Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 6.284
1.
BMC Med Imaging ; 24(1): 138, 2024 Jun 10.
Article En | MEDLINE | ID: mdl-38858645

BACKGROUND: This study aimed to investigate the alterations in structural integrity of superior longitudinal fasciculus subcomponents with increasing white matter hyperintensity severity as well as the relationship to cognitive performance in cerebral small vessel disease. METHODS: 110 cerebral small vessel disease study participants with white matter hyperintensities were recruited. According to Fazekas grade scale, white matter hyperintensities of each subject were graded. All subjects were divided into two groups. The probabilistic fiber tracking method was used for analyzing microstructure characteristics of superior longitudinal fasciculus subcomponents. RESULTS: Probabilistic fiber tracking results showed that mean diffusion, radial diffusion, and axial diffusion values of the left arcuate fasciculus as well as the mean diffusion value of the right arcuate fasciculus and left superior longitudinal fasciculus III in high white matter hyperintensities rating group were significantly higher than those in low white matter hyperintensities rating group (p < 0.05). The mean diffusion value of the left superior longitudinal fasciculus III was negatively related to the Montreal Cognitive Assessment score of study participants (p < 0.05). CONCLUSIONS: The structural integrity injury of bilateral arcuate fasciculus and left superior longitudinal fasciculus III is more severe with the aggravation of white matter hyperintensities. The structural integrity injury of the left superior longitudinal fasciculus III correlates to cognitive impairment in cerebral small vessel disease.


Cerebral Small Vessel Diseases , Diffusion Tensor Imaging , White Matter , Humans , Cerebral Small Vessel Diseases/diagnostic imaging , Cerebral Small Vessel Diseases/pathology , Cerebral Small Vessel Diseases/complications , Male , Female , White Matter/diagnostic imaging , White Matter/pathology , Aged , Middle Aged , Diffusion Tensor Imaging/methods , Cognition , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/pathology , Cognitive Dysfunction/etiology
2.
J Headache Pain ; 25(1): 99, 2024 Jun 11.
Article En | MEDLINE | ID: mdl-38862883

Migraine is a complex neurological condition characterized by recurrent headaches, which is often accompanied by various neurological symptoms. Magnetic resonance imaging (MRI) is a powerful tool for investigating whole-brain connectivity patterns; however, systematic assessment of structural connectome organization has rarely been performed. In the present study, we aimed to examine the changes in structural connectivity in patients with episodic migraines using diffusion MRI. First, we computed structural connectivity using diffusion MRI tractography, after which we applied dimensionality reduction techniques to the structural connectivity and generated three low-dimensional eigenvectors. We subsequently calculated the manifold eccentricity, defined as the Euclidean distance between each data point and the center of the data in the manifold space. We then compared the manifold eccentricity between patients with migraines and healthy controls, revealing significant between-group differences in the orbitofrontal cortex, temporal pole, and sensory/motor regions. Between-group differences in subcortico-cortical connectivity further revealed significant changes in the amygdala, accumbens, and caudate nuclei. Finally, supervised machine learning effectively classified patients with migraines and healthy controls using cortical and subcortical structural connectivity features, highlighting the importance of the orbitofrontal and sensory cortices, in addition to the caudate, in distinguishing between the groups. Our findings confirmed that episodic migraine is related to the structural connectome changes in the limbic and sensory systems, suggesting its potential utility as a diagnostic marker for migraine.


Connectome , Migraine Disorders , Humans , Migraine Disorders/diagnostic imaging , Migraine Disorders/pathology , Connectome/methods , Female , Adult , Male , Limbic System/diagnostic imaging , Limbic System/pathology , Diffusion Tensor Imaging/methods , Young Adult
3.
Radiology ; 311(3): e232274, 2024 Jun.
Article En | MEDLINE | ID: mdl-38888481

Background The role of perivascular space (PVS) dysfunction in obstructive sleep apnea (OSA) requires further study. Purpose To compare MRI indexes of PVS across patients with differing severities of OSA and relate them with disease characteristics and treatment. Materials and Methods This single-center prospective study included healthy controls (HCs) and patients with complaints of snoring who underwent MRI and cognitive evaluation between June 2021 and December 2022. Participants with complaints of snoring were classified into four groups (snoring, mild OSA, moderate OSA, and severe OSA). PVS networks were assessed at MRI using PVS volume fraction, extracellular free water (FW), and diffusion tensor imaging analysis along the PVS (DTI-ALPS). One-way analysis of variance and Pearson correlation were used for analysis. Alterations in PVS indexes and cognitive performance after treatment were assessed in 15 participants with moderate OSA. Results A total of 105 participants (mean age, 33.4 years ± 8.9 [SD]; 80 males) and 50 HCs (mean age, 37.0 years ± 8.6; 33 males) were included. Higher mean PVS volume fraction was observed in participants with severe OSA (n = 23) than in patients with mild OSA (n = 36) (0.11 vs 0.10; P = .03). Participants with severe OSA exhibited higher mean FW index (0.11) than both HCs (0.10; P < .001) and patients with mild OSA (0.10; P = .003). All patient groups had lower DTI-ALPS than HCs (range, 1.5-1.9 vs 2.1; all P < .001). DTI-ALPS correlated with cognitive performance on the Stroop Color and Word Test (r range, -0.23 to -0.24; P value range, .003-.005). After treatment, PVS indexes changed (P value range, <.001 to .01) and cognitive performance improved (P value range, <.001 to .03). Conclusion Differences in PVS indexes were observed among participants with differing severities of OSA and HCs. Indexes correlated with measures of cognitive function, and changes in indexes and improvement in cognitive performance were observed after treatment in participants with moderate OSA. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Port in this issue.


