Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters











Publication year range
1.
Braz J Microbiol ; 54(1): 223-238, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36547866

ABSTRACT

It is difficult to produce chitin oligosaccharides by hydrolyzing untreated natural chitinous waste directly. In this study, two fungi Talaromyces allahabadensis Hi-4 and Talaromyces funiculosus Hi-5 from rotten black soldier fly were isolated and identified through multigene phylogenetic and morphological analyses. The chitinolytic enzymes were produced by solid state fermentation, and the growth conditions were optimized by combining single-factor and central composite design. The best carbon sources were powder of molting of mealworms (MMP) and there was no need for additional nitrogen sources in two fungi, then the maximum chitinolytic enzyme production of 46.80 ± 3.30 (Hi-4) and 55.07 ± 2.48 (Hi-5) U/gds were achieved after analyzing the 3D response surface plots. Pure chitin (colloidal chitin) and natural chitinous substrates (represented by MMP) were used to optimize degradation abilities by crude enzymes obtained from the two fungi. The optimum temperature for hydrolyzing MMP (40 °C both in two fungi) were lower and closer to room temperature than colloidal chitin (55 °C for Hi-4 and 45 °C for Hi-5). Then colloidal chitin, MMP and the powder of shrimp shells (SSP) were used for analyzing the products after 5-day degradation. The amounts of chitin oligosaccharides from SSP and MMP were about 1/6 (Hi-4), 1/17 (Hi-5) and 1/8 (Hi-4), 1/10 (Hi-5), respectively, in comparison to colloidal chitin. The main components of the products were GlcNAc for colloidal chitin, (GlcNAc)2 for MMP, and oligosaccharides with higher degree of polymerization (4-6) were obtained when hydrolyzing SSP, which is significant for applications in medicine and health products.


Subject(s)
Chitinases , Diptera , Talaromyces , Animals , Chitin/metabolism , Fermentation , Phylogeny , Powders , Talaromyces/metabolism , Oligosaccharides , Chitinases/genetics , Insecta , Diptera/metabolism
2.
Int J Biol Macromol ; 186: 714-723, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34274399

ABSTRACT

The black soldier fly larvae (BSFL), Hermetia illucens (Linnaeus), has been largely utilized for animal feed. Due to its interesting composition, BSFL has great potential to be further implemented in the human diet. Herein we compared the flour and protein extract composition based on their moisture, ash, amino acids, mineral, and protein content. To have wide knowledge on protein profile and behavior, SDS-page electrophoresis, Fourier-transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) were used to give information about protein structure and thermal stability, respectively. The flour and protein extract contained respectively 37.3% and 61.1% of protein. DSC graph reported a glass transition temperature around 30 °C, recognizable by a shift in the curve, and an endothermic peak for solid melting at around 200 °C. FTIR analysis showed the main amide bands (A, B, I, II, III) for the flour and protein extract. The foam properties of BSFL protein extract were explored under different temperatures treatment, and the best foam stability was reached at 85 °C with 15 min of treatment. The data highlight the promising techno-functional properties of BSFL protein extract, and that the nutritional composition might be suitable for further use of BSFL as food fortification system.


Subject(s)
Diptera/metabolism , Edible Insects/metabolism , Insect Proteins/chemistry , Amino Acid Sequence , Animals , Colloids , Diptera/embryology , Edible Insects/embryology , Food Handling , Food, Fortified , Hot Temperature , Insect Proteins/isolation & purification , Larva/metabolism , Nutritive Value , Protein Stability
3.
Sci Rep ; 11(1): 11379, 2021 05 31.
Article in English | MEDLINE | ID: mdl-34059738

ABSTRACT

The evolution of obligate ectoparasitism in blowflies (Diptera: Calliphoridae) has intrigued scientists for over a century, and surprisingly, the genetics underlying this lifestyle remain largely unknown. Blowflies use odors to locate food and oviposition sites; therefore, olfaction might have played a central role in niche specialization within the group. In insects, the coreceptor Orco is a required partner for all odorant receptors (ORs), a major gene family involved in olfactory-evoked behaviors. Hence, we characterized the Orco gene in the New World screwworm, Cochliomyia hominivorax, a blowfly that is an obligate ectoparasite of warm-blooded animals. In contrast, most of the closely related blowflies are scavengers that lay their eggs on dead animals. We show that the screwworm Orco orthologue (ChomOrco) is highly conserved within Diptera, showing signals of strong purifying selection. Expression of ChomOrco is broadly detectable in chemosensory appendages, and is related to morphological, developmental, and behavioral aspects of the screwworm biology. We used CRISPR/Cas9 to disrupt ChomOrco and evaluate the consequences of losing the OR function on screwworm behavior. In two-choice assays, Orco mutants displayed an impaired response to floral-like and animal host-associated odors, suggesting that OR-mediated olfaction is involved in foraging and host-seeking behaviors in C. hominivorax. These results broaden our understanding of the chemoreception basis of niche occupancy by blowflies.


