical evaluation included the VISA classification system with the basic thyroid workup. An inflammatory score of <4/8 was considered inactive and ≥4/8 as an active disease. Every included patient underwent a diffusion-weighted magnetic resonance imaging (DW-MRI) scan of the orbits. The orbital parameters evaluated on imaging included the proptosis, thickness, as well as the ADC values of extraocular muscles. RESULTS: We studied 33 consecutive patients (23 females, 69.7%) with a mean age of 41.8 years. The majority (n = 27, 81.8%) were hyperthyroid, four were hypothyroid, and two were euthyroid. In the VISA classification, nine patients had active TAO (≥4/8 inflammation score), while 24 had inactive disease. There was a positive correlation between the inflammation score and ADC values of medial rectus (MR), inferior rectus (IR) and lateral rectus (LR). We had nine patients with inflammation scores ≥4. With receiver operating characteristic (ROC) curve analysis, we found that the ADC value of IR can predict disease activity with 68% sensitivity and MR-ADC can predict active TAO with 87% sensitivity. CONCLUSION: The ADC parameters of DW-MRI are objective and less operator dependent than the clinical TAO activity scores like VISA classification. A randomized control trial may provide robust data on this correlation.


Graves Ophthalmopathy , Oculomotor Muscles , Orbit , Humans , Graves Ophthalmopathy/diagnosis , Female , Prospective Studies , Male , Adult , Middle Aged , Oculomotor Muscles/diagnostic imaging , Oculomotor Muscles/physiopathology , Orbit/diagnostic imaging , Diffusion Magnetic Resonance Imaging/methods , Young Adult , Follow-Up Studies , Aged , Severity of Illness Index
8.
AJNR Am J Neuroradiol ; 45(5): 568-573, 2024 May 09.
Article En | MEDLINE | ID: mdl-38724189

BACKGROUND AND PURPOSE: Early neurologic deterioration (END) often occurs during hospitalization in single small subcortical infarction (SSSI). The objective was to identify imaging predictors of END. MATERIALS AND METHODS: SSSIs in the lenticulostriate artery within 72 hours of stroke onset from January 2015 to June 2021 were consecutively enrolled. The posteriority and laterality indexes were assessed on the second section from the top of the corona radiata section showing the lateral ventricle on DWI. A multivariate logistic analysis was used to explore the predictors of END. RESULTS: A total of 402 patients were included in this study, among whom 93 (23.1%) experienced END. The optimal cutoff points of the posteriority and laterality indexes for predicting END were given by a receiver operating characteristic curve. A multivariate logistic analysis showed that the posteriority index of ≥0.669 (OR: 2.53; 95% CI: 1.41-4.56; P = .002) and the laterality index of ≥0.950 (OR: 2.03; 95% CI: 1.03-4.00; P = .042) were independently associated with the risk of END. Accordingly, the SSSIs were further divided into 4 types: anterior lateral type (AL-type), anterior medial type (AM-type), posterior lateral type (PL-type), and posterior medial type (PM-type). After the multivariate analysis, in comparison with the AL-type, the AM-type (OR: 3.26; 95% CI: 1.10-9.65), PL-type (OR: 4.68; 95% CI: 1.41-15.56), and PM-type (OR: 6.77; 95% CI: 2.53-18.04) carried significantly elevated risks of END. The PM-type was associated with the highest risk of END. CONCLUSIONS: The PM-type was found to be associated with the highest risk of END.


Cerebral Infarction , Humans , Male , Female , Middle Aged , Aged , Cerebral Infarction/diagnostic imaging , Diffusion Magnetic Resonance Imaging/methods , Retrospective Studies , Basal Ganglia Cerebrovascular Disease/diagnostic imaging
9.
Dis Colon Rectum ; 67(6): 782-795, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38701503

