Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 618
Filter
1.
Sci Rep ; 14(1): 15007, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38951654

ABSTRACT

Salivary gland squamous cell carcinomas (SG-SCCs) constitute a rare type of head and neck cancer which is linked to poor prognosis. Due to their low frequency, the molecular mechanisms responsible for their aggressiveness are poorly understood. In this work we studied the role of the phosphatase DUSP1, a negative regulator of MAPK activity, in controlling SG-SCC progression. We generated DUSP1 KO clones in A253 human cells. These clones showed a reduced ability to grow in 2D, self-renew in ECM matrices and to form tumors in immunodeficient mice. This was caused by an overactivation of the stress and apoptosis kinase JNK1/2 in DUSP1-/+ clones. Interestingly, RNAseq analysis revealed that the expression of SOX2, a well-known self-renewal gene was decreased at the mRNA and protein levels in DUSP1-/+ cells. Unexpectedly, CRISPR-KO of SOX2 did not recapitulate DUSP1-/+ phenotype, and SOX2-null cells had an enhanced ability to self-renew and to form tumors in mice. Gene expression analysis demonstrated that SOX2-null cells have a decreased squamous differentiation profile -losing TP63 expression- and an increased migratory phenotype, with an enhanced epithelial to mesenchymal transition signature. In summary, our data indicates that DUSP1 and SOX2 have opposite functions in SG-SCC, being DUSP1 necessary for tumor growth and SOX2 dispensable showing a tumor suppressor function. Our data suggest that the combined expression of SOX2 and DUSP1 could be a useful biomarker to predict progression in patients with SG-SCCs.


Subject(s)
Carcinoma, Squamous Cell , Disease Progression , Dual Specificity Phosphatase 1 , SOXB1 Transcription Factors , Salivary Gland Neoplasms , Dual Specificity Phosphatase 1/metabolism , Dual Specificity Phosphatase 1/genetics , Humans , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , Animals , Mice , Salivary Gland Neoplasms/genetics , Salivary Gland Neoplasms/pathology , Salivary Gland Neoplasms/metabolism , Cell Line, Tumor , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Gene Expression Regulation, Neoplastic , Cell Proliferation/genetics
2.
J Mol Neurosci ; 74(3): 59, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890235

ABSTRACT

Binge drinking causes a range of problems especially damage to the nervous system, and the specific neural mechanism of brain loss and behavioral abnormalities caused by which is still unclear. Extracellular regulated protein kinases (ERK) maintain neuronal survival, growth, and regulation of synaptic plasticity by phosphorylating specific transcription factors to regulate expression of brain-derived neurotrophic factor (BDNF). Dual-specific phosphatase 1 (DUSP1) and DUSP6 dephosphorylate tyrosine and serine/threonine residues in ERK1/2 to inactivate them. To investigate the molecular mechanism by which alcohol affects memory and emotion, a chronic intermittent alcohol exposure (CIAE) model was established. The results demonstrated that mice in the CIAE group developed short-term recognition memory impairment and anxiety-like behavior; meanwhile, the expression of DUSP1 and DUSP66 in the mPFC was increased, while the levels of p-ERK and BDNF were decreased. Micro-injection of DUSP1/6 inhibitor BCI into the medial prefrontal cortex (mPFC) restored the dendritic morphology by reversing the activity of ERK-BDNF and ultimately improved cognitive and emotional impairment caused by CIAE. These findings indicate that CIAE inhibits ERK-BDNF by increasing DUSP1/6 in the mPFC that may be associated with cognitive and emotional deficits. Consequently, DUSP1 and DUSP6 appear to be potential targets for the treatment of alcoholic brain disorders.


Subject(s)
Brain-Derived Neurotrophic Factor , Dual Specificity Phosphatase 1 , Ethanol , Mice, Inbred C57BL , Prefrontal Cortex , Animals , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , Mice , Male , Dual Specificity Phosphatase 1/metabolism , Dual Specificity Phosphatase 1/genetics , Prefrontal Cortex/metabolism , Prefrontal Cortex/drug effects , Ethanol/toxicity , Ethanol/pharmacology , Dual Specificity Phosphatase 6/metabolism , Dual Specificity Phosphatase 6/genetics , Aminoacetonitrile/analogs & derivatives , Aminoacetonitrile/pharmacology , Aminoacetonitrile/therapeutic use , Anxiety/drug therapy , Anxiety/etiology , MAP Kinase Signaling System
3.
Front Biosci (Landmark Ed) ; 29(6): 222, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38940057

ABSTRACT

BACKGROUND: Persistent hyperuricemia can lead to the generation and deposition of monosodium urate (MSU) crystals. This can trigger gouty arthritis (GA), which in turn induces inflammation. Activation of the Nod-like receptor pyrin domain containing 3 (NLRP3) inflammasome plays a critical role in the onset and progression of GA. Autophagy may have a dual effect on GA with regard to the NLRP3 inflammasome. Therefore, the present study aimed to gain a deeper comprehension of the interaction between autophagy and NLRP3 inflammasome activation is imperative for developing more efficacious treatments for GA. METHODS: Peripheral blood monocytes (PBMCs) were first isolated from GA patients and healthy controls and underwent bulk RNA sequencing analysis. Overexpression and knockdown of dual specificity phosphatase 1 (DUSP1) was performed in THP-1 monocytes to investigate its role in the immune response and mitochondrial damage. The luciferase assay and Western blot analysis were used to study the interaction between autophagy and NLRP3 inflammasome activation. RESULTS: Bulk RNA sequencing analysis showed significant upregulation of DUSP1 expression in PBMCs from GA patients compared to healthy controls. This result was subsequently verified by reverse transcription quantitative polymerase chain reaction (RT-qPCR). DUSP1 expression in human THP-1 monocytes was also shown to increase after MSU treatment. Downregulation of DUSP1 expression increased the secretion of inflammatory cytokines after MSU treatment, whereas the overexpression of DUSP1 decreased the secretion levels. Lipopolysaccharides (LPS) combined with adenosine-triphosphate (ATP) led to mitochondrial damage, which was rescued by overexpressing DUSP1. DUSP1 overexpression further increased the level of autophagy following MSU treatment, whereas downregulation of DUSP1 decreased autophagy. Treatment with the autophagy inhibitor 3-Methyladenine (3-MA) restored inflammatory cytokine secretion levels in the DUSP1 overexpression group. MSU caused pronounced pathological ankle swelling in vivo. However, DUSP1 overexpression significantly mitigated this phenotype, accompanied by significant downregulation of inflammatory cytokine secretion levels in the joint tissues. CONCLUSIONS: This study revealed a novel function and mechanism for DUSP1 in promoting autophagy to mitigate the MSU-induced immune response in GA. This finding suggests potential diagnostic biomarkers and anti-inflammatory targets for more effective GA therapy.