Cognitive Dysfunction , Magnetic Resonance Imaging , Sleep Apnea, Obstructive , Humans , Sleep Apnea, Obstructive/diagnostic imaging , Sleep Apnea, Obstructive/complications , Male , Female , Prospective Studies , Adult , Magnetic Resonance Imaging/methods , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/etiology , Glymphatic System/diagnostic imaging , Diffusion Tensor Imaging/methods , Middle Aged
4.
Neuroimage ; 296: 120672, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38851551

Age-related white matter hyperintensities are a common feature and are known to be negatively associated with structural integrity, functional connectivity, and cognitive performance. However, this has yet to be fully understood mechanistically. We analyzed multiple MRI modalities acquired in 465 non-demented individuals from the Swedish BioFINDER study including 334 cognitively normal and 131 participants with mild cognitive impairment. White matter hyperintensities were automatically quantified using fluid-attenuated inversion recovery MRI and parameters from diffusion tensor imaging were estimated in major white matter fibre tracts. We calculated fMRI resting state-derived functional connectivity within and between predefined cortical regions structurally linked by the white matter tracts. How change in functional connectivity is affected by white matter lesions and related to cognition (in the form of executive function and processing speed) was explored. We examined the functional changes using a measure of sample entropy. As expected hyperintensities were associated with disrupted structural white matter integrity and were linked to reduced functional interregional lobar connectivity, which was related to decreased processing speed and executive function. Simultaneously, hyperintensities were also associated with increased intraregional functional connectivity, but only within the frontal lobe. This phenomenon was also associated with reduced cognitive performance. The increased connectivity was linked to increased entropy (reduced predictability and increased complexity) of the involved voxels' blood oxygenation level-dependent signal. Our findings expand our previous understanding of the impact of white matter hyperintensities on cognition by indicating novel mechanisms that may be important beyond this particular type of brain lesions.


Cognitive Dysfunction , Magnetic Resonance Imaging , White Matter , Humans , Male , Female , Aged , White Matter/diagnostic imaging , White Matter/pathology , Magnetic Resonance Imaging/methods , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/pathology , Diffusion Tensor Imaging/methods , Aged, 80 and over , Executive Function/physiology , Middle Aged , Nerve Net/diagnostic imaging , Connectome/methods , Brain/diagnostic imaging
5.
Neuroimage ; 296: 120676, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38852804

To separate the contributions of paramagnetic and diamagnetic sources within a voxel, a magnetic susceptibility source separation method based solely on gradient-echo data has been developed. To measure the opposing susceptibility sources more accurately, we propose a novel single-orientation quantitative susceptibility mapping method with adaptive relaxometric constant estimation (QSM-ARCS) for susceptibility source separation. Moreover, opposing susceptibilities and their anisotropic effects were determined in healthy volunteers in the white matter. Multiple spoiled gradient echo and diffusion tensor imaging of ten healthy volunteers was obtained using a 3 T magnetic resonance scanner. After the opposing susceptibility and fractional anisotropy (FA) maps had been reconstructed, the parametric maps were spatially normalized. To evaluate the agreements of QSM-ARCS against the susceptibility source separation method using R2 and R2* maps (χ-separation) by Bland-Altman plots, the opposing susceptibility values were measured using white and deep gray matter atlases. We then evaluated the relationships between the opposing susceptibilities and FAs in the white matter and used a field-to-fiber angle to assess the fiber orientation dependencies of the opposing susceptibilities. The susceptibility maps in QSM-ARCS were successfully reconstructed without large artifacts. In the Bland-Altman analyses, the opposing QSM-ARCS susceptibility values excellently agreed with the χ-separation maps. Significant inverse and proportional correlations were observed between FA and the negative and positive susceptibilities estimated by QSM-ARCS. The fiber orientation dependencies of the negative susceptibility represented a nonmonotonic feature. Conversely, the positive susceptibility increased linearly with the fiber angle with respect to the B0 field. The QSM-ARCS could accurately estimate the opposing susceptibilities, which were identical values of χ-separation, even using gradient echo alone. The opposing susceptibilities might offer direct biomarkers for assessment of the myelin and iron content in glial cells and, through the underlying magnetic sources, provide biologic insights toward clinical transition.