BACKGROUND: A variety of definitions for a clinical near-complete response after neoadjuvant (chemo) radiotherapy for rectal cancer are currently used. This variety leads to inconsistency in clinical practice, long-term outcome, and trial enrollment. OBJECTIVE: The aim of this study was to reach expert-based consensus on the definition of a clinical near-complete response after (chemo) radiotherapy. DESIGN: A modified Delphi process, including a systematic review, 3 surveys, and 2 meetings, was performed with an international expert panel consisting of 7 surgeons and 4 radiologists. The surveys consisted of individual features, statements, and feature combinations (endoscopy, T2-weighted MRI, and diffusion-weighted MRI). SETTING: The modified Delphi process was performed in an online setting; all 3 surveys were completed online by the expert panel, and both meetings were hosted online. MAIN OUTCOME MEASURES: The main outcome was to reach consensus (80% or more agreement). RESULTS: The expert panel reached consensus on a 3-tier categorization of the near-complete response category based on the likelihood of the response to evolve into a clinical complete response after a longer waiting interval. The panelists agreed that a near-complete response is a temporary entity only to be used in the first 6 months after (chemo)radiotherapy. Furthermore, consensus was reached that the lymph node status should be considered when deciding on a near-complete response and that biopsies are not always needed when a near-complete response is found. No consensus was reached on whether primary staging characteristics have to be taken into account when deciding on a near-complete response. LIMITATIONS: This 3-tier subcategorization is expert-based; therefore, there is no supporting evidence for this subcategorization. Also, it is unclear whether this subcategorization can be generalized into clinical practice. CONCLUSIONS: Consensus was reached on the use of a 3-tier categorization of a near-complete response, which can be helpful in daily practice as guidance for treatment and to inform patients with a near-complete response on the likelihood of successful organ preservation. See Video Abstract. UN CONSENSO INTERNACIONAL BASADO EN EXPERTOS ACERCA DE LA DEFINICIN DE UNA RESPUESTA CLNICA CASI COMPLETA DESPUS DE QUIMIORADIOTERAPIA NEOADYUVANTE CONTRA EL CNCER DE RECTO: ANTECEDENTES:Actualmente, se utilizan una variedad de definiciones para una respuesta clínica casi completa después de quimioradioterapia neoadyuvante contra el cáncer de recto. Esta variedad resulta en inconsistencia en la práctica clínica, los resultados a largo plazo y la inscripción en ensayos.OBJETIVO:El objetivo de este estudio fue llegar a un consenso de expertos sobre la definición de una respuesta clínica casi completa después de quimioradioterapia.DISEÑO:Se realizó un proceso Delphi modificado que incluyó una revisión sistemática, 3 encuestas y 2 reuniones con un panel internacional de expertos compuesto por siete cirujanos y 4 radiólogos. Las encuestas consistieron en características individuales, declaraciones y combinaciones de características (endoscopía, T2W-MRI y DWI).AJUSTE:El proceso Delphi modificado se realizó en un entorno en línea; el panel de expertos completó las tres encuestas en línea y ambas reuniones se realizaron en línea.PRINCIPALES MEDIDAS DE RESULTADO:El resultado principal fue llegar a un consenso (≥80% de acuerdo).RESULTADOS:El panel de expertos llegó a un consenso sobre una categorización de tres niveles de la categoría de respuesta casi completa basada en la probabilidad de que la respuesta evolucione hacia una respuesta clínica completa después de un intervalo de espera más largo. Los panelistas coincidieron en que una respuesta casi completa es una entidad temporal que sólo debe utilizarse en los primeros 6 meses después de la quimioradioterapia. Además, se llegó a un consenso en que se debe considerar el estado de los nódulos linfáticos al decidir sobre una respuesta casi completa y que no siempre se necesitan biopsias cuando se encuentra una respuesta casi completa. No se llegó a un consenso sobre si se deben tener en cuenta las características primarias de estadificación al decidir una respuesta casi completa.LIMITACIONES:Esta subcategorización de 3 niveles está basada en expertos; por lo tanto, no hay evidencia que respalde esta subcategorización. Además, no está claro si esta subcategorización puede generalizarse a la práctica clínica.CONCLUSIONES:Se alcanzó consenso sobre el uso de una categorización de 3 niveles de una respuesta casi completa que puede ser útil en la práctica diaria como guía para el tratamiento y para informar a los pacientes con una respuesta casi completa sobre la probabilidad de una preservación exitosa del órgano. (Traducción - Dr. Aurian Garcia Gonzalez).