Subject(s)
Arthritis, Gouty , Autophagy , Dual Specificity Phosphatase 1 , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Uric Acid , Humans , Autophagy/drug effects , Dual Specificity Phosphatase 1/genetics , Dual Specificity Phosphatase 1/metabolism , Arthritis, Gouty/genetics , Arthritis, Gouty/metabolism , Arthritis, Gouty/immunology , Arthritis, Gouty/chemically induced , Uric Acid/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Inflammasomes/metabolism , Inflammasomes/immunology , THP-1 Cells , Male , Monocytes/metabolism , Monocytes/immunology , Monocytes/drug effects , Case-Control Studies , Female , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/immunology , Middle Aged
4.
Eur J Pharmacol ; 977: 176711, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38839029

ABSTRACT

Histone deacetylase (HDAC) inhibitors are potential candidates for treating pulmonary fibrosis. MPT0E028, a novel pan-HDAC inhibitor, has been reported to exhibit antitumor activity in several cancer cell lines. In this study, we investigated the mechanism underlying the inhibitory effects of MPT0E028 on the expression of fibrogenic proteins in human lung fibroblasts (WI-38). Our results revealed that MPT0E028 inhibited transforming growth factor-ß (TGF-ß)-, thrombin-, and endothelin 1-induced connective tissue growth factor (CTGF) expression in a concentration-dependent manner. In addition, MPT0E028 suppressed TGF-ß-stimulated expression of fibronectin, collagen I, and α-smooth muscle actin (α-SMA). Furthermore, MPT0E028 inhibited the TGF-ß-induced phosphorylation of c-Jun N-terminal kinase (JNK), p38, and extracellular signal-regulated kinase (ERK). MPT0E028 reduced the increase in SMAD3 and c-Jun phosphorylation, and SMAD3-and activator protein-1 (AP-1)-luciferase activities under TGF-ß stimulation. Transfection with mitogen-activated protein kinase phosphatase-1 (MKP-1) siRNA reversed the suppressive effects of MPT0E028 on TGF-ß-induced increases in CTGF expression; JNK, p38, and ERK phosphorylation; and SMAD3 and AP-1 activation. Moreover, MPT0E028 increased MKP-1 acetylation and activity in WI-38 cells. Pretreatment with MPT0E028 reduced the fibrosis score and fibronectin, collagen, and α-SMA expression in bleomycin-induced pulmonary fibrosis mice. In conclusion, MPT0E028 induced MKP-1 acetylation and activation, which in turn inhibited TGF-ß-stimulated JNK, p38, and ERK phosphorylation; SMAD3 and AP-1 activation; and subsequent CTGF expression in human lung fibroblasts. Thus, MPT0E028 may be a potential drug for treating pulmonary fibrosis.


Subject(s)
Connective Tissue Growth Factor , Dual Specificity Phosphatase 1 , Fibroblasts , Histone Deacetylase Inhibitors , Lung , Pulmonary Fibrosis , Transforming Growth Factor beta , Connective Tissue Growth Factor/metabolism , Humans , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/pathology , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/drug therapy , Animals , Histone Deacetylase Inhibitors/pharmacology , Mice , Lung/drug effects , Lung/pathology , Lung/cytology , Lung/metabolism , Transforming Growth Factor beta/metabolism , Dual Specificity Phosphatase 1/metabolism , Dual Specificity Phosphatase 1/genetics , Cell Line , Smad3 Protein/metabolism , Phosphorylation/drug effects , Male , Enzyme Activation/drug effects , Mice, Inbred C57BL
5.
Mol Pharmacol ; 106(1): 71-82, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38769019

ABSTRACT

Remdesivir (RDV), a broad-spectrum antiviral agent, is often used together with dexamethasone (DEX) for hospitalized COVID-19 patients requiring respiratory support. Potential hepatic adverse drug reaction is a safety concern associated with the use of RDV. We previously reported that DEX cotreatment effectively mitigates RDV-induced hepatotoxicity and reduces elevated serum alanine aminotransferase and aspartate aminotransferase levels in cultured human primary hepatocytes (HPH) and hospitalized COVID-19 patients, respectively. Yet, the precise mechanism behind this protective drug-drug interaction remains largely unknown. Here, we show that through the activation of p38, c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinases 1 and 2 (ERK1/2) signaling, RDV induces apoptosis (cleavage of caspases 8, 9, and 3), autophagy (increased autophagosome and LC3-II), and mitochondrial damages (decreased membrane potential, respiration, ATP levels, and increased expression of Bax and the released cytosolic cytochrome C) in HPH. Importantly, cotreatment with DEX partially reversed RDV-induced apoptosis, autophagy, and cell death. Mechanistically, DEX deactivates/dephosphorylates p38, JNK, and ERK1/2 signaling by enhancing the expression of dual specificity protein phosphatase 1 (DUSP1), a mitogen-activated protein kinase (MAPK) phosphatase, in a glucocorticoid receptor (GR)-dependent manner. Knockdown of GR in HPH attenuates DEX-mediated DUSP1 induction, MAPK dephosphorylation, as well as protection against RDV-induced hepatotoxicity. Collectively, our findings suggest a molecular mechanism by which DEX modulates the GR-DUSP1-MAPK regulatory axis to alleviate the adverse actions of RDV in the liver. SIGNIFICANCE STATEMENT: The research uncovers the molecular mechanisms by which dexamethasone safeguards against remdesivir-associated liver damage in the context of COVID-19 treatment.