Diffusion Tensor Imaging , White Matter , Humans , Male , Adult , Female , White Matter/diagnostic imaging , Diffusion Tensor Imaging/methods , Brain/diagnostic imaging , Young Adult , Brain Mapping/methods , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods
6.
CNS Neurosci Ther ; 30(6): e14728, 2024 Jun.
Article En | MEDLINE | ID: mdl-38837664

INTRODUCTION: Prodromal Parkinson's disease (PD) carriers of dual leucine-rich repeat kinase 2 (LRRK2) and glucosylceramidase ß (GBA) variants are rare, and their biomarkers are less well developed. OBJECTIVE: This study aimed to investigate the biomarkers for diagnosing the prodromal phase of LRRK2-GBA-PD (LRRK2-GBA-prodromal). METHODS: We assessed the clinical and whole-brain white matter microstructural characteristics of 54 prodromal PD carriers of dual LRRK2 (100% M239T) and GBA (95% N409S) variants, along with 76 healthy controls (HCs) from the Parkinson's Progression Markers Initiative (PPMI) cohort. RESULTS: By analyzing the four values of 100 nodes on 20 fiber bundles, totaling 8000 data points, we identified the smallest p value in the fractional anisotropy (FA) value of the 38th segment of left corticospinal tract (L-CST) with differences between LRRK2-GBA-prodromal and HCs (p = 8.94 × 10-9). The FA value of the 38th node of the L-CST was significantly lower in LRRK2-GBA-prodromal (FA value, 0.65) compared with HCs (FA value, 0.71). The receiver-operating characteristic curve showed a cut-off value of 0.218 for the FA value of L-CST, providing sufficient sensitivity (79.2%) and specificity (72.2%) to distinguish double mutation prodromal PD from the healthy population. CONCLUSION: L-CST, especially the 38th node, may potentially serve as a biomarker for distinguishing individuals with double mutation prodromal PD from the healthy population.


Biomarkers , Glucosylceramidase , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Mutation , Parkinson Disease , Prodromal Symptoms , Pyramidal Tracts , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Parkinson Disease/genetics , Parkinson Disease/diagnostic imaging , Male , Female , Middle Aged , Aged , Pyramidal Tracts/diagnostic imaging , Pyramidal Tracts/pathology , Glucosylceramidase/genetics , Diffusion Tensor Imaging/methods , Cohort Studies , Functional Laterality/genetics
7.
Hum Brain Mapp ; 45(8): e26706, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38867646

We aimed to compare the ability of diffusion tensor imaging and multi-compartment spherical mean technique to detect focal tissue damage and in distinguishing between different connectivity patterns associated with varying clinical outcomes in multiple sclerosis (MS). Seventy-six people diagnosed with MS were scanned using a SIEMENS Prisma Fit 3T magnetic resonance imaging (MRI), employing both conventional (T1w and fluid-attenuated inversion recovery) and advanced diffusion MRI sequences from which fractional anisotropy (FA) and microscopic FA (µFA) maps were generated. Using automated fiber quantification (AFQ), we assessed diffusion profiles across multiple white matter (WM) pathways to measure the sensitivity of anisotropy diffusion metrics in detecting localized tissue damage. In parallel, we analyzed structural brain connectivity in a specific patient cohort to fully grasp its relationships with cognitive and physical clinical outcomes. This evaluation comprehensively considered different patient categories, including cognitively preserved (CP), mild cognitive deficits (MCD), and cognitively impaired (CI) for cognitive assessment, as well as groups distinguished by physical impact: those with mild disability (Expanded Disability Status Scale [EDSS] <=3) and those with moderate-severe disability (EDSS >3). In our initial objective, we employed Ridge regression to forecast the presence of focal MS lesions, comparing the performance of µFA and FA. µFA exhibited a stronger association with tissue damage and a higher predictive precision for focal MS lesions across the tracts, achieving an R-squared value of .57, significantly outperforming the R-squared value of .24 for FA (p-value <.001). In structural connectivity, µFA exhibited more pronounced differences than FA in response to alteration in both cognitive and physical clinical scores in terms of effect size and number of connections. Regarding cognitive groups, FA differences between CP and MCD groups were limited to 0.5% of connections, mainly around the thalamus, while µFA revealed changes in 2.5% of connections. In the CP and CI group comparison, which have noticeable cognitive differences, the disparity was 5.6% for FA values and 32.5% for µFA. Similarly, µFA outperformed FA in detecting WM changes between the MCD and CI groups, with 5% versus 0.3% of connections, respectively. When analyzing structural connectivity between physical disability groups, µFA still demonstrated superior performance over FA, disclosing a 2.1% difference in connectivity between regions closely associated with physical disability in MS. In contrast, FA spotted a few regions, comprising only 0.6% of total connections. In summary, µFA emerged as a more effective tool than FA in predicting MS lesions and identifying structural changes across patients with different degrees of cognitive and global disability, offering deeper insights into the complexities of MS-related impairments.


Diffusion Tensor Imaging , Multiple Sclerosis , White Matter , Humans , Female , Male , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , Anisotropy , Adult , Diffusion Tensor Imaging/methods , Middle Aged , White Matter/diagnostic imaging , White Matter/pathology , Brain/diagnostic imaging , Brain/pathology , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/pathology , Cognitive Dysfunction/etiology
8.
Hum Brain Mapp ; 45(8): e26704, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38825988