Subject(s)
Diptera/physiology , Feeding Behavior , Host-Seeking Behavior , Insect Proteins/metabolism , Receptors, Odorant/metabolism , Animals , Diptera/metabolism , Insect Proteins/genetics , Mutation , Phylogeny , Receptors, Odorant/genetics , Smell
4.
Sci Rep ; 11(1): 8347, 2021 04 16.
Article in English | MEDLINE | ID: mdl-33863925

ABSTRACT

Micronucleoli are among the structures composing the peculiar scenario of the nucleolus in salivary gland nuclei of dipterans representative of Sciaridae. Micronucleolar bodies contain ribosomal DNA and RNA, are transcriptionally active and may appear free in the nucleoplasm or associated with specific chromosome regions in salivary gland nuclei. This report deals with an extreme case of nucleolar fragmentation/dispersion detected in the salivary gland of Schwenkfeldina sp. Such a phenomenon in this species was found to be restricted to cell types undergoing polyteny and seems to be differentially controlled according to the cell type. Furthermore, transcriptional activity was detected in virtually all the micronucleolar bodies generated in the salivary gland. The relative proportion of the rDNA in polytene and diploid tissues showed that rDNA under-replication did not occur in polytene nuclei suggesting that the nucleolar and concomitant rDNA dispersion in Schwenkfeldina sp. may reflect a previously hypothesised process in order to counterbalance the rDNA loss due to the under-replication. The chromosomal distribution of epigenetic markers for the heterochromatin agreed with early cytological observations in this species suggesting that heterochromatin is spread throughout the chromosome length of Schwenkfeldina sp. A comparison made with results from another sciarid species argues for a role played by the heterochromatin in the establishment of the rDNA topology in polytene nuclei of Sciaridae.


Subject(s)
Cell Nucleolus/genetics , Cell Nucleolus/metabolism , Diptera/genetics , Salivary Glands/cytology , Animals , DNA Fragmentation , DNA Replication , DNA, Ribosomal/metabolism , Diptera/metabolism , Heterochromatin/metabolism , Polytene Chromosomes/metabolism , RNA, Ribosomal/metabolism , Transcription, Genetic
5.
Sci Rep ; 10(1): 9608, 2020 06 15.
Article in English | MEDLINE | ID: mdl-32541805

ABSTRACT

Larvae of O. fultoni (Keroplatidae: Keroplatinae), which occur along river banks in the Appalachian Mountains in Eastern United States, produce the bluest bioluminescence among insects from translucent areas associated to black bodies, which are  located mainly in the anterior and posterior parts of the body. Although closely related to Arachnocampa spp (Keroplatidae: Arachnocampininae), O.fultoni has a morphologically and biochemically distinct bioluminescent system which evolved independently, requiring a luciferase enzyme, a luciferin, a substrate binding fraction (SBF) that releases luciferin in the presence of mild reducing agents, molecular oxygen, and no additional cofactors. Similarly, the closely related Neoceroplatus spp, shares the same kind of luciferin-luciferase system of Orfelia fultoni. However, the molecular properties, identities and functions of luciferases, SBF and luciferin of Orfelia fultoni and other  luminescent members of the Keroplatinae subfamily still remain to be fully elucidated. Using O. fultoni as a source of luciferase, and the recently discovered non-luminescent cave worm Neoditomiya sp as the main source of luciferin and SBF, we isolated and initially characterized these compounds. The luciferase of O. fultoni is a stable enzyme active as an apparent trimer (220 kDa) composed of ~70 kDa monomers, with an optimum pH of 7.8. The SBF, which is found in the black bodies in Orfelia fultoni and in smaller dark granules in Neoditomiya sp, consists of a high molecular weight complex of luciferin and proteins, apparently associated to mitochondria. The luciferin, partially purified from hot extracts by a combination of anion exchange chromatography and TLC, is a very polar and weakly fluorescent compound, whereas its oxidized product displays blue fluorescence with an emission spectrum matching the bioluminescence spectrum (~460 nm), indicating that it is oxyluciferin. The widespread occurrence of luciferin and SBF in both luminescent and non-luminescent Keroplatinae larvae indicate an additional important biological function for the substrate, and therefore the name keroplatin.


Subject(s)
Diptera/metabolism , Firefly Luciferin/metabolism , Luciferases/metabolism , Animals , Chromatography, Ion Exchange , Diptera/enzymology , Firefly Luciferin/chemistry , Firefly Luciferin/isolation & purification , Gene Expression Profiling , Luciferases/chemistry , Luciferases/isolation & purification , Luminescent Measurements , Mitochondria/enzymology , Mitochondria/metabolism , Spectrometry, Fluorescence
6.
J Forensic Sci ; 64(6): 1720-1725, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31674674

ABSTRACT

One of the most important contributions of forensic entomology is to assist criminal expertise to determine the postmortem interval, which depends on the duration of the immature stages of insects of forensic interest. On the other hand, the time of development of the different stages varies according to the species; therefore, its identification is essential. Currently, few studies have investigated the use of cuticular hydrocarbons, and none regarding fatty acids, as complementary taxonomic tools to expedite species identification. Therefore, we evaluated whether cuticular hydrocarbons together with fatty acids of eggs of flies of the family Calliphoridae, main group of forensic interest, can be used to distinguish species. The analyses were performed by chromatographic techniques. The results show that there are significant differences between the composition of cuticular hydrocarbons and fatty acids between species and, therefore, they can be used to provide a complementary taxonomic tool to expedite the forensic expertise.