Subject(s)
Adenosine Monophosphate , Alanine , Antiviral Agents , Apoptosis , Autophagy , COVID-19 Drug Treatment , Chemical and Drug Induced Liver Injury , Dexamethasone , Dual Specificity Phosphatase 1 , Hepatocytes , Dexamethasone/pharmacology , Humans , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Chemical and Drug Induced Liver Injury/etiology , Antiviral Agents/pharmacology , Antiviral Agents/adverse effects , Dual Specificity Phosphatase 1/metabolism , Dual Specificity Phosphatase 1/genetics , Hepatocytes/drug effects , Hepatocytes/metabolism , Apoptosis/drug effects , Autophagy/drug effects , Cells, Cultured , MAP Kinase Signaling System/drug effects
6.
Cells ; 13(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38667302

ABSTRACT

Toll-like receptors (TLRs) induce innate immune responses through activation of intracellular signaling pathways, such as MAP kinase and NF-κB signaling pathways, and play an important role in host defense against bacterial or viral infections. Meanwhile, excessive activation of TLR signaling leads to a variety of inflammatory disorders, including autoimmune diseases. TLR signaling is therefore strictly controlled to balance optimal immune response and inflammation. However, its balancing mechanisms are not fully understood. In this study, we identified the E3 ubiquitin ligase LINCR/ NEURL3 as a critical regulator of TLR signaling. In LINCR-deficient cells, the sustained activation of JNK and p38 MAPKs induced by the agonists for TLR3, TLR4, and TLR5, was clearly attenuated. Consistent with these observations, TLR-induced production of a series of inflammatory cytokines was significantly attenuated, suggesting that LINCR positively regulates innate immune responses by promoting the activation of JNK and p38. Interestingly, our further mechanistic study identified MAPK phosphatase-1 (MKP1), a negative regulator of MAP kinases, as a ubiquitination target of LINCR. Thus, our results demonstrate that TLRs fine-tune the activation of MAP kinase pathways by balancing LINCR (the positive regulator) and MKP1 (the negative regulator), which may contribute to the induction of optimal immune responses.


Subject(s)
Dual Specificity Phosphatase 1 , Signal Transduction , Toll-Like Receptors , Ubiquitin-Protein Ligases , Ubiquitination , Dual Specificity Phosphatase 1/metabolism , Dual Specificity Phosphatase 1/genetics , Toll-Like Receptors/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Animals , Humans , Mice , Proteolysis , Immunity, Innate , p38 Mitogen-Activated Protein Kinases/metabolism , HEK293 Cells , Cytokines/metabolism
7.
Aging Cell ; 23(6): e14133, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38459711

ABSTRACT

Chronic low-grade inflammation, particularly elevated tumor necrosis factor (TNF) levels, occurs due to advanced age and is associated with greater susceptibility to infection. One reason for this is age-dependent macrophage dysfunction (ADMD). Herein, we use the adoptive transfer of alveolar macrophages (AM) from aged mice into the airway of young mice to show that inherent age-related defects in AM were sufficient to increase the susceptibility to Streptococcus pneumoniae, a Gram-positive bacterium and the leading cause of community-acquired pneumonia. MAPK phosphorylation arrays using AM lysates from young and aged wild-type (WT) and TNF knockout (KO) mice revealed multilevel TNF-mediated suppression of kinase activity in aged mice. RNAseq analyses of AM validated the suppression of MAPK signaling as a consequence of TNF during aging. Two regulatory phosphatases that suppress MAPK signaling, Dusp1 and Ptprs, were confirmed to be upregulated with age and as a result of TNF exposure both ex vivo and in vitro. Dusp1 is known to be responsible for glucocorticoid-mediated immune suppression, and dexamethasone treatment increased Dusp1 and Ptprs expression in cells and recapitulated the ADMD phenotype. In young mice, treatment with dexamethasone increased the levels of Dusp1 and Ptprs and their susceptibility to infection. TNF-neutralizing antibody reduced Dusp1 and Ptprs levels in AM from aged mice and reduced pneumonia severity following bacterial challenge. We conclude that chronic exposure to TNF increases the expression of the glucocorticoid-associated MAPK signaling suppressors, Dusp1 and Ptprs, which inhibits AM activation and increases susceptibility to bacterial pneumonia in older adults.


Subject(s)
Glucocorticoids , Macrophages, Alveolar , Tumor Necrosis Factor-alpha , Animals , Mice , Aging , Disease Susceptibility , Dual Specificity Phosphatase 1/metabolism , Dual Specificity Phosphatase 1/genetics , Glucocorticoids/pharmacology , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/immunology , Mice, Inbred C57BL , Mice, Knockout , Pneumonia/immunology , Streptococcus pneumoniae , Tumor Necrosis Factor-alpha/metabolism , Female
8.
Blood Adv ; 8(11): 2765-2776, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38531054