Progressive apraxia of speech (PAOS) is a 4R tauopathy characterized by difficulties with motor speech planning. Neurodegeneration in PAOS targets the premotor cortex, particularly the supplementary motor area (SMA), with degeneration of white matter (WM) tracts connecting premotor and motor cortices and Broca's area observed on diffusion tensor imaging (DTI). We aimed to assess flortaucipir uptake across speech-language-related WM tracts identified using DTI tractography in PAOS. Twenty-two patients with PAOS and 26 matched healthy controls were recruited by the Neurodegenerative Research Group (NRG) and underwent MRI and flortaucipir-PET. The patient population included patients with primary progressive apraxia of speech (PPAOS) and non-fluent variant/agrammatic primary progressive aphasia (agPPA). Flortaucipir PET scans and DTI were coregistered using rigid registration with a mutual information cost function in subject space. Alignments between DTI and flortaucipir PET were inspected in all cases. Whole-brain tractography was calculated using deterministic algorithms by a tractography reconstruction tool (DSI-studio) and specific tracts were identified using an automatic fiber tracking atlas-based method. Fractional anisotropy (FA) and flortaucipir standardized uptake value ratios (SUVRs) were averaged across the frontal aslant tract, arcuate fasciculi, inferior frontal-occipital fasciculus, inferior and middle longitudinal fasciculi, as well as the SMA commissural fibers. Reduced FA (p < .0001) and elevated flortaucipir SUVR (p = .0012) were observed in PAOS cases compared to controls across all combined WM tracts. For flortaucipir SUVR, the greatest differentiation of PAOS from controls was achieved with the SMA commissural fibers (area under the receiver operator characteristic curve [AUROC] = 0.83), followed by the left arcuate fasciculus (AUROC = 0.75) and left frontal aslant tract (AUROC = 0.71). Our findings demonstrate that flortaucipir uptake is increased across WM tracts related to speech/language difficulties in PAOS.


Carbolines , Diffusion Tensor Imaging , Multimodal Imaging , Positron-Emission Tomography , Humans , Diffusion Tensor Imaging/methods , Male , Female , Aged , Positron-Emission Tomography/methods , Middle Aged , Carbolines/pharmacokinetics , Multimodal Imaging/methods , Apraxias/diagnostic imaging , Apraxias/pathology , White Matter/diagnostic imaging , White Matter/pathology , tau Proteins/metabolism , Aphasia, Primary Progressive/diagnostic imaging , Aphasia, Primary Progressive/pathology , Brain/diagnostic imaging , Brain/pathology
9.
BMC Psychol ; 12(1): 324, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38831468

Cognitive functions, such as learning and memory processes, depend on effective communication between brain regions which is facilitated by white matter tracts (WMT). We investigated the microstructural properties and the contribution of WMT to extinction learning and memory in a predictive learning task. Forty-two healthy participants completed an extinction learning paradigm without a fear component. We examined differences in microstructural properties using diffusion tensor imaging to identify underlying neural connectivity and structural correlates of extinction learning and their potential implications for the renewal effect. Participants with good acquisition performance exhibited higher fractional anisotropy (FA) in WMT including the bilateral inferior longitudinal fasciculus (ILF) and the right temporal part of the cingulum (CNG). This indicates enhanced connectivity and communication between brain regions relevant to learning and memory resulting in better learning performance. Our results suggest that successful acquisition and extinction performance were linked to enhanced structural connectivity. Lower radial diffusivity (RD) in the right ILF and right temporal part of the CNG was observed for participants with good acquisition learning performance. This observation suggests that learning difficulties associated with increased RD may potentially be due to less myelinated axons in relevant WMT. Also, participants with good acquisition performance were more likely to show a renewal effect. The results point towards a potential role of structural integrity in extinction-relevant WMT for acquisition and extinction.


Diffusion Tensor Imaging , Extinction, Psychological , White Matter , Humans , Male , Female , Diffusion Tensor Imaging/methods , White Matter/diagnostic imaging , Adult , Young Adult , Extinction, Psychological/physiology , Learning/physiology , Neural Pathways/diagnostic imaging , Gyrus Cinguli/diagnostic imaging , Gyrus Cinguli/anatomy & histology , Anisotropy
10.
Sci Rep ; 14(1): 12782, 2024 06 04.
Article En | MEDLINE | ID: mdl-38834633

Structural brain network topology can be altered in case of a brain tumor, due to both the tumor itself and its treatment. In this study, we explored the role of structural whole-brain and nodal network metrics and their association with cognitive functioning. Fifty WHO grade 2-3 adult glioma survivors (> 1-year post-therapy) and 50 matched healthy controls underwent a cognitive assessment, covering six cognitive domains. Raw cognitive assessment scores were transformed into w-scores, corrected for age and education. Furthermore, based on multi-shell diffusion-weighted MRI, whole-brain tractography was performed to create weighted graphs and to estimate whole-brain and nodal graph metrics. Hubs were defined based on nodal strength, betweenness centrality, clustering coefficient and shortest path length in healthy controls. Significant differences in these metrics between patients and controls were tested for the hub nodes (i.e. n = 12) and non-hub nodes (i.e. n = 30) in two mixed-design ANOVAs. Group differences in whole-brain graph measures were explored using Mann-Whitney U tests. Graph metrics that significantly differed were ultimately correlated with the cognitive domain-specific w-scores. Bonferroni correction was applied to correct for multiple testing. In survivors, the bilateral putamen were significantly less frequently observed as a hub (pbonf < 0.001). These nodes' assortativity values were positively correlated with attention (r(90) > 0.573, pbonf < 0.001), and proxy IQ (r(90) > 0.794, pbonf < 0.001). Attention and proxy IQ were significantly more often correlated with assortativity of hubs compared to non-hubs (pbonf < 0.001). Finally, the whole-brain graph measures of clustering coefficient (r = 0.685), global (r = 0.570) and local efficiency (r = 0.500) only correlated with proxy IQ (pbonf < 0.001). This study demonstrated potential reorganization of hubs in glioma survivors. Assortativity of these hubs was specifically associated with cognitive functioning, which could be important to consider in future modeling of cognitive outcomes and risk classification in glioma survivors.


