Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.239
Filter
1.
Arch Microbiol ; 206(8): 355, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39017938

ABSTRACT

Cryptococcus neoformans is an opportunistic pathogenic fungus that produces melanin during infection, an important virulence factor in Cryptococcal infections that enhances the ability of the fungus to resist immune defense. This fungus can synthesize melanin from a variety of substrates, including L-DOPA (L-3,4-dihydroxyphenylalanine). Since melanin protects the fungus from various stress factors such as oxidative, nitrosative, extreme heat and cold stress; we investigated the effects of environmental conditions on melanin production and survival. In this study, we investigated the effects of different pH values (5.6, 7.0 and 8.5) and temperatures (30 °C and 37 °C) on melanization and cell survival using a microtiter plate-based melanin production assay and an oxidative stress assay, respectively. In addition, the efficacy of compounds known to inhibit laccase involved in melanin synthesis, i.e., tunicamycin, ß-mercaptoethanol, dithiothreitol, sodium azide and caspofungin on melanization was evaluated and their sensitivity to temperature and pH changes was measured. The results showed that melanin content correlated with pH and temperature changes and that pH 8.5 and 30 °C, were best for melanin production. Besides that, melanin production protects the fungal cells from oxidative stress induced by hydrogen peroxide. Thus, changes in pH and temperature drastically alter melanin production in C. neoformans and it correlates with the fungal survival. Due to the limited antifungal repertoire and the development of resistance in cryptococcal infections, the investigation of environmental conditions in the regulation of melanization and survival of C. neoformans could be useful for future research and clinical phasing.


Subject(s)
Cryptococcus neoformans , Melanins , Oxidative Stress , Temperature , Cryptococcus neoformans/metabolism , Cryptococcus neoformans/drug effects , Melanins/metabolism , Hydrogen-Ion Concentration , Hydrogen Peroxide/metabolism , Laccase/metabolism , Tunicamycin/pharmacology , Caspofungin/pharmacology , Sodium Azide/pharmacology , Mercaptoethanol/pharmacology , Dithiothreitol/pharmacology , Cryptococcosis/microbiology , Microbial Viability/drug effects , Lipopeptides/pharmacology , Lipopeptides/metabolism
2.
Biotechnol J ; 19(6): e2400082, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38896412

ABSTRACT

Saccharomyces cerevisiae is important for protein secretion studies, yet the complexities of protein synthesis and secretion under endoplasmic reticulum (ER) stress conditions remain not fully understood. ER stress, triggered by alterations in the ER protein folding environment, poses substantial challenges to cells, especially during heterologous protein production. In this study, we used RNA-seq to analyze the transcriptional responses of yeast strains to ER stress induced by reagents such as tunicamycin (Tm) or dithiothreitol (DTT). Our gene expression analysis revealed several crucial genes, such as HMO1 and BIO5, that are involved in ER-stress tolerance. Through metabolic engineering, the best engineered strain R23 with HMO1 overexpression and BIO5 deletion, showed enhanced ER stress tolerance and improved protein folding efficiency, leading to a 2.14-fold increase in α-amylase production under Tm treatment and a 2.04-fold increase in cell density under DTT treatment. Our findings contribute to the understanding of cellular responses to ER stress and provide a basis for further investigations into the mechanisms of ER stress at the cellular level.


Subject(s)
Endoplasmic Reticulum Stress , Gene Expression Regulation, Fungal , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Tunicamycin , Endoplasmic Reticulum Stress/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Tunicamycin/pharmacology , Gene Expression Regulation, Fungal/genetics , Dithiothreitol/pharmacology , Metabolic Engineering/methods , Protein Folding
3.
Biophys J ; 123(14): 2076-2084, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38400542