ABSTRACT

ABSTRACT: Elevated MAPK and the JAK-STAT signaling play pivotal roles in the pathogenesis of chronic neutrophilic leukemia and atypical chronic myeloid leukemia. Although inhibitors targeting these pathways effectively suppress the diseases, they fall short in providing enduring remission, largely attributed to the cytostatic nature of these drugs. Even combinations of these drugs are ineffective in achieving sustained remission. Enhanced MAPK signaling besides promoting proliferation and survival triggers a proapoptotic response. Consequently, malignancies reliant on elevated MAPK signaling use MAPK feedback regulators to intricately modulate the signaling output, prioritizing proliferation and survival while dampening the apoptotic stimuli. Herein, we demonstrate that enhanced MAPK signaling in granulocyte colony-stimulating factor 3 receptor (CSF3R)-driven leukemia upregulates the expression of dual specificity phosphatase 1 (DUSP1) to suppress the apoptotic stimuli crucial for leukemogenesis. Consequently, genetic deletion of Dusp1 in mice conferred synthetic lethality to CSF3R-induced leukemia. Mechanistically, DUSP1 depletion in leukemic context causes activation of JNK1/2 that results in induced expression of BIM and P53 while suppressing the expression of BCL2 that selectively triggers apoptotic response in leukemic cells. Pharmacological inhibition of DUSP1 by BCI (a DUSP1 inhibitor) alone lacked antileukemic activity due to ERK1/2 rebound caused by off-target inhibition of DUSP6. Consequently, a combination of BCI with a MEK inhibitor successfully cured CSF3R-induced leukemia in a preclinical mouse model. Our findings underscore the pivotal role of DUSP1 in leukemic transformation driven by enhanced MAPK signaling and advocate for the development of a selective DUSP1 inhibitor for curative treatment outcomes.


Subject(s)
Dual Specificity Phosphatase 1 , MAP Kinase Signaling System , Receptors, Colony-Stimulating Factor , Animals , Mice , Dual Specificity Phosphatase 1/metabolism , Dual Specificity Phosphatase 1/genetics , Humans , Receptors, Colony-Stimulating Factor/genetics , Receptors, Colony-Stimulating Factor/metabolism , MAP Kinase Signaling System/drug effects , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Mutation , Apoptosis , Leukemia/metabolism , Leukemia/genetics , Gene Expression Regulation, Leukemic
9.
J Clin Invest ; 134(10)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38512415

ABSTRACT

Fibrosis following tissue injury is distinguished from normal repair by the accumulation of pathogenic and apoptosis-resistant myofibroblasts (MFs), which arise primarily by differentiation from resident fibroblasts. Endogenous molecular brakes that promote MF dedifferentiation and clearance during spontaneous resolution of experimental lung fibrosis may provide insights that could inform and improve the treatment of progressive pulmonary fibrosis in patients. MAPK phosphatase 1 (MKP1) influences the cellular phenotype and fate through precise and timely regulation of MAPK activity within various cell types and tissues, yet its role in lung fibroblasts and pulmonary fibrosis has not been explored. Using gain- and loss-of-function studies, we found that MKP1 promoted lung MF dedifferentiation and restored the sensitivity of these cells to apoptosis - effects determined to be mainly dependent on MKP1's dephosphorylation of p38α MAPK (p38α). Fibroblast-specific deletion of MKP1 following peak bleomycin-induced lung fibrosis largely abrogated its subsequent spontaneous resolution. Such resolution was restored by treating these transgenic mice with the p38α inhibitor VX-702. We conclude that MKP1 is a critical antifibrotic brake whose inhibition of pathogenic p38α in lung fibroblasts is necessary for fibrosis resolution following lung injury.


Subject(s)
Dual Specificity Phosphatase 1 , Lung , Mitogen-Activated Protein Kinase 14 , Myofibroblasts , Pulmonary Fibrosis , Animals , Mice , Dual Specificity Phosphatase 1/metabolism , Dual Specificity Phosphatase 1/genetics , Myofibroblasts/pathology , Myofibroblasts/metabolism , Myofibroblasts/enzymology , Mitogen-Activated Protein Kinase 14/metabolism , Mitogen-Activated Protein Kinase 14/genetics , Mitogen-Activated Protein Kinase 14/antagonists & inhibitors , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/enzymology , Pulmonary Fibrosis/chemically induced , Lung/pathology , Lung/metabolism , Bleomycin/toxicity , Humans , Mice, Knockout , Mice, Transgenic , Apoptosis
10.
Cell Cycle ; 23(3): 279-293, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38445655

ABSTRACT

Studies indicate that mitogen-activated protein kinases (MAPKs) are activated and overexpressed in psoriatic lesions. The aim of the study was to assess changes in the expression pattern of genes encoding MAPKs and microRNA (miRNA) molecules potentially regulating their expression in human adult low-calcium high-temperature (HaCaT) keratinocytes exposed to bacterial lipopolysaccharide A (LPS) and cyclosporine A (CsA). HaCaT cells were treated with 1 µg/mL LPS for 8 h, followed by treatment with 100 ng/mL cyclosporine A for 2, 8, or 24 h. Untreated cells served as controls. The molecular analysis consists of microarray, quantitative real-time polymerase chain reaction, and enzyme-linked immunosorbent assay analyses. The statistical analysis of the obtained results was performed using Transcriptome Analysis Console and STATISTICA 13.5 PL with the statistical significance threshold of p < 0.05. Changes in the expression profile of six mRNAs: dual-specificity phosphatase 1 (DUSP1), dual-specificity phosphatase 4 (DUSP4), mitogen-activated protein kinase kinase 2 (MAP2K2), mitogen-activated protein kinase kinase 7 (MAP2K7), mitogen-activated protein kinase kinase kinase 2 (MAP3K2) and mitogen-activated protein kinase 9 (MAPK9) in cell culture exposed to LPS or LPS and the drug compared to the control. We observed that under the LPS and cyclosporine treatment, the expression o/ miR-34a, miR-1275, miR-3188, and miR-382 changed significantly (p < 0.05). We demonstrated a potential relationship between DUSP1 and miR-34a; DUSP4 and miR-34a, miR-382, and miR-3188; MAPK9 and miR-1275, MAP2K7 and mir-200-5p; MAP3K2 and mir-200-5p, which may be the subject of further research in the context of psoriasis.