Brain Neoplasms , Brain , Cancer Survivors , Cognition , Glioma , Humans , Glioma/psychology , Glioma/diagnostic imaging , Glioma/pathology , Female , Male , Adult , Middle Aged , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/psychology , Brain Neoplasms/pathology , Cancer Survivors/psychology , Brain/diagnostic imaging , Brain/pathology , Nerve Net/diagnostic imaging , Case-Control Studies , Diffusion Tensor Imaging/methods , Diffusion Magnetic Resonance Imaging
11.
Sci Rep ; 14(1): 12891, 2024 06 05.
Article En | MEDLINE | ID: mdl-38839940

Tractography has become a widely available tool for the planning of neurosurgical operations as well as for neuroscientific research. The absence of patient interaction makes it easily applicable. However, it leaves uncertainty about the functional relevance of the identified bundles. We retrospectively analyzed the correlation of white matter markers with their clinical function in 24 right-handed patients who underwent first surgery for high-grade glioma. Morphological affection of the corticospinal tract (CST) and grade of paresis were assessed before surgery. Tractography was performed manually with MRTrix3 and automatically with TractSeg. Median and mean fractional anisotropy (FA) from manual tractography showed a significant correlation with CST affection (p = 0.008) and paresis (p = 0.015, p = 0.026). CST affection correlated further most with energy, and surface-volume ratio (p = 0.014) from radiomic analysis. Paresis correlated most with maximum 2D column diameter (p = 0.005), minor axis length (p = 0.006), and kurtosis (p = 0.008) from radiomic analysis. Streamline count yielded no significant correlations. In conclusion, mean or median FA can be used for the assessment of CST integrity in high-grade glioma. Also, several radiomic parameters are suited to describe tract integrity and may be used to quantitatively analyze white matter in the future.


Brain Neoplasms , Diffusion Tensor Imaging , Glioma , Pyramidal Tracts , White Matter , Humans , Pyramidal Tracts/diagnostic imaging , Pyramidal Tracts/pathology , Glioma/diagnostic imaging , Glioma/pathology , Male , Female , Middle Aged , White Matter/diagnostic imaging , White Matter/pathology , Diffusion Tensor Imaging/methods , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Retrospective Studies , Adult , Aged , Neoplasm Grading , Anisotropy , Paresis/diagnostic imaging , Paresis/pathology , Paresis/etiology , Paresis/physiopathology , Radiomics
12.
Neuroimage ; 295: 120664, 2024 Jul 15.
Article En | MEDLINE | ID: mdl-38825217

BACKGROUND: Stroke often damages the basal ganglia, leading to atypical and transient aphasia, indicating that post-stroke basal ganglia aphasia (PSBGA) may be related to different anatomical structural damage and functional remodeling rehabilitation mechanisms. The basal ganglia contain dense white matter tracts (WMTs). Hence, damage to the functional tract may be an essential anatomical structural basis for the development of PSBGA. METHODS: We first analyzed the clinical characteristics of PSBGA in 28 patients and 15 healthy controls (HCs) using the Western Aphasia Battery and neuropsychological test batteries. Moreover, we investigated white matter injury during the acute stage using diffusion magnetic resonance imaging scans for differential tractography. Finally, we used multiple regression models in correlation tractography to analyze the relationship between various language functions and quantitative anisotropy (QA) of WMTs. RESULTS: Compared with HCs, patients with PSBGA showed lower scores for fluency, comprehension (auditory word recognition and sequential commands), naming (object naming and word fluency), reading comprehension of sentences, Mini-Mental State Examination, and Montreal Cognitive Assessment, along with increased scores in Hamilton Anxiety Scale-17 and Hamilton Depression Scale-17 within 7 days after stroke onset (P < 0.05). Differential tractography revealed that patients with PSBGA had damaged fibers, including in the body fibers of the corpus callosum, left cingulum bundles, left parietal aslant tracts, bilateral superior longitudinal fasciculus II, bilateral thalamic radiation tracts, left fornix, corpus callosum tapetum, and forceps major, compared with HCs (FDR < 0.02). Correlation tractography highlighted that better comprehension was correlated with a higher QA of the left inferior fronto-occipital fasciculus (IFOF), corpus callosum forceps minor, and left extreme capsule (FDR < 0.0083). Naming was positively associated with the QA of the left IFOF, forceps minor, left arcuate fasciculus, and uncinate fasciculus (UF) (FDR < 0.0083). Word fluency of naming was also positively associated with the QA of the forceps minor, left IFOF, and thalamic radiation tracts (FDR < 0.0083). Furthermore, reading was positively correlated with the QA of the forceps minor, left IFOF, and UF (FDR < 0.0083). CONCLUSION: PSBGA is primarily characterized by significantly impaired word fluency of naming and preserved repetition abilities, as well as emotional and cognitive dysfunction. Damaged limbic pathways, dorsally located tracts in the left hemisphere, and left basal ganglia pathways are involved in PSBGA pathogenesis. The results of connectometry analysis further refine the current functional localization model of higher-order neural networks associated with language functions.