ABSTRACT

Large-conductance Ca2+-activated K+ channels (BK channels) are formed by Slo1 subunits as a homotetramer. Besides Ca2+, other divalent cations, such as Cd2+, also activate BK channels when applied intracellularly by shifting the conductance-voltage relation to more negative voltages. However, we found that if the inside-out patch containing BK channels was treated with solution containing reducing agents such as dithiothreitol (DTT), then subsequent Cd2+ application completely inhibited BK currents. The DTT-dependent Cd2+ inhibition could be reversed by treating the patch with solutions containing H2O2, suggesting that a redox reaction regulates the Cd2+ inhibition of BK channels. Similar DTT-dependent Cd2+ inhibition was also observed in a mutant BK channel, Core-MT, in which the cytosolic domain of the channel is deleted, and in the proton-activated Slo3 channels but not observed in the voltage-gated Shaker K+ channels. A possible mechanism for the DTT-dependent Cd2+ inhibition is that DTT treatment breaks one or more disulfide bonds between cysteine pairs in the BK channel protein and the freed thiol groups coordinate with Cd2+ to form an ion bridge that blocks the channel or locks the channel at the closed state. However, surprisingly, none of the mutations of all cysteine residues in Slo1 affect the DTT-dependent Cd2+ inhibition. These results are puzzling, with an apparent contradiction: on one hand, a redox reaction seems to regulate Cd2+ inhibition of the channel, but on the other hand, no cysteine residue in the Slo1 subunit seems to be involved in such inhibition.


Subject(s)
Cadmium , Dithiothreitol , Oxidation-Reduction , Cadmium/pharmacology , Dithiothreitol/pharmacology , Animals , Large-Conductance Calcium-Activated Potassium Channels/metabolism , Large-Conductance Calcium-Activated Potassium Channels/chemistry , Humans
4.
Photochem Photobiol Sci ; 23(2): 271-284, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38305951

ABSTRACT

Ultraviolet A (UVA) radiation, present in sunlight, can induce cell redox imbalance leading to cellular damage and even cell death, compromising skin health. Here, we evaluated the in vitro antioxidant and photochemoprotective effect of dithiothreitol (DTT). DTT neutralized the free radicals 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS·+), 2,2-diphenyl-1-picrylhydrazyl (DPPH·), and superoxide anion (O2·-) in in vitro assays, as well as the ferric ion (Fe3+) in the ferric reducing antioxidant power (FRAP) assay. We also evaluated the effect of DTT pre-treatment in L929 dermal fibroblasts and DTT (50 and 100 µM) led to greater cell viability following UVA-irradiation compared to cells that were untreated. Furthermore, the pre-treatment of cells with DTT prevented the increase of intracellular reactive oxygen species (ROS) production, including hydrogen peroxide (H2O2), lipid peroxidation, and DNA condensation, as well as the decrease in mitochondrial membrane potential (Δψm), that occurred following irradiation in untreated cells. The endogenous antioxidant system of cells was also improved in irradiated cells that were DTT pre-treated compared to the untreated cells, as the activity of the superoxide dismutase (SOD) and catalase (CAT) enzymes remained as high as non-irradiated cells, while the activity levels were depleted in the untreated irradiated cells. Furthermore, DTT reduced necrosis in UVA-irradiated fibroblasts. Together, these results showed that DTT may have promising use in the prevention of skin photoaging and photodamage induced by UVA, as it provided photochemoprotection against the harmful effects of this radiation, reducing oxidative stress and cell death, due mainly to its antioxidant capacity.


Subject(s)
Antioxidants , Hydrogen Peroxide , Humans , Antioxidants/pharmacology , Antioxidants/metabolism , Dithiothreitol/pharmacology , Dithiothreitol/metabolism , Hydrogen Peroxide/pharmacology , Oxidative Stress , Reactive Oxygen Species/metabolism , Skin/radiation effects , Ultraviolet Rays , Necrosis , Fibroblasts
5.
Biomolecules ; 13(11)2023 11 17.
Article in English | MEDLINE | ID: mdl-38002342

ABSTRACT

Immature starfish oocytes isolated from the ovary are susceptible to polyspermy due to the structural organization of the vitelline layer covering the oocyte plasma membrane, as well as the distribution and biochemical properties of the actin cytoskeleton of the oocyte cortex. After the resumption of the meiotic cycle of the oocyte triggered by the hormone 1-methyladenine, the maturing oocyte reaches fertilizable conditions to be stimulated by only one sperm with a normal Ca2+ response and cortical reaction. This cytoplasmic ripening of the oocyte, resulting in normal fertilization and development, is due to the remodeling of the cortical actin cytoskeleton and germinal vesicle breakdown (GVBD). Since disulfide-reducing agents such as dithiothreitol (DTT) are known to induce the maturation and GVBD of oocytes in many species of starfish, we analyzed the pattern of the fertilization response displayed by Astropecten aranciacus oocytes pre-exposed to DTT with or without 1-MA stimulation. Short treatment of A. aranciacus immature oocytes with DTT reduced the rate of polyspermic fertilization and altered the sperm-induced Ca2+ response by changing the morphology of microvilli, cortical granules, and biochemical properties of the cortical F-actin. At variance with 1-MA, the DTT treatment of immature starfish oocytes for 70 min did not induce GVBD. On the other hand, the DTT treatment caused an alteration in microvilli morphology and a drastic depolymerization of the cortical F-actin, which impaired the sperm-induced Ca2+ response at fertilization and the subsequent embryonic development.