Consensus , Delphi Technique , Neoadjuvant Therapy , Rectal Neoplasms , Humans , Rectal Neoplasms/therapy , Rectal Neoplasms/pathology , Rectal Neoplasms/radiotherapy , Neoadjuvant Therapy/methods , Chemoradiotherapy/methods , Treatment Outcome , Diffusion Magnetic Resonance Imaging/methods
10.
J Assoc Physicians India ; 72(3): 18-23, 2024 Mar.
Article En | MEDLINE | ID: mdl-38736111

OBJECTIVES: To study the utility of chemical shift imaging (CSI) and diffusion-weighted images (DWI)/apparent diffusion coefficient (ADC) maps for the evaluation of solid renal tumors. METHODS: Magnetic resonance imaging (MRI) has an equivalent application as computerized tomography (CT) in the characterization of renal masses. It offers a radiation-free imaging technique and has a better soft tissue contrast than CT. Also, MRI is favored in patients with chronic kidney disease. MRI is useful when findings on CT are equivocal. The role of DWI in characterizing solid renal lesions as malignant is encouraging, and DWI can be particularly useful when gadolinium is contraindicated. CSI is useful in differentiating angiomyolipoma (AML) from clear cell (cc) renal cell carcinoma (RCC). We did a cross-sectional study on 24 patients with solid renal masses. MRI of the upper abdomen (from the dome of the diaphragm to the iliac crest) will be done on an MRI machine in our department (1.5T, ACHIEVA, Phillips medical system) using the torso coil. RESULT: There was no significant association seen in terms of ADC values and histological subtypes (χ2 = 11.222, p = 0.082). In our study, 50% (one out of two) of AML showed a signal drop, whereas 40% of cases (6 out of 15) of ccRCC and 66% (two out of three) of papillary RCC showed a signal drop. CONCLUSION: In this article, we concluded CSI, although a useful tool to look for microscopic fat, can't be used as a reliable marker to rule in cc-carcinoma as both AML and papillary cell carcinoma have microscopic fat. Further, no histological classification can be done on the basis of DWI/ADC images.


Carcinoma, Renal Cell , Diffusion Magnetic Resonance Imaging , Kidney Neoplasms , Humans , Kidney Neoplasms/diagnostic imaging , Kidney Neoplasms/pathology , Diffusion Magnetic Resonance Imaging/methods , Cross-Sectional Studies , Carcinoma, Renal Cell/diagnostic imaging , Carcinoma, Renal Cell/pathology , Female , Angiomyolipoma/diagnostic imaging , Male , Middle Aged , Adult , Aged
11.
Sci Rep ; 14(1): 9835, 2024 05 14.
Article En | MEDLINE | ID: mdl-38744901

Biological sex is a crucial variable in neuroscience studies where sex differences have been documented across cognitive functions and neuropsychiatric disorders. While gross statistical differences have been previously documented in macroscopic brain structure such as cortical thickness or region size, less is understood about sex-related cellular-level microstructural differences which could provide insight into brain health and disease. Studying these microstructural differences between men and women paves the way for understanding brain disorders and diseases that manifest differently in different sexes. Diffusion MRI is an important in vivo, non-invasive methodology that provides a window into brain tissue microstructure. Our study develops multiple end-to-end classification models that accurately estimates the sex of a subject using volumetric diffusion MRI data and uses these models to identify white matter regions that differ the most between men and women. 471 male and 560 female healthy subjects (age range, 22-37 years) from the Human Connectome Project are included. Fractional anisotropy, mean diffusivity and mean kurtosis are used to capture brain tissue microstructure characteristics. Diffusion parametric maps are registered to a standard template to reduce bias that can arise from macroscopic anatomical differences like brain size and contour. This study employ three major model architectures: 2D convolutional neural networks, 3D convolutional neural networks and Vision Transformer (with self-supervised pretraining). Our results show that all 3 models achieve high sex classification performance (test AUC 0.92-0.98) across all diffusion metrics indicating definitive differences in white matter tissue microstructure between males and females. We further use complementary model architectures to inform about the pattern of detected microstructural differences and the influence of short-range versus long-range interactions. Occlusion analysis together with Wilcoxon signed-rank test is used to determine which white matter regions contribute most to sex classification. The results indicate that sex-related differences manifest in both local features as well as global features / longer-distance interactions of tissue microstructure. Our highly consistent findings across models provides new insight supporting differences between male and female brain cellular-level tissue organization particularly in the central white matter.