Aphasia , Basal Ganglia , Diffusion Tensor Imaging , Stroke , White Matter , Humans , Male , Female , White Matter/diagnostic imaging , White Matter/pathology , Middle Aged , Aged , Diffusion Tensor Imaging/methods , Basal Ganglia/diagnostic imaging , Basal Ganglia/pathology , Stroke/complications , Stroke/diagnostic imaging , Stroke/pathology , Aphasia/diagnostic imaging , Aphasia/etiology , Aphasia/physiopathology , Aphasia/pathology , Language , Adult , Diffusion Magnetic Resonance Imaging
13.
Neurobiol Dis ; 198: 106548, 2024 Aug.
Article En | MEDLINE | ID: mdl-38825050

BACKGROUND: The association between common neuroradiological markers of multiple sclerosis (MS) and clinical disability is weak. Given that the disability in patients with MS may depend on the underlying structural connectivity of the brain, our study aimed to examine the association between white matter tracts affected by MS and the patients' disability using a new tract density index (TDI). METHOD: This study included 53 patients diagnosed with MS, examined between 2019 and 2020. Manual lesion segmentation was performed on fluid-attenuated inversion recovery (FLAIR) images, and the density of white matter tracts encompassing the lesion (i.e., TDI) was calculated. Correlation analysis was employed to assess the association between TDI and disability. Additionally, the relationship between disability, TDI, and lesion-derived network metrics was examined by computing a partial correlation network. RESULTS: The TDI significantly correlated with the expanded disability status scale (EDSS) (r = 0.30, p = 0.03). Furthermore, the patient's disability is linked solely through TDI to lesion-derived network metrics -a key metric that 'bridges' the gap between the brain lesion and disability. CONCLUSIONS: In this study, MS lesions encompassing regions with high white matter tract density were associated and linked with severe physical disability. These findings indicate that TDI may be an outcome predictor that may connect radiologic findings to clinical practice.


Multiple Sclerosis , White Matter , Humans , White Matter/diagnostic imaging , White Matter/pathology , Female , Male , Multiple Sclerosis/pathology , Multiple Sclerosis/diagnostic imaging , Adult , Middle Aged , Magnetic Resonance Imaging/methods , Disability Evaluation , Diffusion Tensor Imaging/methods , Brain/pathology , Brain/diagnostic imaging , Disabled Persons
14.
Clin Neurol Neurosurg ; 241: 108305, 2024 06.
Article En | MEDLINE | ID: mdl-38713964

OBJECTIVE: Establish the evolution of the connectome before and after resection of motor area glioma using a comparison of connectome maps and high-definition differential tractography (DifT). METHODS: DifT was done using normalized quantitative anisotropy (NQA) with DSI Studio. The quantitative analysis involved obtaining mean NQA and fractional anisotropy (FA) values for the disrupted pathways tracing the corticospinal tract (CST), and white fiber network changes over time. RESULTS: We described the baseline tractography, DifT, and white matter network changes from two patients who underwent resection of an oligodendroglioma (Case 1) and an IDH mutant astrocytoma, grade 4 (Case 2). CASE 1: There was a slight decrease in the diffusion signal of the compromised CST in the immediate postop. The NQA and FA values increased at the 1-year follow-up (0.18 vs. 0.32 and 0.35 vs. 0.44, respectively). CASE 2: There was an important decrease in the immediate postop, followed by an increase in the follow-up. In the 1-year follow-up, the patient presented with radiation necrosis and tumor recurrence, increasing NQA from 0.18 in the preop to 0.29. Fiber network analysis: whole-brain connectome comparison demonstrated no significant changes in the immediate postop. However, in the 1-year follow up there was a notorious reorganization of the fibers in both cases, showing the decreased density of connections. CONCLUSIONS: Connectome studies and DifT constitute new potential tools to predict early reorganization changes in a patient's networks, showing the brain plasticity capacity, and helping to establish timelines for the progression of the tumor and treatment-induced changes.


Brain Neoplasms , Connectome , Diffusion Tensor Imaging , Feasibility Studies , Glioma , Humans , Diffusion Tensor Imaging/methods , Connectome/methods , Brain Neoplasms/surgery , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Glioma/surgery , Glioma/diagnostic imaging , Glioma/pathology , Male , Middle Aged , Adult , Motor Cortex/diagnostic imaging , Motor Cortex/surgery , Motor Cortex/physiopathology , Pyramidal Tracts/diagnostic imaging , Female , Oligodendroglioma/surgery , Oligodendroglioma/diagnostic imaging , Oligodendroglioma/pathology , Astrocytoma/surgery , Astrocytoma/diagnostic imaging , Astrocytoma/pathology
15.
Addict Biol ; 29(5): e13399, 2024 May.
Article En | MEDLINE | ID: mdl-38711213

Excessive use of the internet, which is a typical scenario of self-control failure, could lead to potential consequences such as anxiety, depression, and diminished academic performance. However, the underlying neuropsychological mechanisms remain poorly understood. This study aims to investigate the structural basis of self-control and internet addiction. In a cohort of 96 internet gamers, we examined the relationships among grey matter volume and white matter integrity within the frontostriatal circuits and internet addiction severity, as well as self-control measures. The results showed a significant and negative correlation between dACC grey matter volume and internet addiction severity (p < 0.001), but not with self-control. Subsequent tractography from the dACC to the bilateral ventral striatum (VS) was conducted. The fractional anisotropy (FA) and radial diffusivity of dACC-right VS pathway was negatively (p = 0.011) and positively (p = 0.020) correlated with internet addiction severity, respectively, and the FA was also positively correlated with self-control (p = 0.036). These associations were not observed for the dACC-left VS pathway. Further mediation analysis demonstrated a significant complete mediation effect of self-control on the relationship between FA of the dACC-right VS pathway and internet addiction severity. Our findings suggest that the dACC-right VS pathway is a critical neural substrate for both internet addiction and self-control. Deficits in this pathway may lead to impaired self-regulation over internet usage, exacerbating the severity of internet addiction.