Subject(s)
Diptera/metabolism , Fatty Acids/metabolism , Hydrocarbons/metabolism , Ovum/metabolism , Animal Scales/metabolism , Animals , Chromatography , Discriminant Analysis , Entomology/methods , Forensic Sciences , Species Specificity
7.
Molecules ; 24(11)2019 May 31.
Article in English | MEDLINE | ID: mdl-31159162

ABSTRACT

Antibiotic resistance is at dangerous levels and increasing worldwide. The search for new antimicrobial drugs to counteract this problem is a priority for health institutions and organizations, both globally and in individual countries. Sarconesiopsis magellanica blowfly larval excretions and secretions (ES) are an important source for isolating antimicrobial peptides (AMPs). This study aims to identify and characterize a new S. magellanica AMP. RP-HPLC was used to fractionate ES, using C18 columns, and their antimicrobial activity was evaluated. The peptide sequence of the fraction collected at 43.7 min was determined by mass spectrometry (MS). Fluorescence and electronic microscopy were used to evaluate the mechanism of action. Toxicity was tested on HeLa cells and human erythrocytes; physicochemical properties were evaluated. The molecule in the ES was characterized as sarconesin II and it showed activity against Gram-negative (Escherichia coli MG1655, Pseudomonas aeruginosa ATCC 27853, P. aeruginosa PA14) and Gram-positive (Staphylococcus aureus ATCC 29213, Micrococcus luteus A270) bacteria. The lowest minimum inhibitory concentration obtained was 1.9 µM for M. luteus A270; the AMP had no toxicity in any cells tested here and its action in bacterial membrane and DNA was confirmed. Sarconesin II was documented as a conserved domain of the ATP synthase protein belonging to the Fli-1 superfamily. The data reported here indicated that peptides could be alternative therapeutic candidates for use in infections against Gram-negative and Gram-positive bacteria and eventually as a new resource of compounds for combating multidrug-resistant bacteria.


Subject(s)
Antimicrobial Cationic Peptides/biosynthesis , Antimicrobial Cationic Peptides/pharmacology , Diptera/metabolism , Amino Acid Sequence , Animals , Anti-Bacterial Agents/biosynthesis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/isolation & purification , Bacteria/drug effects , Chemical Phenomena , Chromatography, High Pressure Liquid , Dose-Response Relationship, Drug , Mass Spectrometry , Microbial Sensitivity Tests , Models, Molecular , Protein Conformation , Structure-Activity Relationship
8.
Biomed Res Int ; 2019: 1451623, 2019.
Article in English | MEDLINE | ID: mdl-30805360

ABSTRACT

The insulin pathway is an anabolic pathway that controls, amongst other things, glucose homeostasis. It is an evolutionarily conserved pathway. Disruptions in insulin pathway functions can lead to diabetic states. Diabetes, a very common occurrence in modern life, afflicts a significant portion of the population of developed and developing countries worldwide. Yet, few studies have addressed the evolution of diabetic states on a long-term basis. Here, we cultured three different insulin pathway signaling compromised flies (heteroallelic mutant combinations, akin to diabetes mellitus type II) and wild type control flies, for the extent of one generation in different isocaloric diets fed at libitum, with or without extra methionine added. All fly stocks have a homogenized genetic background. We measured weight, total lipid, and carbohydrate content of adults at two different time points, and survival of adults reared in some of the different diets. Results show that, despite the fact that all diet regimes allow survival of at least a fraction of flies to adulthood, life histories are significantly different. Higher protein content diets promote better survival compared to higher percentage lipid and carbohydrate diets, and added methionine promotes survival in moderately reduced protein content diets. In mutants, survival is significantly reduced, and added methionine generally has an effect, albeit a more modest one. Our results highlight the value of higher percentage protein diets, and differences in effects in "healthy" versus "diabetic" states. They also show that added methionine, proposed as a "sensor" for protein content in food for flies, leads to differential effects depending on the adequacy of the diet regime.


Subject(s)
Diptera/metabolism , Insulin/metabolism , Signal Transduction/physiology , Animals , Body Weight/physiology , Carbohydrate Metabolism/physiology , Diabetes Mellitus, Type 2/metabolism , Diet/methods , Dietary Proteins/metabolism , Lipid Metabolism/physiology , Methionine/metabolism
9.
Parasit Vectors ; 11(1): 435, 2018 Jul 27.
Article in English | MEDLINE | ID: mdl-30053916