Deep Learning , Diffusion Magnetic Resonance Imaging , Sex Characteristics , White Matter , Humans , White Matter/diagnostic imaging , Male , Female , Adult , Diffusion Magnetic Resonance Imaging/methods , Young Adult , Brain/diagnostic imaging , Brain/anatomy & histology , Connectome , Image Processing, Computer-Assisted/methods
12.
Clin Ter ; 175(3): 128-136, 2024.
Article En | MEDLINE | ID: mdl-38767069

Objectives: We assessed the value of histogram analysis (HA) of apparent diffusion coefficient (ADC) maps for grading low-grade (LGG) and high-grade (HGG) gliomas. Methods: We compared the diagnostic performance of two region-of-interest (ROI) placement methods (ROI 1: the entire tumor; ROI 2: the tumor excluding cystic and necrotic portions). We retrospectively evaluated 54 patients with supratentorial gliomas (18 LGG and 36 HGG). All subjects underwent standard 3T contrast-enhanced magnetic resonance imaging. Histogram parameters of ADC maps calculated with the two segmentation methods comprised mean, median, maxi-mum, minimum, kurtosis, skewness, entropy, standard deviation (sd), mean of positive pixels (mpp), uniformity of positive pixels, and their ratios (r) between lesion and normal white matter. They were compared using the independent t-test, chi-square test, or Mann-Whitney U test. For statistically significant results, receiver operating characteristic curves were constructed, and the optimal cutoff value, sensitivity, and specificity were determined by maximizing Youden's index. Results: The ROI 1 method resulted in significantly higher rADC mean, rADC median, and rADC mpp for LGG than for HGG; these parameters had value for predicting the histological glioma grade with a cutoff (sensitivity, specificity) of 1.88 (77.8%, 61.1%), 2.25 (44.4%, 97.2%), and 1.88 (77.8%, 63.9%), respectively. The ROI 2 method resulted in significantly higher ADC mean, ADC median, ADC mpp, ADC sd, ADC max, rADC median, rADC mpp, rADC mean, rADC sd, and rADC max for LGG than for HGG, while skewness was lower for LGG than for HGG (0.27 [0.98] vs 0.91 [0.81], p = 0.014). In ROI 2, ADC median, ADC mpp, ADC mean, rADC median, rADC mpp, and rADC mean performed well in differentiating glioma grade with cutoffs (sensitivity, specificity) of 1.28 (77.8%, 88.9%), 1.28 (77.8%, 88.9%), 1.25 (77.8%, 91.7%), 1.81 (83.3%, 91.7%), 1.74 (83.3%, 91.7%), and 1.81 (83.3%, 91.7%), respectively. Conclusions: HA parameters had value for grading gliomas. Ex-cluding cystic and necrotic portions of the tumor for measuring HA parameters was preferable to using the entire tumor as the ROI. In this segmentation, rADC median showed the highest performance in predicting histological glioma grade, followed by rADC mpp, rADC mean, ADC median, ADC mpp, and ADC mean.