Subject(s)
Actins , Starfish , Animals , Female , Male , Dithiothreitol/pharmacology , Dithiothreitol/metabolism , Actins/metabolism , Semen/metabolism , Oocytes/metabolism , Fertilization
6.
Drug Metab Dispos ; 51(6): 764-770, 2023 06.
Article in English | MEDLINE | ID: mdl-37012073

ABSTRACT

Human aldehyde oxidase (hAOX1) is a molybdoflavoenzyme that belongs to the xanthine oxidase (XO) family. hAOX1 is involved in phase I drug metabolism, but its physiologic role is not fully understood to date, and preclinical studies consistently underestimated hAOX1 clearance. In the present work, we report an unexpected effect of the common sulfhydryl-containing reducing agents, e.g., dithiothreitol (DTT), on the activity of hAOX1 and mouse aldehyde oxidases. We demonstrate that this effect is due to the reactivity of the sulfido ligand bound at the molybdenum cofactor with the sulfhydryl groups. The sulfido ligand coordinated to the Mo atom in the XO family of enzymes plays a crucial role in the catalytic cycle and its removal results in the total inactivation of these enzymes. Because liver cytosols, S9 fractions, and hepatocytes are commonly used to screen the drug candidates for hAOX1, our study suggests that DTT treatment of these samples should be avoided, otherwise false negative results by an inactivated hAOX1 might be obtained. SIGNIFICANCE STATEMENT: This work characterizes the inactivation of human aldehyde oxidase (hAOX1) by sulfhydryl-containing agents and identifies the site of inactivation. The role of dithiothreitol in the inhibition of hAOX1 should be considered for the preparation of hAOX1-containing fractions for pharmacological studies on drug metabolism and drug clearance.


Subject(s)
Aldehyde Oxidase , Reducing Agents , Humans , Animals , Mice , Aldehyde Oxidase/metabolism , Ligands , Dithiothreitol/pharmacology , Coenzymes , Xanthine Oxidase
7.
Hematology ; 28(1): 2186037, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36892250

ABSTRACT

OBJECTIVE: Use red blood cell stabilizer to store the antibody screening and antibody identification reagent red blood cells (RBCs) treated with 0.01 mol/L DTT and investigate its value in the pre-transfusion examinations of patients treated with daratumumab. METHOD: Determined the optimal incubation time for the 0.01 mol/L DTT-treated RBCs method by evaluating the effect of treatment at different time points. Added ID-CellStab to store DTT-treated RBCs, determined the maximum shelf life of reagent RBCs by monitoring the hemolysis index, and assessed changes in the antigenicity of blood group antigens on the surface of RBCs during storage with antibody reagents. RESULT: A protocol for long-term storage of reagent red blood cells treated with the 0.01 mol/L DTT method was established. The optimal incubation time was 40-50 min. RBCs could be stored stably for 18 days after adding ID-CellStab. The protocol was able to eliminate pan-agglutination caused by daratumumab, with no significant changes in the antigens of most blood group systems, except for some attenuation of K antigen and Duffy blood group system antigens during the storage period. CONCLUSION: The storage protocol of reagent RBCs based on the 0.01 mol/L DTT method does not affect the detection of most blood group antibodies and retains a certain degree of detection ability for anti-K antibodies, allowing patients treated with daratumumab to quickly perform pre-transfusion examinations, making up for the shortcomings of currently commercial reagent RBCs.