Subject(s)
Cyclosporine , Lipopolysaccharides , MicroRNAs , Mitogen-Activated Protein Kinases , Humans , Cyclosporine/pharmacology , MicroRNAs/genetics , MicroRNAs/metabolism , Lipopolysaccharides/pharmacology , Mitogen-Activated Protein Kinases/metabolism , Mitogen-Activated Protein Kinases/genetics , Dual-Specificity Phosphatases/genetics , Dual-Specificity Phosphatases/metabolism , Keratinocytes/metabolism , Keratinocytes/drug effects , Dual Specificity Phosphatase 1/metabolism , Dual Specificity Phosphatase 1/genetics , Gene Expression Profiling , Mitogen-Activated Protein Kinase Phosphatases/genetics , Mitogen-Activated Protein Kinase Phosphatases/metabolism , Transcriptome/drug effects , Transcriptome/genetics , HaCaT Cells , Cell Line , Gene Expression Regulation/drug effects , Psoriasis/genetics , Psoriasis/drug therapy
11.
Plant Biotechnol J ; 22(7): 1929-1941, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38366355

ABSTRACT

Plants have evolved a sophisticated immunity system for specific detection of pathogens and rapid induction of measured defences. Over- or constitutive activation of defences would negatively affect plant growth and development. Hence, the plant immune system is under tight positive and negative regulation. MAP kinase phosphatase1 (MKP1) has been identified as a negative regulator of plant immunity in model plant Arabidopsis. However, the molecular mechanisms by which MKP1 regulates immune signalling in wheat (Triticum aestivum) are poorly understood. In this study, we investigated the role of TaMKP1 in wheat defence against two devastating fungal pathogens and determined its subcellular localization. We demonstrated that knock-down of TaMKP1 by CRISPR/Cas9 in wheat resulted in enhanced resistance to rust caused by Puccinia striiformis f. sp. tritici (Pst) and powdery mildew caused by Blumeria graminis f. sp. tritici (Bgt), indicating that TaMKP1 negatively regulates disease resistance in wheat. Unexpectedly, while Tamkp1 mutant plants showed increased resistance to the two tested fungal pathogens they also had higher yield compared with wild-type control plants without infection. Our results suggested that TaMKP1 interacts directly with dephosphorylated and activated TaMPK3/4/6, and TaMPK4 interacts directly with TaPAL. Taken together, we demonstrated TaMKP1 exert negative modulating roles in the activation of TaMPK3/4/6, which are required for MAPK-mediated defence signalling. This facilitates our understanding of the important roles of MAP kinase phosphatases and MAPK cascades in plant immunity and production, and provides germplasm resources for breeding for high resistance and high yield.


Subject(s)
CRISPR-Cas Systems , Disease Resistance , Plant Diseases , Plant Immunity , Triticum , Triticum/genetics , Triticum/microbiology , Triticum/immunology , Plant Diseases/microbiology , Plant Diseases/immunology , Plant Diseases/genetics , Plant Immunity/genetics , Disease Resistance/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Ascomycota/physiology , Mutagenesis , Dual Specificity Phosphatase 1/genetics , Dual Specificity Phosphatase 1/metabolism , Mitogen-Activated Protein Kinase Phosphatases/genetics , Mitogen-Activated Protein Kinase Phosphatases/metabolism , Puccinia/physiology , Plants, Genetically Modified
12.
Int J Med Sci ; 21(3): 547-561, 2024.
Article in English | MEDLINE | ID: mdl-38322592

ABSTRACT

Type-3 cardiorenal syndrome (CRS-3) is acute kidney injury followed by cardiac injury/dysfunction. Mitochondrial injury may impair myocardial function during CRS-3. Since dual-specificity phosphatase 1 (DUSP1) and prohibitin 2 (PHB2) both promote cardiac mitochondrial quality control, we assessed whether these proteins were dysregulated during CRS-3-related cardiac depression. We found that DUSP1 was downregulated in heart tissues from a mouse model of CRS-3. DUSP1 transgenic (DUSP1Tg) mice were protected from CRS-3-induced myocardial damage, as evidenced by their improved heart function and myocardial structure. CRS-3 induced the inflammatory response, oxidative stress and mitochondrial dysfunction in wild-type hearts, but not in DUSP1Tg hearts. DUSP1 overexpression normalized cardiac mitochondrial quality control during CRS-3 by suppressing mitochondrial fission, restoring mitochondrial fusion, re-activating mitophagy and augmenting mitochondrial biogenesis. We found that DUSP1 sustained cardiac mitochondrial quality control by binding directly to PHB2 and maintaining PHB2 phosphorylation, while CRS-3 disrupted this physiological interaction. Transgenic knock-in mice carrying the Phb2S91D variant were less susceptible to cardiac depression upon CRS-3, due to a reduced inflammatory response, suppressed oxidative stress and improved mitochondrial quality control in their heart tissues. Thus, CRS-3-induced myocardial dysfunction can be attributed to reduced DUSP1 expression and disrupted DUSP1/PHB2 binding, leading to defective cardiac mitochondrial quality control.