ABSTRACT

BACKGROUND: The horn fly Haematobia irritans is a blood-sucking ectoparasite responsible for substantial economic loss of livestock. Like other hematophagous arthropods species, the successful blood-feeding of H. irritans is highly dependent on the modulation of the host's hemostasis and immune system. Here, we evaluated the biological activity of hematobin (HTB), a protein recently identified in the H. irritans saliva, on macrophage biology. The goal was to understand the putative interactions between the components of H. irritans saliva and the early host immune responses. RESULTS: Thioglycolate-elicited peritoneal macrophages from BALB/c mice were stimulated by lipopolysaccharide (LPS) plus interferon-γ (IFN-γ) in the presence or absence of recombinant HTB. The presence of the salivary protein in the cultures inhibited nitric oxide production and decreased the inducible nitric oxide synthase (iNOS) expression induced by LPS plus IFN-γ. The tumor necrosis factor-α (TNF-α) and interleukin-12p40 (IL-12p40) levels were also reduced in the macrophages pre-incubated with HTB; these findings correlated to the decreased NF-κB expression. The biological activities described here were not associated with changes in annexin V binding to macrophages suggesting that HTB does not induce cell death. In addition, the activity of HTB seems to be specific to macrophages because no changes were observed in lymphocyte proliferation or cytokine production. CONCLUSIONS: We describe here the first bioactive salivary protein of H. irritans. We characterized its ability to modulate macrophage inflammatory response, and the results can help explain how horn flies modulate the host immune system to feed on blood.


Subject(s)
Diptera/metabolism , Inflammation/metabolism , Insect Proteins/metabolism , Insect Proteins/pharmacology , Macrophages, Peritoneal/drug effects , Amino Acid Sequence , Animals , Cells, Cultured , Cytokines , Dinoprostone , Gene Expression Regulation/drug effects , Lymphocytes/drug effects , Mice , Mice, Inbred BALB C , Nitric Oxide , Nitric Oxide Synthase Type II , Spleen/cytology
10.
Insect Mol Biol ; 26(1): 46-57, 2017 02.
Article in English | MEDLINE | ID: mdl-27775856

ABSTRACT

MicroRNAs (miRNAs) are small noncoding RNAs that modulate gene expression through post-transcriptional regulation. Here, we report the identification and characterization of miRNAs in two closely related screwworm flies with different feeding habits: Cochliomyia hominivorax and Cochliomyia macellaria. The New World screwworm, C. hominivorax, is an obligatory parasite of warm-blooded vertebrates, whereas the secondary screwworm, C. macellaria, is a free-living organism that feeds on decaying organic matter. Here, the small RNA transcriptomes of adults and third-instar larvae of both species were sequenced. A total of 110 evolutionarily conserved miRNAs were identified, and 10 putative precursor miRNAs (pre-miRNAs) were predicted. The relative expression of six selected miRNAs was further investigated, including miRNAs that are related to reproduction and neural processes in other insects. Mature miRNAs were also characterized across an evolutionary time scale, suggesting that the majority of them have been conserved since the emergence of the Arthropoda [540 million years ago (Ma)], Hexapoda (488 Ma) and Brachycera (195 Ma) lineages. This study is the first report of miRNAs for screwworm flies. We also performed a comparative analysis with the hereby predicted miRNAs from the sheep blowfly, Lucilia cuprina. The results presented may advance our understanding of parasitic habits within Calliphoridae and assist further functional studies in blowflies.


Subject(s)
Diptera/metabolism , MicroRNAs/metabolism , Animals , Base Sequence , Evolution, Molecular , Female , Male , Molecular Sequence Data
11.
Genetica ; 143(5): 597-612, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26253053

ABSTRACT

Ecdysteroid titers, developmental landmarks and the presence of prominent amplifying regions (DNA puffs) have been compared during late larval to pupal development in four groups of Rhynchosciara americana larvae and in R. americana and Rhynchosciara milleri. Three prominent DNA puffs (B2, C3 and C8) expand and regress sequentially on the rising phase of the 20-hydroxyecdysone (20E) titer in R. americana as a firm, cellular cocoon is being constructed. A sharp rise in 20E coincides with the regression of these puffs. The shape of the 20E curve is similar in R. milleri, a species that does not construct a massive cocoon, but the behavior of certain DNA puffs and their temporal relationship to the curve differs. Regions corresponding to B2 and C3 can be identified in R. milleri by banding pattern similarity with R. americana chromosomes and, in the case of B2, by hybridization to an R. americana probe. A B2 puff appears in R. milleri as the 20E titer rises but remains small in all gland regions. A puff similar to the R. americana C3 puff occurs in posterior gland cells of R. milleri (C3(Rm)) after the B2 puff, but this site did not hybridize to R. americana C3 probes. C3(Rm) incorporated (3)H-thymidine above background, but showed less post-puff DNA accumulation than C3 of R. americana. R. americana C8 probes hybridized to a more distal region of the R. milleri C chromosome that did not appear to amplify or form a large puff. These differences can be related to developmental differences, in particular differences in cocoon construction between the two species.


