Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 115
Filter
1.
Trends Pharmacol Sci ; 45(8): 671-677, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39043501

ABSTRACT

Numerous non-cardiovascular drugs have a potential to induce life-threatening torsades de pointes (TdP) ventricular cardiac arrhythmias by blocking human ether-à-go-go-related gene (hERG) currents via binding to the channel's inner cavity. Identification of the hERG current-inhibiting properties of candidate drugs is performed focusing on binding sites in the channel pore. It has been suggested that biologicals have a low likelihood of hERG current inhibition, since their poor diffusion across the plasma membrane prevents them from reaching the binding site in the channel pore. However, biologicals could influence hERG channel function by binding to 'unconventional' noncanonical binding sites. This Opinion gives an overview on noncanonical blockers of hERG channels that might be of relevance for the assessment of the possible torsadogenic potential of macromolecular therapeutics.


Subject(s)
Potassium Channel Blockers , Humans , Animals , Potassium Channel Blockers/pharmacology , Macromolecular Substances/metabolism , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Ether-A-Go-Go Potassium Channels/metabolism , Torsades de Pointes/metabolism , Torsades de Pointes/chemically induced , Binding Sites , ERG1 Potassium Channel/antagonists & inhibitors , ERG1 Potassium Channel/metabolism
2.
J Pharmacol Toxicol Methods ; 128: 107527, 2024.
Article in English | MEDLINE | ID: mdl-38852685

ABSTRACT

INTRODUCTION: Cardiovascular safety and the risk of developing the potentially fatal ventricular tachyarrhythmia, Torsades de Pointes (TdP), have long been major concerns of drug development. TdP is associated with a delayed ventricular repolarization represented by QT interval prolongation in the electrocardiogram (ECG), typically due to block of the potassium channel encoded by the human ether-a-go-go related gene (hERG). Importantly however, not all drugs that prolong the QT interval are torsadagenic and not all hERG blockers prolong the QT interval. Recent clinical reports suggest that partitioning the QT interval into early (J to T peak; JTp) and late repolarization (T peak to T end; TpTe) components may be valuable for distinguishing low-risk mixed ion channel blockers (hERG plus calcium and/or late sodium currents) from high-risk pure hERG channel blockers. This strategy, if true for nonclinical animal models, could be used to de-risk QT prolonging compounds earlier in the drug development process. METHODS: To explore this, we investigated JTp and TpTe in ECG data collected from telemetered dogs and/or monkeys administered moxifloxacin or amiodarone at doses targeting relevant clinical exposures. An optimized placement of the Tpeak fiducial mark was utilized, and all intervals were corrected for heart rate (QTc, JTpc, TpTec). RESULTS: Increases in QTc and JTpc intervals with administration of the pure hERG blocker moxifloxacin and an initial QTc and JTpc shortening followed by prolongation with the mixed ion channel blocker amiodarone were detected as expected, aligning with clinical data. However, anticipated increases in TpTec by both standard agents were not detected. DISCUSSION: The inability to detect changes in TpTec reduces the utility of these subintervals for prediction of arrhythmias using continuous single­lead ECGs collected from freely moving dogs and monkeys.


Subject(s)
Amiodarone , Electrocardiography , Long QT Syndrome , Moxifloxacin , Torsades de Pointes , Animals , Moxifloxacin/administration & dosage , Moxifloxacin/pharmacology , Dogs , Amiodarone/administration & dosage , Amiodarone/pharmacology , Electrocardiography/drug effects , Electrocardiography/methods , Torsades de Pointes/chemically induced , Long QT Syndrome/chemically induced , Long QT Syndrome/physiopathology , Male , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Ether-A-Go-Go Potassium Channels/metabolism , Female , Macaca fascicularis , Fluoroquinolones/administration & dosage , Fluoroquinolones/pharmacology , Heart Rate/drug effects , Potassium Channel Blockers/administration & dosage , Potassium Channel Blockers/pharmacology , ERG1 Potassium Channel/antagonists & inhibitors , ERG1 Potassium Channel/metabolism
3.
J Pharmacol Toxicol Methods ; 128: 107524, 2024.
Article in English | MEDLINE | ID: mdl-38852689