Subject(s)
Blood Group Antigens , Blood Preservation , Dithiothreitol , Erythrocytes , Humans , Blood Group Antigens/metabolism , Blood Group Antigens/pharmacology , Dithiothreitol/pharmacology , Dithiothreitol/metabolism , Erythrocytes/drug effects
8.
Biophys Chem ; 294: 106962, 2023 03.
Article in English | MEDLINE | ID: mdl-36716681

ABSTRACT

Proteins can transform from their native state to a state having fibrillar aggregates characterized by cross ß sheet structure. The fibrillar aggregates are known as amyloid and have been linked to several disorders. Disulfide bonds in proteins are one of the important factors that determine the propensity of aggregation. Hen Egg White Lysozyme (HEWL) was used by us as a model protein to decipher the role disulfide bonds play in the amyloid fibril formation and fibril morphology by using Dithiothreitol (DTT) as reducing agent at pH 2.7 and pH 7.4. We found that DTT can have different effects on HEWL amyloid depending on pH and the buffer used for preparing the amyloid fibrils. Our studies highlight the critical role of non-native disulfide bonds in amyloidogenesis and how disruption of these bonds can greatly affect the fibrillation process. Overall, these studies throw light on the fibrillation mechanism and can be explored further in designing effective inhibitors against amyloidosis.


Subject(s)
Amyloid , Muramidase , Animals , Amyloid/chemistry , Muramidase/chemistry , Dithiothreitol/pharmacology , Amyloidogenic Proteins , Hydrogen-Ion Concentration , Disulfides , Chickens/metabolism , Protein Aggregates
9.
Transfusion ; 63(4): 808-816, 2023 04.
Article in English | MEDLINE | ID: mdl-36707937

ABSTRACT

BACKGROUND: Administration of anti-CD38 antibodies is a state-of-the-art therapy for patients diagnosed with multiple myeloma (MM). However, this treatment frequently leads to pan-agglutination of red blood cells (RBCs) in patients' serological testing making accurate blood typing and timely transfusion of compatible blood a challenging effort. The antigen masking indirect antiglobulin test (AMIAT) is an approach to address this diagnostic challenge. STUDY DESIGN AND METHODS: A new reagent, called DaraEx plus, uses anti-CD38 Fab fragments to mitigate the anti-CD38 antibody interference in serological assays by masking CD38 on the cell surface. Its performance is extensively examined with commercial sera as well as with patient samples, and compared to the current standard method using dithiothreitol (DTT), which denatures the CD38 antigens on test panel erythrocytes. RESULTS: In the Bio-Rad ID System, DaraEx plus effectively mitigated the interference caused by anti-CD38 antibodies in 86% of patient samples tested while DTT was successful in only 68%. Moreover, there was no negative influence on DTT-sensitive blood group systems such as KEL upon DaraEx plus treatment. The agglutination reactions of all tested anti-CD38 antibodies (Daratumumab, Felzartamab, and Isatuximab) were inhibited by DaraEx plus. The treatment was successful only if DaraEx plus was added to the test cells before the sample. Some of the other gel card systems tested showed background reactions with DaraEx plus-treated cells. CONCLUSION: DaraEx plus treatment is straightforward and quick to perform. In the Bio-Rad ID System, it is superior to DTT treatment in the prevention of anti-CD38 antibody interference.


Subject(s)
Blood Transfusion , Multiple Myeloma , Humans , Blood Transfusion/methods , Blood Grouping and Crossmatching , Erythrocytes/metabolism , Coombs Test , Agglutination Tests , Dithiothreitol/pharmacology , Dithiothreitol/therapeutic use , Multiple Myeloma/drug therapy , ADP-ribosyl Cyclase 1/metabolism
10.
Drug Chem Toxicol ; 46(3): 413-422, 2023 May.
Article in English | MEDLINE | ID: mdl-35266429

ABSTRACT

Emamectin benzoate (EMB) is an avermectin insecticide that is extensively used for pest control, but there are few reports concerning its cytotoxic effects on human lymphocytes. In the current study, the hematotoxicity of EMB was evaluated in Molt-4 T-cells, a human T-lymphoblastic cell line with high motility, and the role of vitamin E (VitE) and dithiothreitol (DTT) in attenuating EMB cytotoxicity was characterized. Exposure of Molt-4 cells to EMB decreased cell viability and proliferation, induced a loss of cell clusters, and significantly increased membrane collapse and chromatin condensation. Moreover, EMB significantly increased cell death and suppressed transglutaminase activity. EMB treatment modulated the NF-κB signaling pathway, decreased the expression of p105, p50, and p65/RelA in cytosolic and nuclear fractions, and increased nuclear IκBα expression. EMB increased oxidative stress, as demonstrated by a significant increase in the levels of reactive oxygen species (ROS). Treatment with non-cytotoxic concentrations of VitE or DTT ameliorated the hematotoxicity induced by pretreatment with EMB, increased Molt-4 cell viability, raised the IC50 values of EMB, limited intracellular ROS generation, and mitigated EMB-mediated effects on NF-κB signaling. The results indicate the potential cytotoxicity of EMB on human lymphocytes, and demonstrate that VitE and DTT treatment can reduce the cytotoxic effects of EMB.