Subject(s)
Diptera/genetics , Salivary Proteins and Peptides/genetics , Animals , Chromosomes , Diptera/metabolism , Ecdysteroids/metabolism , Female , Insect Proteins/genetics , Insect Proteins/metabolism , Larva/genetics , Male , Salivary Proteins and Peptides/metabolism , Species Specificity
12.
PLoS One ; 10(6): e0128441, 2015.
Article in English | MEDLINE | ID: mdl-26030866

ABSTRACT

Livestock production is an important economic activity in Brazil, which has been suffering significant losses due to the impact of parasites. The New World screwworm (NWS) fly, Cochliomyia hominivorax, is an ectoparasite and one of the most important myiasis-causing flies endemic to the Americas. The geographic distribution of NWS has been reduced after the implementation of the Sterile Insect Technique (SIT), being eradicated in North America and part of Central America. In South America, C. hominivorax is controlled by chemical insecticides, although indiscriminate use can cause selection of resistant individuals. Previous studies have associated the Gly137Asp and Trp251Leu mutations in the active site of carboxylesterase E3 to resistance of diethyl and dimethyl-organophosphates insecticides, respectively. Here, we have sequenced a fragment of the carboxylesterase E3 gene (ChαE7), comprising part of intron iII, exon eIII, intron iIII and part of exon eIV, and three mitochondrial gene sequences (CR, COI and COII), of NWS flies from 21 locations in South America. These markers were used for population structure analyses and the ChαE7 gene was also investigated to gain insight into the selective pressures that have shaped its evolution. Analysis of molecular variance (AMOVA) and pairwise FST analysis indicated an increased genetic structure between locations in the ChαE7 compared to the concatenated mitochondrial genes. Discriminant analysis of principal components (DAPC) and spatial analysis of molecular variance (SAMOVA) indicated different degrees of genetic structure for all markers, in agreement with the AMOVA results, but with low correlation to geographic data. The NWS fly is considered a panmitic species based on mitochondrial data, while it is structured into three groups considering the ChαE7 gene. A negative association between the two mutations related to organophosphate resistance and Fay & Wu's H significant negative values for the exons, suggest that these mutations evolved under positive selection.


Subject(s)
Cell Nucleus/metabolism , Diptera/metabolism , Mitochondria/metabolism , Organophosphorus Compounds/pharmacology , Animals , Diptera/genetics , Insecticide Resistance , Selection, Genetic
13.
Acta Trop ; 147: 6-11, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25817237

ABSTRACT

Antibiotic-resistant bacteria in hospitals and communities increasingly threaten public health in Brazil and the rest of the World. There is an urgent need for additional antimicrobial drugs. Calliphorid blowfly larvae are a rich source of antimicrobial factors but the potential of Neotropical species has been neglected. This preliminary study evaluates the antimicrobial activity of the native excretions/secretions of larvae of three species of Brazilian calliphorids, Chrysomya megacephala, Chrysomya albiceps and Chrysomya putoria. Native excretions/secretions were collected from third instar larvae, sterile filtered and tested for antibacterial activity against Staphylococcus aureus 9518, Escherichia coli K12 4401 and Serratia marcescens 365. Turbidometric assays were made in micro-plates, using an ELISA reader, with readings taken up to 22 h. Bacterial suspensions at the start and end of each experiment were also serially diluted, spread on nutrient agar plates and then colony forming units counted. The physico-chemical characteristics of the native excretions/secretions were also tested by freezing/thawing, boiling, and protease digestion. The native excretions/secretions of larvae from these three Chrysomya species significantly inhibited bacterial growth. Therefore, Brazilian calliphorid flies could potentially provide new classes of antibiotics.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bodily Secretions , Diptera/metabolism , Drug Discovery , Escherichia coli K12/drug effects , Larva/metabolism , Serratia marcescens/drug effects , Staphylococcus aureus/drug effects , Animals , Anti-Infective Agents/pharmacology , Brazil
14.
J Insect Sci ; 14: 2, 2014 Jan 02.
Article in English | MEDLINE | ID: mdl-25373149

ABSTRACT

The genera Cochliomyia and Chrysomya contain both obligate and saprophagous flies, which allows the comparison of different feeding habits between closely related species. Among the different strategies for comparing these habits is the use of qPCR to investigate the expression levels of candidate genes involved in feeding behavior. To ensure an accurate measure of the levels of gene expression, it is necessary to normalize the amount of the target gene with the amount of a reference gene having a stable expression across the compared species. Since there is no universal gene that can be used as a reference in functional studies, candidate genes for qPCR data normalization were selected and validated in three Calliphoridae (Diptera) species, Cochliomyia hominivorax Coquerel, Cochliomyia macellaria Fabricius, and Chrysomya albiceps Wiedemann . The expression stability of six genes ( Actin, Gapdh, Rp49, Rps17, α -tubulin, and GstD1) was evaluated among species within the same life stage and between life stages within each species. The expression levels of Actin, Gapdh, and Rp49 were the most stable among the selected genes. These genes can be used as reliable reference genes for functional studies in Calliphoridae using similar experimental settings.