Brain Neoplasms , Diffusion Magnetic Resonance Imaging , Glioma , Neoplasm Grading , Humans , Glioma/diagnostic imaging , Glioma/pathology , Female , Middle Aged , Retrospective Studies , Male , Adult , Diffusion Magnetic Resonance Imaging/methods , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Aged , Young Adult
14.
Radiology ; 311(2): e232508, 2024 May.
Article En | MEDLINE | ID: mdl-38771179

Background Diffusion-weighted imaging (DWI) is increasingly recognized as a powerful diagnostic tool and tested alternative to contrast-enhanced (CE) breast MRI. Purpose To perform a systematic review and meta-analysis that assesses the diagnostic performance of DWI-based noncontrast MRI protocols (ncDWI) for the diagnosis of breast cancer. Materials and Methods A systematic literature search in PubMed for articles published from January 1985 to September 2023 was performed. Studies were excluded if they investigated malignant lesions or selected patients and/or lesions only, used DWI as an adjunct technique to CE MRI, or were technical studies. Statistical analysis included pooling of diagnostic accuracy and investigating between-study heterogeneity. Additional subgroup comparisons of ncDWI to CE MRI and standard mammography were performed. Results A total of 28 studies were included, with 4406 lesions (1676 malignant, 2730 benign) in 3787 patients. The pooled sensitivity and specificity of ncDWI were 86.5% (95% CI: 81.4, 90.4) and 83.5% (95% CI: 76.9, 88.6), and both measures presented with high between-study heterogeneity (I 2 = 81.6% and 91.6%, respectively; P < .001). CE MRI (18 studies) had higher sensitivity than ncDWI (95.1% [95% CI: 92.9, 96.7] vs 88.9% [95% CI: 82.4, 93.1], P = .004) at similar specificity (82.2% [95% CI: 75.0, 87.7] vs 82.0% [95% CI: 74.8, 87.5], P = .97). Compared with ncDWI, mammography (five studies) showed no evidence of a statistical difference for sensitivity (80.3% [95% CI: 56.3, 93.3] vs 56.7%; [95% CI: 41.9, 70.4], respectively; P = .09) or specificity (89.9% [95% CI: 85.5, 93.1] vs 90% [95% CI: 61.3, 98.1], respectively; P = .62), but ncDWI had a higher area under the summary receiver operating characteristic curve (0.93 [95% CI: 0.91, 0.95] vs 0.78 [95% CI: 0.74, 0.81], P < .001). Conclusion A direct comparison with CE MRI showed a modestly lower sensitivity at similar specificity for ncDWI, and higher diagnostic performance indexes for ncDWI than standard mammography. Heterogeneity was high, thus these results must be interpreted with caution. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Kataoka and Iima in this issue.


Breast Neoplasms , Diffusion Magnetic Resonance Imaging , Humans , Breast Neoplasms/diagnostic imaging , Female , Diffusion Magnetic Resonance Imaging/methods , Sensitivity and Specificity , Breast/diagnostic imaging
15.
Hum Brain Mapp ; 45(7): e26697, 2024 May.
Article En | MEDLINE | ID: mdl-38726888

Diffusion MRI with free gradient waveforms, combined with simultaneous relaxation encoding, referred to as multidimensional MRI (MD-MRI), offers microstructural specificity in complex biological tissue. This approach delivers intravoxel information about the microstructure, local chemical composition, and importantly, how these properties are coupled within heterogeneous tissue containing multiple microenvironments. Recent theoretical advances incorporated diffusion time dependency and integrated MD-MRI with concepts from oscillating gradients. This framework probes the diffusion frequency, ω $$ \omega $$ , in addition to the diffusion tensor, D $$ \mathbf{D} $$ , and relaxation, R 1 $$ {R}_1 $$ , R 2 $$ {R}_2 $$ , correlations. A D ω - R 1 - R 2 $$ \mathbf{D}\left(\omega \right)-{R}_1-{R}_2 $$ clinical imaging protocol was then introduced, with limited brain coverage and 3 mm3 voxel size, which hinder brain segmentation and future cohort studies. In this study, we introduce an efficient, sparse in vivo MD-MRI acquisition protocol providing whole brain coverage at 2 mm3 voxel size. We demonstrate its feasibility and robustness using a well-defined phantom and repeated scans of five healthy individuals. Additionally, we test different denoising strategies to address the sparse nature of this protocol, and show that efficient MD-MRI encoding design demands a nuanced denoising approach. The MD-MRI framework provides rich information that allows resolving the diffusion frequency dependence into intravoxel components based on their D ω - R 1 - R 2 $$ \mathbf{D}\left(\omega \right)-{R}_1-{R}_2 $$ distribution, enabling the creation of microstructure-specific maps in the human brain. Our results encourage the broader adoption and use of this new imaging approach for characterizing healthy and pathological tissues.