Diffusion Tensor Imaging , Gray Matter , Internet Addiction Disorder , Self-Control , White Matter , Humans , White Matter/diagnostic imaging , White Matter/pathology , Male , Internet Addiction Disorder/diagnostic imaging , Internet Addiction Disorder/physiopathology , Female , Diffusion Tensor Imaging/methods , Adult , Young Adult , Gray Matter/diagnostic imaging , Gray Matter/pathology , Ventral Striatum/diagnostic imaging , Ventral Striatum/physiopathology , Ventral Striatum/pathology , Severity of Illness Index , Neural Pathways/diagnostic imaging , Neural Pathways/physiopathology , Corpus Striatum/diagnostic imaging , Corpus Striatum/pathology , Corpus Striatum/physiopathology , Internet , Frontal Lobe/diagnostic imaging , Frontal Lobe/pathology , Frontal Lobe/physiopathology
16.
Hum Brain Mapp ; 45(7): e26695, 2024 May.
Article En | MEDLINE | ID: mdl-38727010

Human infancy is marked by fastest postnatal brain structural changes. It also coincides with the onset of many neurodevelopmental disorders. Atlas-based automated structure labeling has been widely used for analyzing various neuroimaging data. However, the relatively large and nonlinear neuroanatomical differences between infant and adult brains can lead to significant offsets of the labeled structures in infant brains when adult brain atlas is used. Age-specific 1- and 2-year-old brain atlases covering all major gray and white matter (GM and WM) structures with diffusion tensor imaging (DTI) and structural MRI are critical for precision medicine for infant population yet have not been established. In this study, high-quality DTI and structural MRI data were obtained from 50 healthy children to build up three-dimensional age-specific 1- and 2-year-old brain templates and atlases. Age-specific templates include a single-subject template as well as two population-averaged templates from linear and nonlinear transformation, respectively. Each age-specific atlas consists of 124 comprehensively labeled major GM and WM structures, including 52 cerebral cortical, 10 deep GM, 40 WM, and 22 brainstem and cerebellar structures. When combined with appropriate registration methods, the established atlases can be used for highly accurate automatic labeling of any given infant brain MRI. We demonstrated that one can automatically and effectively delineate deep WM microstructural development from 3 to 38 months by using these age-specific atlases. These established 1- and 2-year-old infant brain DTI atlases can advance our understanding of typical brain development and serve as clinical anatomical references for brain disorders during infancy.


Atlases as Topic , Brain , Diffusion Tensor Imaging , Gray Matter , White Matter , Humans , Infant , Child, Preschool , Male , White Matter/diagnostic imaging , White Matter/anatomy & histology , White Matter/growth & development , Female , Gray Matter/diagnostic imaging , Gray Matter/growth & development , Gray Matter/anatomy & histology , Diffusion Tensor Imaging/methods , Brain/diagnostic imaging , Brain/growth & development , Brain/anatomy & histology , Image Processing, Computer-Assisted/methods
17.
BMC Neurol ; 24(1): 179, 2024 May 27.
Article En | MEDLINE | ID: mdl-38802755

BACKGROUND: Accumulating neuroimaging evidence indicates that patients with cervical dystonia (CD) have changes in the cortico-subcortical white matter (WM) bundle. However, whether these patients' WM structural networks undergo reorganization remains largely unclear. We aimed to investigate topological changes in large-scale WM structural networks in patients with CD compared to healthy controls (HCs), and explore the network changes associated with clinical manifestations. METHODS: Diffusion tensor imaging (DTI) was conducted in 30 patients with CD and 30 HCs, and WM network construction was based on the BNA-246 atlas and deterministic tractography. Based on the graph theoretical analysis, global and local topological properties were calculated and compared between patients with CD and HCs. Then, the AAL-90 atlas was used for the reproducibility analyses. In addition, the relationship between abnormal topological properties and clinical characteristics was analyzed. RESULTS: Compared with HCs, patients with CD showed changes in network segregation and resilience, characterized by increased local efficiency and assortativity, respectively. In addition, a significant decrease of network strength was also found in patients with CD relative to HCs. Validation analyses using the AAL-90 atlas similarly showed increased assortativity and network strength in patients with CD. No significant correlations were found between altered network properties and clinical characteristics in patients with CD. CONCLUSION: Our findings show that reorganization of the large-scale WM structural network exists in patients with CD. However, this reorganization is attributed to dystonia-specific abnormalities or hyperkinetic movements that need further identification.