Subject(s)
Diptera/genetics , Gene Expression , Insect Proteins/genetics , Animals , Diptera/growth & development , Diptera/metabolism , Evolution, Molecular , Female , Insect Proteins/metabolism , Larva/genetics , Larva/metabolism , Male , Molecular Sequence Data , RNA, Messenger/genetics , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , Reproducibility of Results , Sequence Analysis, DNA , Species Specificity
15.
J Mol Model ; 20(7): 2339, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24961899

ABSTRACT

The CSαß defensins are one of the most ancient antimicrobial peptide classes and are distributed in plants, invertebrates, and fungi. In the insect immunity, the defensins play a crucial role in protection against pathogens. The discovery of novel insect defensins could be a vital tool in developing novel antimicrobial agents, which are urgently needed because of growing resistance in pathogenic bacteria and the resulting reduction in the effectiveness of conventional antibiotics over the years. In this context, novel insect defensins could be identified from the potential resource of model insects. Here, a novel defensin, MdesDEF-2, was identified from the model insect Mayetiola destructor, the most destructive insect pest of wheat worldwide. The in silico identification of MdesDEF-2 was done through searching by regular expression in M. destructor's protein sequences available at NCBI. MdesDEF-2 has 36 amino acid residues and its model was composed of two ß-strands and one α-helix showing three disulfide bridges. According to the classification of CSαß defensins, MdesDEF-2 belongs to the group of ancient insect-type defensins. The molecular dynamics simulation revealed that MdesDEF-2 has a very flexible N-terminal loop. Moreover, phylogenetic analysis together with functional predictions indicated that MdesDEF-2 could have antibacterial activity without causing membrane disruption. However, while the actual activity of MdesDEF-2 is still unclear, it is evident that its role in the biology of M. destructor is similar to that of its paralogue, MdesDEF-1, protecting the insect against microbial invasion.


Subject(s)
Defensins/chemistry , Diptera/chemistry , Insect Proteins/chemistry , Molecular Dynamics Simulation , Phylogeny , Amino Acid Sequence , Animals , Bacteria/pathogenicity , Databases, Protein , Defensins/classification , Defensins/genetics , Defensins/metabolism , Diptera/genetics , Diptera/metabolism , Diptera/microbiology , Host-Pathogen Interactions , Insect Proteins/classification , Insect Proteins/genetics , Insect Proteins/metabolism , Molecular Sequence Data , Protein Structure, Tertiary , Structure-Activity Relationship
16.
PLoS One ; 8(9): e74898, 2013.
Article in English | MEDLINE | ID: mdl-24058637

ABSTRACT

BACKGROUND: The male reproductive system of insects can have several tissues responsible for the secretion of seminal fluid proteins (SFPs), such as testes, accessory glands, seminal vesicles, ejaculatory duct and ejaculatory bulb. The SFPs are transferred during mating and can induce several physiological and behavioral changes in females, such as increase in oviposition and decrease in sexual receptivity after copulation. The phlebotomine Lutzomyia longipalpis is the main vector of visceral leishmaniasis. Despite its medical importance, little is known about its reproductive biology. Here we present morphological aspects of the male L. longipalpis reproductive system by light, scanning and transmission electron microscopy, and compare the mating frequency of both virgin and previously mated females. RESULTS: The male L. longipalpis reproductive system is comprised by a pair of oval-shaped testes linked to a seminal vesicle by vasa deferentia. It follows an ejaculatory duct with an ejaculatory pump (a large bulb enveloped by muscles and associated to tracheas). The terminal endings of the vasa deferentia are inserted into the seminal vesicle by invaginations of the seminal vesicle wall, which is composed by a single layer of gland cells, with well-developed endoplasmic reticulum profiles and secretion granules. Our data suggest that the seminal vesicle acts both as a spermatozoa reservoir and as an accessory gland. Mating experiments support this hypothesis, revealing a decrease in mating frequency after copulation that indicates the effect of putative SFPs. CONCLUSION: Ultrastructural features of the L. longipalpis male seminal vesicle indicated its possible role as an accessory gland. Behavioral observations revealed a reduction in mating frequency of copulated females. Together with transcriptome analyses from male sandfly reproductive organs identifying ESTs encoding orthologs of SFPs, these data indicate the presence of putative L. longipalpis SFPs reducing sexual mating frequency of copulated females.


Subject(s)
Diptera , Endoplasmic Reticulum , Insect Proteins/biosynthesis , Seminal Vesicles , Spermatozoa , Testis , Animals , Diptera/metabolism , Diptera/ultrastructure , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/ultrastructure , Female , Male , Reproduction/physiology , Seminal Vesicles/metabolism , Seminal Vesicles/ultrastructure , Spermatozoa/metabolism , Spermatozoa/ultrastructure , Testis/metabolism , Testis/ultrastructure , Transcriptome/physiology
17.
Iheringia. Sér. Zool. ; 103(2): 145-152, jun. 2013. tab, graf
Article in English | VETINDEX | ID: vti-30606