Subject(s)
Dithiothreitol , Ivermectin , NF-kappa B , T-Lymphocytes , Vitamin E , Humans , Dithiothreitol/pharmacology , Ivermectin/analogs & derivatives , Ivermectin/toxicity , NF-kappa B/metabolism , Reactive Oxygen Species/metabolism , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism , Vitamin E/pharmacology
11.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 38(12): 1104-1110, 2022 Dec.
Article in Chinese | MEDLINE | ID: mdl-36585233

ABSTRACT

Objective To investigate the effect of family with sequence similarity 134 member B (FAM134B)-mediated endoplasmic reticulophagy on apoptosis of hepatocytes induced by endoplasmic reticulum stress (ERS) and identify its potential regulatory mechanism. Methods BRL-3A cells were treated with 0, 0.5, 1.0, 2.0, 4.0, 6.0 mmol/L dithiothreitol (DTT) for 48 hours. The effect of DTT treatment on the proliferation and apoptosis was analyzed using real time cellular dynamic analysis (RTCA) and flow cytometry. The level of proteins related to ERS, endoplasmic reticulophagy, mitochondria-endoplasmic reticulum contact sites (MERCs), and mitochondrial apoptosis pathway were determined using Western blot analysis. Co-localization of ER and lysosomes were detected using ER and lysosomal fluorescence probes. A Ca2+ fluorescence probe was used to detect the level of Ca2+ in mitochondria. Results DTT treatment significantly inhibited cell proliferation and promoted apoptosis in hepatocytes. The levels of proteins related to ERS and endoplasmic reticulophagy, MERCs and the mitochondrial apoptosis pathway significantly increased in BRL-3A cells treated with DTT. DTT treatment decreased the ER-lysosome co-localization and enhanced the fluorescence intensity of Ca2+ in mitochondria. Conclusion DTT aggravates hepatocyte apoptosis by inhibiting FAM134B-mediated endoplasmic reticulophagy and enhancing the level of mitochondrial Ca2+.


Subject(s)
Apoptosis , Endoplasmic Reticulum , Rats , Animals , Dithiothreitol/pharmacology , Dithiothreitol/metabolism , Endoplasmic Reticulum/metabolism , Hepatocytes , Endoplasmic Reticulum Stress , Autophagy
13.
Molecules ; 27(19)2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36234898

ABSTRACT

Due to the decreasing self-repairing ability, elder people are easier to form chronic wounds and suffer from slow and difficult wound healing. It is desirable to develop a novel wound dressing that can accelerate chronic wound healing in elderly subjects to decrease the pain of patients and save medical resources. In this work, Heparin and basic fibroblast growth factor(bFGF) were dissolved in the mixing solution of 4-arm acrylated polyethylene glycol and dithiothreitol to form hydrogel dressing in vitro at room temperature without any catalysts, which is convenient and easy to handle in clinic application. In vitro re-lease test shows the bFGF could be continuously released for at least 7 days, whereas the dressing surface integrity maintained for 3 days degradation in PBS solution. Three groups of treatments including bFGF-Gel, bFGF-Sol and control without any treatment were applied on the full-thickness wound on the 22 months old mice back. The wound closure rate and histological and immunohistochemical staining all illustrated that bFGF-Gel displayed a better wound healing effect than the other two groups. Thus, as-prepared hydrogel dressing seems supe-rior to current clinical treatment and more effective in elderly subjects, which shows promising potential to be applied in the clinic.