Image Processing, Computer-Assisted , Humans , Adult , Image Processing, Computer-Assisted/methods , Diffusion Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Male , Female , Diffusion Tensor Imaging/methods , Young Adult
16.
Arthritis Res Ther ; 26(1): 110, 2024 May 28.
Article En | MEDLINE | ID: mdl-38807248

BACKGROUND: Diffusion kurtosis imaging (DKI) and neurite orientation dispersion and density imaging (NODDI) provide more comprehensive and informative perspective on microstructural alterations of cerebral white matter (WM) than single-shell diffusion tensor imaging (DTI), especially in the detection of crossing fiber. However, studies on systemic lupus erythematosus patients without neuropsychiatric symptoms (non-NPSLE patients) using multi-shell diffusion imaging remain scarce. METHODS: Totally 49 non-NPSLE patients and 41 age-, sex-, and education-matched healthy controls underwent multi-shell diffusion magnetic resonance imaging. Totally 10 diffusion metrics based on DKI (fractional anisotropy, mean diffusivity, axial diffusivity, radial diffusivity, mean kurtosis, axial kurtosis and radial kurtosis) and NODDI (neurite density index, orientation dispersion index and volume fraction of the isotropic diffusion compartment) were evaluated. Tract-based spatial statistics (TBSS) and atlas-based region-of-interest (ROI) analyses were performed to determine group differences in brain WM microstructure. The associations of multi-shell diffusion metrics with clinical indicators were determined for further investigation. RESULTS: TBSS analysis revealed reduced FA, AD and RK and increased ODI in the WM of non-NPSLE patients (P < 0.05, family-wise error corrected), and ODI showed the best discriminative ability. Atlas-based ROI analysis found increased ODI values in anterior thalamic radiation (ATR), inferior frontal-occipital fasciculus (IFOF), forceps major (F_major), forceps minor (F_minor) and uncinate fasciculus (UF) in non-NPSLE patients, and the right ATR showed the best discriminative ability. ODI in the F_major was positively correlated to C3. CONCLUSION: This study suggested that DKI and NODDI metrics can complementarily detect WM abnormalities in non-NPSLE patients and revealed ODI as a more sensitive and specific biomarker than DKI, guiding further understanding of the pathophysiological mechanism of normal-appearing WM injury in SLE.


Diffusion Tensor Imaging , Lupus Erythematosus, Systemic , White Matter , Humans , Female , White Matter/diagnostic imaging , White Matter/pathology , Male , Adult , Lupus Erythematosus, Systemic/diagnostic imaging , Diffusion Tensor Imaging/methods , Middle Aged , Diffusion Magnetic Resonance Imaging/methods , Young Adult , Brain/diagnostic imaging , Brain/pathology
17.
Biomater Adv ; 161: 213884, 2024 Jul.
Article En | MEDLINE | ID: mdl-38723432

Prostate cancer (PCa) is a significant health problem in the male population of the Western world. Magnetic resonance elastography (MRE), an emerging medical imaging technique sensitive to mechanical properties of biological tissues, detects PCa based on abnormally high stiffness and viscosity values. Yet, the origin of these changes in tissue properties and how they correlate with histopathological markers and tumor aggressiveness are largely unknown, hindering the use of tumor biomechanical properties for establishing a noninvasive PCa staging system. To infer the contributions of extracellular matrix (ECM) components and cell motility, we investigated fresh tissue specimens from two PCa xenograft mouse models, PC3 and LNCaP, using magnetic resonance elastography (MRE), diffusion-weighted imaging (DWI), quantitative histology, and nuclear shape analysis. Increased tumor stiffness and impaired water diffusion were observed to be associated with collagen and elastin accumulation and decreased cell motility. Overall, LNCaP, while more representative of clinical PCa than PC3, accumulated fewer ECM components, induced less restriction of water diffusion, and exhibited increased cell motility, resulting in overall softer and less viscous properties. Taken together, our results suggest that prostate tumor stiffness increases with ECM accumulation and cell adhesion - characteristics that influence critical biological processes of cancer development. MRE paired with DWI provides a powerful set of imaging markers that can potentially predict prostate tumor development from benign masses to aggressive malignancies in patients. STATEMENT OF SIGNIFICANCE: Xenograft models of human prostate tumor cell lines, allowing correlation of microstructure-sensitive biophysical imaging parameters with quantitative histological methods, can be investigated to identify hallmarks of cancer.