Diffusion Tensor Imaging , Torticollis , White Matter , Humans , Torticollis/diagnostic imaging , Torticollis/pathology , White Matter/diagnostic imaging , White Matter/pathology , Female , Male , Diffusion Tensor Imaging/methods , Middle Aged , Adult , Nerve Net/diagnostic imaging , Nerve Net/pathology , Aged
18.
Behav Brain Funct ; 20(1): 12, 2024 May 22.
Article En | MEDLINE | ID: mdl-38778325

BACKGROUND: Subjective cognitive decline (SCD) is an early stage of dementia linked to Alzheimer's disease pathology. White matter changes were found in SCD using diffusion tensor imaging, but there are known limitations in voxel-wise tensor-based methods. Fixel-based analysis (FBA) can help understand changes in white matter fibers and how they relate to neurodegenerative proteins and multidomain behavior data in individuals with SCD. METHODS: Healthy adults with normal cognition were recruited in the Northeastern Taiwan Community Medicine Research Cohort in 2018-2022 and divided into SCD and normal control (NC). Participants underwent evaluations to assess cognitive abilities, mental states, physical activity levels, and susceptibility to fatigue. Neurodegenerative proteins were measured using an immunomagnetic reduction technique. Multi-shell diffusion MRI data were collected and analyzed using whole-brain FBA, comparing results between groups and correlating them with multidomain assessments. RESULTS: The final enrollment included 33 SCD and 46 NC participants, with no significant differences in age, sex, or education between the groups. SCD had a greater fiber-bundle cross-section than NC (pFWE < 0.05) at bilateral frontal superior longitudinal fasciculus II (SLFII). These white matter changes correlate negatively with plasma Aß42 level (r = -0.38, p = 0.01) and positively with the AD8 score for subjective cognitive complaints (r = 0.42, p = 0.004) and the Hamilton Anxiety Rating Scale score for the degree of anxiety (Ham-A, r = 0.35, p = 0.019). The dimensional analysis of FBA metrics and blood biomarkers found positive correlations of plasma neurofilament light chain with fiber density at the splenium of corpus callosum (pFWE < 0.05) and with fiber-bundle cross-section at the right thalamus (pFWE < 0.05). Further examination of how SCD grouping interacts between the correlations of FBA metrics and multidomain assessments showed interactions between the fiber density at the corpus callosum with letter-number sequencing cognitive score (pFWE < 0.01) and with fatigue to leisure activities (pFWE < 0.05). CONCLUSION: Based on FBA, our investigation suggests white matter structural alterations in SCD. The enlargement of SLFII's fiber cross-section is linked to plasma Aß42 and neuropsychiatric symptoms, which suggests potential early axonal dystrophy associated with Alzheimer's pathology in SCD. The splenium of the corpus callosum is also a critical region of axonal degeneration and cognitive alteration for SCD.


Biomarkers , Cognitive Dysfunction , White Matter , Humans , Male , Female , White Matter/diagnostic imaging , White Matter/pathology , Cognitive Dysfunction/psychology , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/pathology , Biomarkers/blood , Middle Aged , Aged , Diffusion Tensor Imaging/methods , Amyloid beta-Peptides/blood , Adult , Cohort Studies , Diagnostic Self Evaluation
19.
Brain Behav ; 14(5): e3541, 2024 May.
Article En | MEDLINE | ID: mdl-38773829

INTRODUCTION: Using correlation tractography, this study aimed to find statistically significant correlations between white matter (WM) tracts in participants with obstructive sleep apnea (OSA) and OSA severity. We hypothesized that changes in certain WM tracts could be related to OSA severity. METHODS: We enrolled 40 participants with OSA who underwent diffusion tensor imaging (DTI) using a 3.0 Tesla MRI scanner. Fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), radial diffusivity (RD), and quantitative anisotropy (QA)-values were used in the connectometry analysis. The apnea-hypopnea index (AHI) is a representative measure of the severity of OSA. Diffusion MRI connectometry that was used to derive correlational tractography revealed changes in the values of FA, MD, AD, RD, and QA when correlated with the AHI. A false-discovery rate threshold of 0.05 was used to select tracts to conduct multiple corrections. RESULTS: Connectometry analysis revealed that the AHI in participants with OSA was negatively correlated with FA values in WM tracts that included the cingulum, corpus callosum, cerebellum, inferior longitudinal fasciculus, fornices, thalamic radiations, inferior fronto-occipital fasciculus, superior and posterior corticostriatal tracts, medial lemnisci, and arcuate fasciculus. However, there were no statistically significant results in the WM tracts, in which FA values were positively correlated with the AHI. In addition, connectometry analysis did not reveal statistically significant results in WM tracts, in which MD, AD, RD, and QA values were positively or negatively correlated with the AHI. CONCLUSION: Several WM tract changes were correlated with OSA severity. However, WM changes in OSA likely involve tissue edema and not neuronal changes, such as axonal loss. Connectometry analyses are valuable tools for detecting WM changes in sleep disorders.


Diffusion Tensor Imaging , Severity of Illness Index , Sleep Apnea, Obstructive , White Matter , Humans , Sleep Apnea, Obstructive/diagnostic imaging , Sleep Apnea, Obstructive/physiopathology , Sleep Apnea, Obstructive/pathology , Diffusion Tensor Imaging/methods , Male , Female , Middle Aged , Adult , White Matter/diagnostic imaging , White Matter/pathology , Brain/diagnostic imaging , Brain/pathology
...