Subject(s)
Fibroblast Growth Factor 2 , Hydrogels , Animals , Bandages , Disease Models, Animal , Dithiothreitol/pharmacology , Fibroblast Growth Factor 2/pharmacology , Heparin/pharmacology , Hydrogels/pharmacology , Mice , Polyethylene Glycols/pharmacology , Wound Healing
14.
Zygote ; 30(6): 749-767, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36082429

ABSTRACT

Intracytoplasmic sperm injection (ICSI) is an assisted reproductive technique mainly used to overcome severe infertility problems associated with the male factor, but in cattle its efficiency is far from optimal. Artificial activation treatments combining ionomycin (Io) with 6-dimethylaminopurine after piezo-ICSI or anisomycin after conventional ICSI have recently increased the blastocyst rate obtained. Compounds to capacitate bovine spermatozoa, such as heparin and methyl-ß-cyclodextrin and compounds to destabilize sperm membranes such as NaOH, lysolecithin and Triton X-100, have been assessed, although they have failed to substantially improve post-ICSI embryonic development. Disulfide bond reducing agents, such as dithiothreitol (DTT), dithiobutylamine and reduced glutathione, have been assessed to decondense the hypercondensed head of bovine spermatozoa, the two latter being more efficient than DTT and less harmful. Although piezo-directed ICSI without external activation has generated high fertilization rates and modest rates of early embryo development, other studies have required exogenous activation to improve the results. This manuscript thoroughly reviews the different strategies used in bovine ICSI to improve its efficiency and proposes some alternative approaches, such as the use of extracellular vesicles (EVs) as 'biological methods of oocyte activation' or the incorporation of EVs in the in vitro maturation and/or culture medium as antioxidant defence agents to improve the competence of the ooplasm, as well as a preincubation of the spermatozoa in estrous oviductal fluid to induce physiological capacitation and acrosome reaction before ICSI, and the use of hyaluronate in the sperm immobilization medium.


Subject(s)
Semen , Sperm Injections, Intracytoplasmic , Pregnancy , Female , Cattle , Male , Animals , Sperm Injections, Intracytoplasmic/veterinary , Sperm Injections, Intracytoplasmic/methods , Spermatozoa/physiology , Acrosome Reaction , Oocytes/physiology , Dithiothreitol/pharmacology
15.
Clin Lab ; 68(9)2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36125160

ABSTRACT

BACKGROUND: The anti-CD38 antibody daratumumab is a common multiple myeloma treatment. As the erythrocyte's membrane expresses CD38, Daratumumab-treated samples show agglutination in serological pre-transfusion tests, hindering detection of erythrocyte alloantibodies. Dithiothreitol interferes with erythrocyte antigens, affecting investigation of unexpected antibodies. DARAEx®, an anti-CD38 neutralizing agent, overcomes daratumumab-induced effects, without dithiothreitol's interferences. DARAEx® is applied only in Biorad columns. This study aimed to provide a DARAEx® protocol for application with the Grifols platform. METHODS: We introduced a modified DARAEx® protocol (AssutaBB protocol) and performed antibody screenings on samples from nineteen daratumumab-treated patients. RESULTS: The AssutaBB protocol provided antibody screen results for all patients, exactly as established in the default manufacturing protocol. Eleven patients presented natural negative antibody screens; eight presented positive K/E antibodies. CONCLUSIONS: AssutaBB allows the use of the more widespread Grifols platform in daratumumab-treated patients.


Subject(s)
Antibodies, Monoclonal , Antineoplastic Agents , Erythrocytes , Multiple Myeloma , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Dithiothreitol/pharmacology , Erythrocytes/drug effects , Humans , Isoantibodies , Multiple Myeloma/drug therapy
16.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 30(4): 1198-1202, 2022 Aug.
Article in Chinese | MEDLINE | ID: mdl-35981384

ABSTRACT

OBJECTIVE: To investigate the effectiveness and safety of low concentration dithiothreitol (DTT) in removing the interference of monoclonal anti-CD38 on transfusion compatibility testing, and develop a reasonable clinical transfusion strategy. METHODS: The blood type, direct antiglobulin testing (DAT) and antibody screening were tested according to standard methods. Antibody screening cells and donor's red blood cells were treated by DTT 0.2, 0.1, 0.05, 0.02, 0.01 and 0.005 mol/L, and antibody screening and cross-matching of serums after monoclonal anti-CD38 treatment were performed by anti-human globulin card. RESULTS: The 0.01 mol/L DTT at 37℃ for 30 minutes could remove the effect of monoclonal anti-CD38 on antibody screening and cross-matching, meanwhile retain their effectiveness in detecting anti-K, anti-LW, anti-JMH, anti-Lub, anti-e, anti-Dia and anti-Jka alloantibodies. All the 10 patients had no acute or delayed haemolytic transfusion reactions and their routine blood tests showed that the red blood cells transfusion was effective. CONCLUSION: The 0.01 mol/L DTT is a safe and effective method for removing the interference of monoclonal anti-CD38 with transfusion compatibility testing, while retaining the ability to detect most alloantibodies.