Cell Movement , Elasticity Imaging Techniques , Extracellular Matrix , Prostatic Neoplasms , Male , Prostatic Neoplasms/pathology , Prostatic Neoplasms/diagnostic imaging , Humans , Extracellular Matrix/pathology , Extracellular Matrix/metabolism , Elasticity Imaging Techniques/methods , Animals , Mice , Cell Line, Tumor , Diffusion Magnetic Resonance Imaging/methods
18.
Korean J Radiol ; 25(6): 511-517, 2024 Jun.
Article En | MEDLINE | ID: mdl-38807333

OBJECTIVE: To prospectively investigate the influence of the menstrual cycle on the background parenchymal signal (BPS) and apparent diffusion coefficient (ADC) of the breast on diffusion-weighted MRI (DW-MRI) in healthy premenopausal women. MATERIALS AND METHODS: Seven healthy premenopausal women (median age, 37 years; range, 33-49 years) with regular menstrual cycles participated in this study. DW-MRI was performed during each of the four phases of the menstrual cycle (four examinations in total). Three radiologists independently assessed the BPS visual grade on images with b-values of 800 sec/mm² (b800), 1200 sec/mm² (b1200), and a synthetic 1500 sec/mm² (sb1500). Additionally, one radiologist conducted a quantitative analysis to measure the BPS volume (%) and ADC values of the BPS (ADCBPS) and fibroglandular tissue (ADCFGT). Changes in the visual grade, BPS volume (%), ADCBPS, and ADCFGT during the menstrual cycle were descriptively analyzed. RESULTS: The visual grade of BPS in seven women varied from mild to marked on b800 and from minimal to moderate on b1200 and sb1500. As the b-value increased, the visual grade of BPS decreased. On b800 and sb1500, two of the seven volunteers showed the highest visual grade in the early follicular phase (EFP). On b1200, three of the seven volunteers showed the highest visual grades in EFP. The BPS volume (%) on b800 and b1200 showed the highest value in three of the six volunteers with dense breasts in EFP. Three of the seven volunteers showed the lowest ADCBPS in the EFP. Four of the seven volunteers showed the highest ADCBPS in the early luteal phase (ELP) and the lowest ADCFGT in the late follicular phase (LFP). CONCLUSION: Most volunteers did not exhibit specific BPS patterns during their menstrual cycles. However, the highest BPS and lowest ADCBPS were more frequently observed in EFP than in the other menstrual cycle phases, whereas the highest ADCBPS was more common in ELP. The lowest ADCFGT was more frequent in LFP.


Breast , Diffusion Magnetic Resonance Imaging , Menstrual Cycle , Premenopause , Humans , Female , Adult , Diffusion Magnetic Resonance Imaging/methods , Prospective Studies , Menstrual Cycle/physiology , Middle Aged , Breast/diagnostic imaging
19.
Med Image Anal ; 95: 103186, 2024 Jul.
Article En | MEDLINE | ID: mdl-38701657