ABSTRACT

The blowfly species are important components in necrophagous communities of the Neotropics. Besides being involved in the degradation of animal organic matter, they may serve as vectors for pathogens and parasites, and also cause primary and secondary myiasis. The occurrence pattern of these species is well defined, yet it is still not very clear which of these environmental factors determine the structure of the assemblies. This paper was developed to evaluate the influence of mean temperature and relative humidity variation in the abundance and richness of blowflies in the Brazilian southernmost state, Rio Grande do Sul, where temperature variation is well marked throughout the year. To evaluate this objective, WOT (Wind Oriented Trap) were installed with beef liver as bait in three environments for 10 consecutive days in each month between July 2003 and June 2004. A total of 13,860 flies were collected distributed among 16 species with a higher frequency of Lucilia eximia (Wiedemann, 1819) and Chrysomya albiceps (Wiedemann, 1819). The mean temperature and relative humidity influence the richness of blowflies, with greater richness and abundance in late spring and early summer, whereas abundance was only influenced by temperature. Each species responded differently with respect to these variables, where L. eximia is not influenced by any of the two abiotic factors, despite the high abundance presented. This paper presents the results of the sensitivity for the presence or absence of species of Calliphoridae and on the variation of the abundance of these species under regime temperature changes and relative humidity with implications for public health and animal management.(AU)


As espécies de Calliphoridae são importantes componentes das comunidades de necrófagos na Região Neotropical. Além de estarem envolvidas na degradação da matéria orgânica animal podem também veicular diversos patógenos e parasitos, bem como causar míiases primária e secundária. O padrão de ocorrência destas espécies está bem definido, mas ainda não se tem muito claramente quais fatores ambientais determinam a estrutura destas assembleias. Desenvolvemos este trabalho com o objetivo de avaliar a influência da temperatura média e umidade relativa do ar na variação da abundância e riqueza de espécies de califorídeos no sul do Rio Grande do Sul, onde a variação da temperatura é bem demarcada ao longo do ano. Para avaliar este objetivo, foram instaladas armadilhas WOT (Wind Oriented Trap) com fígado bovino como isca em três ambientes por 10 dias seguidos em cada mês, entre julho de 2003 e junho de 2004. Foram coletados 13.860 dípteros distribuídos entre 16 espécies com maior abundância de Lucilia eximia (Wiedemann, 1819) e Chrysomya albiceps (Wiedemann, 1819). A temperatura média e a umidade relativa influenciaram a variação da riqueza de espécies de califorídeos, com maior riqueza e abundância no final da primavera e inicio do verão, sendo que a abundância foi influenciada apenas pela temperatura. Cada espécie reagiu diferentemente com relação a estas variáveis, com L. eximia não sendo influenciada por nenhuma das duas, apesar da alta abundância apresentada. Este trabalho, apresenta resultados sobre a sensibilidade quanto à presença ou ausência das espécies de califorídeos e sobre a variação da abundância destas espécies sob um regime de alteração da temperatura e umidade relativa do ar com implicações para a saúde pública e manejo animal.(AU)


Subject(s)
Animals , Diptera/chemistry , Diptera/metabolism , Temperature , Humidity , Biodiversity
18.
Iheringia, Sér. zool ; 103(2): 145-152, jun. 2013. tab, graf
Article in English | VETINDEX | ID: biblio-1482745

ABSTRACT

The blowfly species are important components in necrophagous communities of the Neotropics. Besides being involved in the degradation of animal organic matter, they may serve as vectors for pathogens and parasites, and also cause primary and secondary myiasis. The occurrence pattern of these species is well defined, yet it is still not very clear which of these environmental factors determine the structure of the assemblies. This paper was developed to evaluate the influence of mean temperature and relative humidity variation in the abundance and richness of blowflies in the Brazilian southernmost state, Rio Grande do Sul, where temperature variation is well marked throughout the year. To evaluate this objective, WOT (Wind Oriented Trap) were installed with beef liver as bait in three environments for 10 consecutive days in each month between July 2003 and June 2004. A total of 13,860 flies were collected distributed among 16 species with a higher frequency of Lucilia eximia (Wiedemann, 1819) and Chrysomya albiceps (Wiedemann, 1819). The mean temperature and relative humidity influence the richness of blowflies, with greater richness and abundance in late spring and early summer, whereas abundance was only influenced by temperature. Each species responded differently with respect to these variables, where L. eximia is not influenced by any of the two abiotic factors, despite the high abundance presented. This paper presents the results of the sensitivity for the presence or absence of species of Calliphoridae and on the variation of the abundance of these species under regime temperature changes and relative humidity with implications for public health and animal management.


As espécies de Calliphoridae são importantes componentes das comunidades de necrófagos na Região Neotropical. Além de estarem envolvidas na degradação da matéria orgânica animal podem também veicular diversos patógenos e parasitos, bem como causar míiases primária e secundária. O padrão de ocorrência destas espécies está bem definido, mas ainda não se tem muito claramente quais fatores ambientais determinam a estrutura destas assembleias. Desenvolvemos este trabalho com o objetivo de avaliar a influência da temperatura média e umidade relativa do ar na variação da abundância e riqueza de espécies de califorídeos no sul do Rio Grande do Sul, onde a variação da temperatura é bem demarcada ao longo do ano. Para avaliar este objetivo, foram instaladas armadilhas WOT (Wind Oriented Trap) com fígado bovino como isca em três ambientes por 10 dias seguidos em cada mês, entre julho de 2003 e junho de 2004. Foram coletados 13.860 dípteros distribuídos entre 16 espécies com maior abundância de Lucilia eximia (Wiedemann, 1819) e Chrysomya albiceps (Wiedemann, 1819). A temperatura média e a umidade relativa influenciaram a variação da riqueza de espécies de califorídeos, com maior riqueza e abundância no final da primavera e inicio do verão, sendo que a abundância foi influenciada apenas pela temperatura. Cada espécie reagiu diferentemente com relação a estas variáveis, com L. eximia não sendo influenciada por nenhuma das duas, apesar da alta abundância apresentada. Este trabalho, apresenta resultados sobre a sensibilidade quanto à presença ou ausência das espécies de califorídeos e sobre a variação da abundância destas espécies sob um regime de alteração da temperatura e umidade relativa do ar com implicações para a saúde pública e manejo animal.