Subject(s)
Cardio-Renal Syndrome , Dual Specificity Phosphatase 1 , Prohibitins , Animals , Mice , Cardio-Renal Syndrome/metabolism , Heart , Mice, Transgenic , Myocardium/metabolism , Prohibitins/metabolism , Dual Specificity Phosphatase 1/metabolism , Mitochondria
13.
Zhongguo Fei Ai Za Zhi ; 26(12): 881-888, 2024 Jan 02.
Article in Chinese | MEDLINE | ID: mdl-38163975

ABSTRACT

BACKGROUND: Drug resistance is the main cause of high mortality of lung cancer. This study was conducted to investigate the effect of folic acid (FA) on the resistance of non-small cell lung cancer (NSCLC) cells to Osimertinib (OSM) by regulating the methylation of dual specificity phosphatase 1 (DUSP1). METHODS: The OSM resistant NSCLC cell line PC9R was establishd by gradually escalation of OSM concentration in PC9 cells. PC9R cells were randomly grouped into Control group, OSM group (5 µmol/L OSM), FA group (600 nmol/L FA), methylation inhibitor decitabine (DAC) group (10 µmol/L DAC), FA+OSM group (600 nmol/L FA+5 µmol/L OSM), and FA+OSM+DAC group (600 nmol/L FA+5 µmol/L OSM+10 µmol/L DAC). CCK-8 method was applied to detect cell proliferation ability. Scratch test was applied to test the ability of cell migration. Transwell assay was applied to detect cell invasion ability. Flow cytometry was applied to measure and analyze the apoptosis rate of cells in each group. Real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) method was applied to detect the expression level of DUSP1 mRNA in cells. Methylation specific PCR (MSP) was applied to detect the methylation status of the DUSP1 promoter region in each group. Western blot was applied to analyze the expression levels of DUSP1 protein and key proteins in the DUSP1 downstream mitogen-activated protein kinase (MAPK) signaling pathway in each group. RESULTS: Compared with the Control group, the cell OD450 values (48 h, 72 h), scratch healing rate, number of cell invasions, and expression of DUSP1 in the OSM group were obviously decreased (P<0.05); the apoptosis rate, the methylation level of DUSP1, the expression of p38 MAPK protein, and the phosphorylation level of extracellular regulated protein kinases (ERK) were obviously increased (P<0.05); the cell OD450 values (48, 72 h), scratch healing rate, number of cell invasions, and expression of DUSP1 in the DAC group were obviously increased (P<0.05); the apoptosis rate, the expression of p38 MAPK protein, the phosphorylation level of ERK, and the methylation level of DUSP1 were obviously reduced (P<0.05). Compared with the OSM group, the cell OD450 values (48, 72 h), scratch healing rate, number of cell invasions, and expression of DUSP1 in the FA+OSM group were obviously decreased (P<0.05); the apoptosis rate, the methylation level of DUSP1, the expression of p38 MAPK protein, and the phosphorylation level of ERK were obviously increased (P<0.05). Compared with the FA+OSM group, the cell OD450 values (48, 72 h), scratch healing rate, number of cell invasions, and expression of DUSP1 in the FA+OSM+DAC group were obviously increased; the apoptosis rate, the methylation level of DUSP1, the expression of p38 MAPK protein, and the phosphorylation level of ERK were obviously reduced (P<0.05). CONCLUSIONS: FA may inhibit DUSP1 expression by enhancing DUSP1 methylation, regulate downstream MAPK signal pathway, then promote apoptosis, inhibit cell invasion and metastasis, and ultimately reduce OSM resistance in NSCLC cells.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Dual Specificity Phosphatase 1/genetics , Dual Specificity Phosphatase 1/metabolism , Dual Specificity Phosphatase 1/pharmacology , Cell Proliferation , p38 Mitogen-Activated Protein Kinases/metabolism , p38 Mitogen-Activated Protein Kinases/pharmacology , Methylation , Apoptosis , Cell Line, Tumor
14.
Int J Mol Sci ; 24(24)2023 Dec 16.
Article in English | MEDLINE | ID: mdl-38139370

ABSTRACT

The regulation of protein kinases by dephosphorylation is a key mechanism that defines the activity of immune cells. A balanced process of the phosphorylation/dephosphorylation of key protein kinases by dual-specificity phosphatases is required for the realization of the antitumor immune response. The family of dual-specificity phosphatases is represented by several isoforms found in both resting and activated macrophages. The main substrate of dual-specificity phosphatases are three components of mitogen-activated kinase signaling cascades: the extracellular signal-regulated kinase ERK1/2, p38, and Janus kinase family. The results of the study of model tumor-associated macrophages supported the assumption of the crucial role of dual-specificity phosphatases in the formation and determination of the outcome of the immune response against tumor cells through the selective suppression of mitogen-activated kinase signaling cascades. Since mitogen-activated kinases mostly activate the production of pro-inflammatory mediators and the antitumor function of macrophages, the excess activity of dual-specificity phosphatases suppresses the ability of tumor-associated macrophages to activate the antitumor immune response. Nowadays, the fundamental research in tumor immunology is focused on the search for novel molecular targets to activate the antitumor immune response. However, to date, dual-specificity phosphatases received limited discussion as key targets of the immune system to activate the antitumor immune response. This review discusses the importance of dual-specificity phosphatases as key regulators of the tumor-associated macrophage function.


Subject(s)
Dual-Specificity Phosphatases , Mitogen-Activated Protein Kinases , Dual-Specificity Phosphatases/metabolism , Mitogen-Activated Protein Kinases/metabolism , Phosphoprotein Phosphatases/metabolism , Tumor-Associated Macrophages/metabolism , Protein Tyrosine Phosphatases/metabolism , Mitogens , Phosphorylation , Protein Kinases/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Dual Specificity Phosphatase 1/metabolism
15.
Cell Death Dis ; 14(11): 724, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37935658