Diffusion-weighted magnetic resonance imaging (dMRI) is widely used to assess the brain white matter. Fiber orientation distribution functions (FODs) are a common way of representing the orientation and density of white matter fibers. However, with standard FOD computation methods, accurate estimation requires a large number of measurements that usually cannot be acquired for newborns and fetuses. We propose to overcome this limitation by using a deep learning method to map as few as six diffusion-weighted measurements to the target FOD. To train the model, we use the FODs computed using multi-shell high angular resolution measurements as target. Extensive quantitative evaluations show that the new deep learning method, using significantly fewer measurements, achieves comparable or superior results than standard methods such as Constrained Spherical Deconvolution and two state-of-the-art deep learning methods. For voxels with one and two fibers, respectively, our method shows an agreement rate in terms of the number of fibers of 77.5% and 22.2%, which is 3% and 5.4% higher than other deep learning methods, and an angular error of 10° and 20°, which is 6° and 5° lower than other deep learning methods. To determine baselines for assessing the performance of our method, we compute agreement metrics using densely sampled newborn data. Moreover, we demonstrate the generalizability of the new deep learning method across scanners, acquisition protocols, and anatomy on two clinical external datasets of newborns and fetuses. We validate fetal FODs, successfully estimated for the first time with deep learning, using post-mortem histological data. Our results show the advantage of deep learning in computing the fiber orientation density for the developing brain from in-vivo dMRI measurements that are often very limited due to constrained acquisition times. Our findings also highlight the intrinsic limitations of dMRI for probing the developing brain microstructure.


Deep Learning , Diffusion Magnetic Resonance Imaging , Fetus , White Matter , Humans , Infant, Newborn , Diffusion Magnetic Resonance Imaging/methods , White Matter/diagnostic imaging , White Matter/embryology , Fetus/diagnostic imaging , Brain/diagnostic imaging , Brain/embryology , Female , Image Processing, Computer-Assisted/methods , Image Interpretation, Computer-Assisted/methods
20.
Fluids Barriers CNS ; 21(1): 40, 2024 May 09.
Article En | MEDLINE | ID: mdl-38725029

BACKGROUND: Parkinson's disease is characterized by dopamine-responsive symptoms as well as aggregation of α-synuclein protofibrils. New diagnostic methods assess α-synuclein aggregation characteristics from cerebrospinal fluid (CSF) and recent pathophysiologic mechanisms suggest that CSF circulation disruptions may precipitate α-synuclein retention. Here, diffusion-weighted MRI with low-to-intermediate diffusion-weightings was applied to test the hypothesis that CSF motion is reduced in Parkinson's disease relative to healthy participants. METHODS: Multi-shell diffusion weighted MRI (spatial resolution = 1.8 × 1.8 × 4.0 mm) with low-to-intermediate diffusion weightings (b-values = 0, 50, 100, 200, 300, 700, and 1000 s/mm2) was applied over the approximate kinetic range of suprasellar cistern fluid motion at 3 Tesla in Parkinson's disease (n = 27; age = 66 ± 6.7 years) and non-Parkinson's control (n = 32; age = 68 ± 8.9 years) participants. Wilcoxon rank-sum tests were applied to test the primary hypothesis that the noise floor-corrected decay rate of CSF signal as a function of b-value, which reflects increasing fluid motion, is reduced within the suprasellar cistern of persons with versus without Parkinson's disease and inversely relates to choroid plexus activity assessed from perfusion-weighted MRI (significance-criteria: p < 0.05). RESULTS: Consistent with the primary hypothesis, CSF decay rates were higher in healthy (D = 0.00673 ± 0.00213 mm2/s) relative to Parkinson's disease (D = 0.00517 ± 0.00110 mm2/s) participants. This finding was preserved after controlling for age and sex and was observed in the posterior region of the suprasellar cistern (p < 0.001). An inverse correlation between choroid plexus perfusion and decay rate in the voxels within the suprasellar cistern (Spearman's-r=-0.312; p = 0.019) was observed. CONCLUSIONS: Multi-shell diffusion MRI was applied to identify reduced CSF motion at the level of the suprasellar cistern in adults with versus without Parkinson's disease; the strengths and limitations of this methodology are discussed in the context of the growing literature on CSF flow.


Cerebrospinal Fluid , Diffusion Magnetic Resonance Imaging , Parkinson Disease , Humans , Parkinson Disease/cerebrospinal fluid , Parkinson Disease/diagnostic imaging , Parkinson Disease/physiopathology , Aged , Diffusion Magnetic Resonance Imaging/methods , Male , Female , Middle Aged , Cerebrospinal Fluid/diagnostic imaging , Cerebrospinal Fluid/physiology , Motion
...