Subject(s)
Antibodies, Monoclonal , Isoantibodies , Antibodies, Monoclonal/pharmacology , Blood Grouping and Crossmatching , Blood Transfusion , Dithiothreitol/pharmacology , Erythrocytes , Humans , Isoantibodies/pharmacology
17.
World J Gastroenterol ; 28(23): 2569-2581, 2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35949353

ABSTRACT

BACKGROUND: Endoplasmic reticulum (ER) stress-related hepatocyte apoptosis is responsible for multiple hepatic diseases. Previous studies have revealed that endoplasmic reticulophagy (ER-phagy) promotes the selective clearance of damaged ER fragments during ER stress, playing a crucial role in maintaining ER homeostasis and inhibiting apoptosis. Family with sequence similarity 134 member B (FAM134B) is a receptor involved in ER-phagy that can form a complex with calnexin (CNX) and microtubule-associated protein 1 light chain 3 (LC3). The complex can mediate the selective isolation of ER fragments to attenuate hepatocyte apoptosis. However, the precise regulatory mechanisms remain unclear. AIM: To elucidate the effect of FAM134B-mediated ER-phagy on ER stress-induced apoptosis in buffalo rat liver 3A (BRL-3A) rat hepatocytes and the potential regulatory mechanisms. METHODS: ER stress-related hepatocyte apoptosis was induced using dithiothreitol (DTT). Proteins related to ER stress and autophagy were measured with western blotting. Protein complex interactions with FAM134B were isolated by co-immunoprecipitation. ER-phagy was evaluated in immunofluorescence experiments. Cell cycle distribution and apoptosis were measured by flow cytometry. Mitochondrial Ca2+ levels were evaluated by the co-localization of intracellular Ca2+-tracker and Mito-tracker. The small interfering RNA against FAM134B was used to knockdown FAM134B in BRL-3A cells. RESULTS: ER stress-related and autophagy-related proteins in BRL-3A cells were elevated by both short and long-term DTT treatment. Furthermore, co-immunoprecipitation confirmed an interaction between FAM134B, CNX, FAM134B, and LC3 in BRL-3A cells. Immunofluorescence assays revealed that autolysosomes significantly decreased following short-term DTT treatment, but increased after long-term treatment. Mitochondrial Ca2+ levels and apoptotic rates were dramatically elevated, and more cells were arrested in the G1 stage after short-term DTT treatment; however, these decreased 48 h later. Moreover, FAM134B downregulation accelerated mitochondrial apoptotic pathway activation and aggravated hepatocyte apoptosis under ER stress. CONCLUSION: FAM134B-mediated ER-phagy attenuates hepatocyte apoptosis by suppressing the mitochondrial apoptotic pathway. Our findings provide new evidence highlighting the importance of FAM134B-mediated ER-phagy in attenuating hepatocyte apoptosis.


Subject(s)
Autophagy , Endoplasmic Reticulum , Animals , Apoptosis , Autophagy/physiology , Dithiothreitol/pharmacology , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress , Hepatocytes , Rats
18.
Reprod Domest Anim ; 57(9): 1074-1081, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35699342

ABSTRACT

Experiments were conducted to investigate whether supplementation of cryopreservation medium with ascorbate, dithiothreitol (DTT) or an inhibitor of caspase-3 (z-DEVD-fmk) could improve post-thaw survival of bovine embryos produced in vitro (IVP). For all experiments, embryos were harvested on day 7 after insemination and subjected to controlled-rate freezing in medium containing 1.5 M ethylene glycol and treatments as described below. In experiments 1-3, embryos were cryopreserved in freezing medium with ascorbate (0, 0.1, 0.3 or 0.5 mM), DTT (0, 50, 100 or 200 µM) and z-DEVD-fmk (0, 50, 100 or 200 µM), respectively. Post-thaw survival was assessed at 24, 48 and 72 h. For experiments 4-5, embryos were cryopreserved in freezing medium with or without 0.1 mM ascorbate. At 24 h post-thaw, embryo total cell number, DNA fragmentation and levels of reactive oxygen species (ROS) were evaluated. Embryos subjected to freezing and thawing in medium supplemented with 0.1 mM ascorbate had greater (p < .05) re-expansion rates at 24, 48 and 72 h and hatching rate at 72 h as compared to embryos not treated with ascorbate. Post-thaw cryosurvival was not affected by the addition of either DTT or z-DEVD-fmk to medium used for cryopreservation. Embryos cryopreserved in medium supplemented with 0.1 mM ascorbate had reduced (p < .001) levels of intracellular ROS and fewer (p < .001) cells with DNA fragmentation. In conclusion, post-thaw survival of bovine IVP embryos is enhanced by supplementation of freezing medium with ascorbate.