ABSTRACT

The mechanism underlying acute kidney injury (AKI) and AKI-to-Chronic kidney disease (CKD) transition remains unclear, but mitochondrial dysfunction may be a key driving factor. Literature reports suggest that dual-specificity phosphatase 1 (DUSP1) plays a critical role in maintaining mitochondrial function and structural integrity. In this study, ischemic Acute Kidney Injury (AKI) and post-ischemic fibrosis models were established by clamping the renal pedicle with different reperfusion times. To investigate the role of DUSP1, constitutional Dusp1 knockout mice and tubular-specific Sting knockout mice were used. Mitochondrial damage was assessed through electron microscopy observation, measurements of mitochondrial membrane potential, mtDNA release, and BAX translocation. We found that Dusp1 expression was significantly upregulated in human transplant kidney tissue and mouse AKI tissue. Dusp1 gene deletion exacerbated acute ischemic injury, post-ischemic renal fibrosis, and tubular mitochondrial dysfunction in mice. Mechanistically, DUSP1 could directly bind to JNK, and DUSP1 deficiency could lead to aberrant phosphorylation of JNK and BAX mitochondria translocation. BAX translocation promoted mitochondrial DNA (mtDNA) leakage and activated the cGAS-STING pathway. Inhibition of JNK or BAX could inhibit mtDNA leakage. Furthermore, STING knockout or JNK inhibition could significantly mitigate the adverse effects of DUSP1 deficiency in ischemic AKI model. Collectively, our findings suggest that DUSP1 is a regulator for the protective response during AKI. DUSP1 protects against AKI by preventing BAX-induced mtDNA leakage and blocking excessive activation of the cGAS-STING signaling axis through JNK dephosphorylation.


Subject(s)
Acute Kidney Injury , Reperfusion Injury , Animals , Humans , Mice , Acute Kidney Injury/metabolism , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Dual Specificity Phosphatase 1/genetics , Dual Specificity Phosphatase 1/metabolism , Kidney/metabolism , Mice, Knockout , Mitochondria/metabolism , Nucleotidyltransferases/metabolism , Reperfusion Injury/genetics , Reperfusion Injury/metabolism
16.
Technol Cancer Res Treat ; 22: 15330338231207765, 2023.
Article in English | MEDLINE | ID: mdl-37872685

ABSTRACT

Objectives: Dual specificity phosphatase 1 (DUSP1) is high-expressed in various cancers and plays an important role in the cellular response to agents that damage DNA. We aimed to investigate the expressions and mechanisms of DUSP1 signaling pathway regulating cytarabine (Ara-C) resistance in acute myeloid leukemia (AML). Methods: Immunohistochemistry was performed on bone marrow biopsy specimens from AML and controls to explore the expression of DUSP1. Western blot and Q-PCR were used to detect the protein and mRNA expression levels. MTT assay was used to detect the proliferation of cells. Cell apoptosis was detected by flow cytometry. The immune protein-protein interaction (PPI) network of DUSP1 was analyzed in the platform of Pathway Commons, and immune infiltration analysis was used to study the immune microenvironment of AML. Results: We found that the expression levels of DUSP1 in AML patients exceeded that in controls. Survival analysis in public datasets showed that AML patients with higher levels of DUSP1 had poor clinical outcomes. Further public data analysis indicated that DUSP1 was overexpressed in NRAS mutated AML. DUSP1 knockdown by siRNA could sensitize AML cells to Ara-C treatments. The phosphorylation level of mitogen-activated protein kinase (MAPK) pathway was significantly elevated in DUSP1 down-regulated NRAS G13D mutated AML cells. The PPI analysis showed DUSP1 correlated with immune gene CREB1 and CXCL8 in NRAS mutated AML. We also revealed a correlation between tumor-infiltrating immune cells in RAS mutated AML microenvironment. Conclusion: Our findings suggest that DUSP1 signaling pathways may regulate Ara-C sensitivity in AML.


Subject(s)
Cytarabine , Leukemia, Myeloid, Acute , Humans , Cytarabine/pharmacology , Cytarabine/therapeutic use , Dual Specificity Phosphatase 1/genetics , Dual Specificity Phosphatase 1/metabolism , Dual Specificity Phosphatase 1/pharmacology , Antimetabolites, Antineoplastic/pharmacology , Antimetabolites, Antineoplastic/therapeutic use , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Signal Transduction , Apoptosis/genetics , Tumor Microenvironment
17.
Chin J Physiol ; 66(4): 284-293, 2023.
Article in English | MEDLINE | ID: mdl-37635488

ABSTRACT

Osteoarthritis (OA) is a form of chronic degenerative disease contributing to elevated disability rate among the elderly. Genkwanin is an active component extracted from Daphne genkwa possessing pharmacologic effects. Here, this study is designed to expound the specific role of genkwanin in OA and elaborate the probable downstream mechanism. First, the viability of chondrocytes in the presence or absence of interleukin-1 beta (IL-1ß) treatment was detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay was used to assess cell apoptosis. Inflammatory response was estimated through enzyme-linked immunosorbent assay and Western blot. In addition, immunofluorescence staining and Western blot were utilized to measure the expression of extracellular matrix (ECM)-associated proteins. Dual-specificity protein phosphatase-1 (DUSP1) expression was tested by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blot. Following DUSP1 elevation in genkwanin-treated chondrocytes exposed to IL-1ß, inflammatory response and ECM-associated factors were evaluated as forementioned. In addition, 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolocarbocyanine iodide staining was to assess the mitochondrial membrane potential. Adenosine triphosphate (ATP) level was examined with ATP assay kit, and RT-qPCR was used to test mitochondrial DNA expression. Results indicated that genkwanin administration enhanced the viability while ameliorated the apoptosis, inflammatory response, and ECM degradation in IL-1ß-induced chondrocytes. Besides, genkwanin treatment fortified DUSP1 expression in IL-1ß-exposed chondrocytes. DUSP1 interference further offsets the impacts of genkwanin on the inflammation, ECM degradation, and mitochondrial dysfunction in IL-1ß-challenged chondrocytes. In short, genkwanin enhanced DUSP1 expression to mitigate mitochondrial dysfunction, thus ameliorating IL-1ß-elicited inflammation, apoptosis, and degradation of ECM in chondrocytes.