Subject(s)
Animals , Biodiversity , Diptera/metabolism , Diptera/chemistry , Temperature , Humidity
19.
Parasitol Res ; 109(3): 781-6, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21448572

ABSTRACT

Recently, it was demonstrated that mosquito larvae can be killed by means of photodynamic processes after the larvae have incorporated the photosensitizer chlorophyllin or pheophorbid, and were treated with light. The water-soluble substances were applied to and incorporated by the larvae in darkness. With Chaoborus sp. a dark incubation of about 3 h is sufficient to yield mortality of about 90% and ≥6 h resulted in almost 100% mortality during subsequent illumination. Temperature did not influence mortality of the larvae significantly in a treatment of 6 h dark incubation and subsequent 3 h illumination. At 10°C, 20°C, or 30°C, between 80% and 100% of the treated larvae died when the light intensity from a solar simulator was above 30 W/m(2). Lower irradiances were less effective. The LD(50) value of magnesium chlorophyllin was about 22.25 mg/l and for Zn chlorophyll 17.53 mg/l, while Cu chlorophyll (LD(50) 0.1 mg/l) was shown to be toxic also without light. Chlorophyllin, which was lyophilized immediately after extraction, was far more lethal to the larvae (LD(50) 14.88 mg/l) than air-dried Mg chlorophyllin.


Subject(s)
Antiparasitic Agents/metabolism , Chlorophyll/metabolism , Diptera/drug effects , Ecosystem , Light , Photosensitizing Agents/metabolism , Water/parasitology , Animals , Darkness , Diptera/metabolism , Larva/drug effects , Larva/metabolism , Lethal Dose 50 , Survival Analysis , Temperature , Time Factors
20.
BMC Genomics ; 11: 695, 2010 Dec 08.
Article in English | MEDLINE | ID: mdl-21143848

ABSTRACT

BACKGROUND: The New World screw-worm (NWS), Cochliomyia hominivorax, is one of the most important myiasis-causing flies, causing severe losses to the livestock industry. In its current geographical distribution, this species has been controlled by the application of insecticides, mainly organophosphate (OP) compounds, but a number of lineages have been identified that are resistant to such chemicals. Despite its economic importance, only limited genetic information is available for the NWS. Here, as a part of an effort to characterize the C. hominivorax genome and identify putative genes involved in insecticide resistance, we sampled its transcriptome by deep sequencing of polyadenylated transcripts using the 454 sequencing technology. RESULTS: Deep sequencing on the 454 platform of three normalized libraries (larval, adult male and adult female) generated a total of 548,940 reads. Eighteen candidate genes coding for three metabolic detoxification enzyme families, cytochrome P450 monooxygenases, glutathione S-transferases and carboxyl/cholinesterases were selected and gene expression levels were measured using quantitative real-time polymerase chain reaction (qRT-PCR). Of the investigated candidates, only one gene was expressed differently between control and resistant larvae with, at least, a 10-fold down-regulation in the resistant larvae. The presence of mutations in the acetylcholinesterase (target site) and carboxylesterase E3 genes was investigated and all of the resistant flies presented E3 mutations previously associated with insecticide resistance. CONCLUSIONS: Here, we provided the largest database of NWS expressed sequence tags that is an important resource, not only for further studies on the molecular basis of the OP resistance in NWS fly, but also for functional and comparative studies among Calliphoridae flies. Among our candidates, only one gene was found differentially expressed in resistant individuals, and its role on insecticide resistance should be further investigated. Furthermore, the absence of mutations in the OP target site and the high frequency of mutant carboxylesterase E3 indicate that metabolic resistance mechanisms have evolved predominantly in this species.


Subject(s)
Diptera/genetics , Genes, Insect/genetics , High-Throughput Nucleotide Sequencing/methods , Insecticide Resistance/genetics , Animals , Base Sequence , Databases, Genetic , Dichlorvos/toxicity , Diptera/drug effects , Diptera/growth & development , Diptera/metabolism , Drosophila melanogaster/drug effects , Drosophila melanogaster/genetics , Expressed Sequence Tags , Female , Gene Expression Regulation, Developmental/drug effects , Gene Library , Genotype , Insecticide Resistance/drug effects , Larva/drug effects , Larva/genetics , Male , Molecular Sequence Annotation , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Sequence Homology, Nucleic Acid , Sex Characteristics
SELECTION OF CITATIONS
SEARCH DETAIL