Subject(s)
Cryopreservation , Embryo, Mammalian , Animals , Caspase 3 , Caspase Inhibitors , Cattle , Cryopreservation/veterinary , Dithiothreitol/pharmacology , Fertilization in Vitro/veterinary , Reactive Oxygen Species
19.
Anal Chem ; 94(17): 6557-6565, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35435658

ABSTRACT

Endoplasmic reticulum (ER) is sensitive to changes in the intracellular environment such as pH and viscosity, and slight changes may trigger stress response. Besides, different from apoptosis and necrosis, ferroptosis is the result of lipid peroxidation accumulation. There is evidence that ferroptosis is closely related to endoplasmic reticulum stress (ERS). However, the possible changes in the pH and viscosity of the ER during the ferroptosis process have not yet been studied. Therefore, we used a new type of ER-targeted dual-excitation fluorescent probe (DSPI-3) to investigate the possible changes of pH and viscosity of ER during the ferroptosis. The novel probe DSPI-3 exhibited a highly sensitive and selective response to pH and viscosity. During the bioimaging process, it was found that the ER acidified and viscosity increased during the ferroptosis process induced by erastin, while the cells treated with ferrostatin-1 did not alter significantly. In addition, when dithiothreitol (DTT) and erastin stimulated the cells at the same time, we discovered that ER was acidified considerably at short notice, but the pH was slightly increased in the later stage. Besides, the change of the viscosity enhanced slowly with the passage of time, and there was a noteworthy decline in the later stage, demonstrating that the DTT-induced ERS accelerated the process of ferroptosis. We hope that this unique fluorescent probe can provide an effective method for studying the relationship between ERS and ferroptosis.


Subject(s)
Ferroptosis , Dithiothreitol/pharmacology , Endoplasmic Reticulum Stress , Fluorescent Dyes/pharmacology , Hydrogen-Ion Concentration , Viscosity
20.
Mol Biol (Mosk) ; 56(1): 135-146, 2022.
Article in Russian | MEDLINE | ID: mdl-35082262

ABSTRACT

The endoplasmic reticulum (ER) stress inducers dithiothreitol (DTT) and sodium selenite (SS) were tested for effect on expression of ER selenoproteins and apoptosis markers in MCF7 breast adenocarcinoma cells. DTT used at 1 or 5 mM did not affect the survival of MCF7 cells. Based on the real-time PCR data and the protein expression levels of ER stress markers, ER stress was assumed to evolve along an adaptation pathway in MCF7 cells treated with 1 or 5 mM DTT, involving mainly the transcription factors IRE1 and ATF6 and the selenoproteins SELS, SELK, SELT, SELM, and SELN. Cell treatment with 0.01 µM SS decreases the mRNA levels of all genes examined. When the SS concentration was increased to 0.1 µM, an increase in expression was observed for key ER stress genes and apoptosis markers, including CHOP, GADD34, PUMA, BIM, ATF4, sXBP, uXBP, AKT1, BAX, and BAK. Higher SS concentrations were assumed to trigger the unfolded protein response (UPR) via a proapoptic signaling pathway involving PERK and an alternative IRE1 signaling pathway. Used at 1 µM, SS increased the mRNA levels of apoptosis markers, upregulated expression of a spliced form of XBP1, and substantially decreased the cell survival. SS (1 µM) was assumed to trigger apoptosis in MCF7 cells. The results indicate that both adaptive and proapoptic UPR signaling pathways are activated in cells, depending on the nature and concentration of the ER stress inducer.


Subject(s)
Adenocarcinoma , Sodium Selenite , Apoptosis , Dithiothreitol/pharmacology , Endoplasmic Reticulum , Endoplasmic Reticulum Stress , Humans , Selenoproteins , Sodium Selenite/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...