Subject(s)
MicroRNAs , Osteoarthritis , Humans , Aged , Chondrocytes/metabolism , Interleukin-1beta/pharmacology , Interleukin-1beta/metabolism , Inflammation/drug therapy , Extracellular Matrix/metabolism , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Apoptosis , Mitochondria , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/pharmacology , Adenosine Triphosphate/therapeutic use , MicroRNAs/genetics , Dual Specificity Phosphatase 1/metabolism , Dual Specificity Phosphatase 1/pharmacology
18.
Int Immunopharmacol ; 123: 110701, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37531825

ABSTRACT

Angiopoietin-like protein 2 (ANGPTL2) was implicated in various cardiovascular diseases; however, its role in lipopolysaccharide (LPS)-related septic cardiomyopathy remains unclear. Herein, mice were exposed to LPS to generate septic cardiomyopathy, and adeno-associated viral vector was employed to overexpress ANGPTL2 in the myocardium. Besides, mice were treated with adenoviral vector to knock down ANGPTL2 in hearts. ANGPTL2 expressions in hearts and cardiomyocytes were upregulated by LPS challenge. ANGPTL2 overexpression aggravated, while ANGPTL2 silence ameliorated LPS-associated cardiac impairment and inflammation. Mechanically, we found that ANGPTL2 activated NLRP3 inflammasome via suppressing DUSP1 signaling, and NLRP3 knockdown abrogated the detrimental role of ANGPTL2 in aggravating LPS-induced cardiac inflammation. Furthermore, DUSP1 overexpression significantly inhibited ANGPTL2-mediated NLRP3 activation, and subsequently improved LPS-related cardiac dysfunction. In summary, ANGPTL2 exacerbated septic cardiomyopathy via activating NLRP3-mediated inflammation in a DUSP1-dependent manner, and our study uncovered a promising therapeutic target in preventing septic cardiomyopathy.


Subject(s)
Angiopoietin-Like Protein 2 , Cardiomyopathies , Inflammasomes , Animals , Mice , Cardiomyopathies/metabolism , Inflammasomes/metabolism , Inflammation/metabolism , Lipopolysaccharides/metabolism , Myocytes, Cardiac/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Dual Specificity Phosphatase 1/metabolism
19.
Cell Mol Life Sci ; 80(8): 213, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37464072

ABSTRACT

Dual specificity phosphatase 1 (DUSP1) and valosin-containing protein (VCP) have both been reported to regulate mitochondrial homeostasis. However, their impact on mitochondrial quality control (MQC) and myocardial function during LPS-induced endotoxemia remains unclear. We addressed this issue by modeling LPS-induced endotoxemia in DUSP1 transgenic (DUSP1TG) mice and in cultured DUSP1-overexpressing HL-1 cardiomyocytes. Accompanying characteristic structural and functional deficits, cardiac DUSP1 expression was significantly downregulated following endotoxemia induction in wild type mice. In contrast, markedly reduced myocardial inflammation, cardiomyocyte apoptosis, cardiac structural disorder, cardiac injury marker levels, and normalized systolic/diastolic function were observed in DUSP1TG mice. Furthermore, DUSP1 overexpression in HL-1 cells significantly attenuated LPS-mediated mitochondrial dysfunction by preserving MQC, as indicated by normalized mitochondrial dynamics, improved mitophagy, enhanced biogenesis, and attenuated mitochondrial unfolded protein response. Molecular assays showed that VCP was a substrate of DUSP1 and the interaction between DUSP1 and VCP primarily occurred on the mitochondria. Mechanistically, DUSP1 phosphatase domain promoted the physiological DUSP1/VCP interaction which prevented LPS-mediated VCP Ser784 phosphorylation. Accordingly, transfection with a phosphomimetic VCP mutant abolished the protective actions of DUSP1 on MQC and aggravated inflammation, apoptosis, and contractility/relaxation capacity in HL-1 cardiomyocytes. These findings support the involvement of the novel DUSP1/VCP/MQC pathway in the pathogenesis of endotoxemia-caused myocardial dysfunction.


Subject(s)
Cardiomyopathies , Endotoxemia , Animals , Mice , Cardiomyopathies/metabolism , Dual Specificity Phosphatase 1/genetics , Dual Specificity Phosphatase 1/metabolism , Endotoxemia/chemically induced , Endotoxemia/genetics , Endotoxemia/complications , Lipopolysaccharides/metabolism , Mitochondria/metabolism , Myocytes, Cardiac/metabolism , Valosin Containing Protein/genetics , Valosin Containing Protein/metabolism
20.
Sci Rep ; 13(1): 9985, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37340011

ABSTRACT

The forced swim test (FST) is widely used to screen for potential antidepressant drugs and treatments. Despite this, the nature of stillness during FST and whether it resembles "depressive-like behavior" are widely debated issues. Furthermore, despite being widely used as a behavioral assay, the effects of the FST on the brain transcriptome are rarely investigated. Therefore, in this study we have investigated changes in the transcriptome of the rat hippocampus 20 min and 24 h after FST exposure. RNA-Seq is performed on the hippocampus tissues of rats 20 min and 24 h after an FST. Differentially expressed genes (DEGs) were identified using limma and used to construct gene interaction networks. Fourteen differentially expressed genes (DEGs) were identified only in the 20-m group. No DEGs were identified 24 h after the FST. These genes were used for Gene Ontology term enrichment and gene-network construction. Based on the constructed gene-interaction networks, we identified a group of DEGs (Dusp1, Fos, Klf2, Ccn1, and Zfp36) that appeared significant based on multiple methods of downstream analysis. Dusp1 appears especially important, as its role in the pathogenesis of depression has been demonstrated both in various animal models of depression and in patients with depressive disorders.


Subject(s)
Antidepressive Agents , Brain , Rats , Animals , Antidepressive Agents/pharmacology , Brain/metabolism , Swimming/physiology , Hippocampus/metabolism , Depression/genetics , Depression/metabolism , Dual Specificity Phosphatase 1/genetics , Dual Specificity Phosphatase 1/metabolism , Kruppel-Like Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...