ABSTRACT

BACKGROUND: Determination of a drug's potency in blocking the hERG channel is an established safety pharmacology study. Best practice guidelines have been published for reliable assessment of hERG potency. In addition, a set of plasma concentration and plasma protein binding fraction data were provided as denominators for margin calculations. The aims of the current analysis were five-fold: provide data allowing creation of consistent denominators for the hERG margin distributions of the key reference agents, explore the variation in hERG margins within and across laboratories, provide a hERG margin to 10 ms QTc prolongation based on several newer studies, provide information to use these analyses for reference purposes, and provide recommended hERG margin 'cut-off' values. METHODS: The analyses used 12 hERG IC50 'best practice' data sets (for the 3 reference agents). A group of 5 data sets came from a single laboratory. The other 7 data sets were collected by 6 different laboratories. RESULTS: The denominator exposure distributions were consistent with the ICH E14/S7B Training Materials. The inter-occasion and inter-laboratory variability in hERG IC50 values were comparable. Inter-drug differences were most important in determining the pooled margin variability. The combined data provided a robust hERG margin reference based on best practice guidelines and consistent exposure denominators. The sensitivity of hERG margin thresholds were consistent with the sensitivity described over the course of the last two decades. CONCLUSION: The current data provide further insight into the sensitivity of the 30-fold hERG margin 'cut-off' used for two decades. Using similar hERG assessments and these analyses, a future researcher can use a hERG margin threshold to support a negative QTc integrated risk assessment.


Subject(s)
Ether-A-Go-Go Potassium Channels , Long QT Syndrome , Humans , Risk Assessment/methods , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Long QT Syndrome/chemically induced , ERG1 Potassium Channel/antagonists & inhibitors , ERG1 Potassium Channel/metabolism , Laboratories/standards , Animals , Potassium Channel Blockers/pharmacology , Potassium Channel Blockers/adverse effects , Inhibitory Concentration 50
4.
Circulation ; 150(7): 531-543, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-38939955

ABSTRACT

BACKGROUND: Despite major advances in the clinical management of long QT syndrome, some patients are not fully protected by beta-blocker therapy. Mexiletine is a well-known sodium channel blocker, with proven efficacy in patients with sodium channel-mediated long QT syndrome type 3. Our aim was to evaluate the efficacy of mexiletine in long QT syndrome type 2 (LQT2) using cardiomyocytes derived from patient-specific human induced pluripotent stem cells, a transgenic LQT2 rabbit model, and patients with LQT2. METHODS: Heart rate-corrected field potential duration, a surrogate for QTc, was measured in human induced pluripotent stem cells from 2 patients with LQT2 (KCNH2-p.A561V, KCNH2-p.R366X) before and after mexiletine using a multiwell multi-electrode array system. Action potential duration at 90% repolarization (APD90) was evaluated in cardiomyocytes isolated from transgenic LQT2 rabbits (KCNH2-p.G628S) at baseline and after mexiletine application. Mexiletine was given to 96 patients with LQT2. Patients were defined as responders in the presence of a QTc shortening ≥40 ms. Antiarrhythmic efficacy of mexiletine was evaluated by a Poisson regression model. RESULTS: After acute treatment with mexiletine, human induced pluripotent stem cells from both patients with LQT2 showed a significant shortening of heart rate-corrected field potential duration compared with dimethyl sulfoxide control. In cardiomyocytes isolated from LQT2 rabbits, acute mexiletine significantly shortened APD90 by 113 ms, indicating a strong mexiletine-mediated shortening across different LQT2 model systems. Mexiletine was given to 96 patients with LQT2 either chronically (n=60) or after the acute oral drug test (n=36): 65% of the patients taking mexiletine only chronically and 75% of the patients who performed the acute oral test were responders. There was a significant correlation between basal QTc and ∆QTc during the test (r= -0.8; P<0.001). The oral drug test correctly predicted long-term effect in 93% of the patients. Mexiletine reduced the mean yearly event rate from 0.10 (95% CI, 0.07-0.14) to 0.04 (95% CI, 0.02-0.08), with an incidence rate ratio of 0.40 (95% CI, 0.16-0.84), reflecting a 60% reduction in the event rate (P=0.01). CONCLUSIONS: Mexiletine significantly shortens cardiac repolarization in LQT2 human induced pluripotent stem cells, in the LQT2 rabbit model, and in the majority of patients with LQT2. Furthermore, mexiletine showed antiarrhythmic efficacy. Mexiletine should therefore be considered a valid therapeutic option to be added to conventional therapies in higher-risk patients with LQT2.


Subject(s)
Animals, Genetically Modified , Induced Pluripotent Stem Cells , Long QT Syndrome , Mexiletine , Myocytes, Cardiac , Mexiletine/pharmacology , Mexiletine/therapeutic use , Animals , Humans , Rabbits , Myocytes, Cardiac/drug effects , Long QT Syndrome/drug therapy , Long QT Syndrome/physiopathology , Long QT Syndrome/genetics , Induced Pluripotent Stem Cells/drug effects , Male , Female , Adult , Action Potentials/drug effects , Anti-Arrhythmia Agents/pharmacology , Anti-Arrhythmia Agents/therapeutic use , Adolescent , Middle Aged , Young Adult , ERG1 Potassium Channel/genetics , ERG1 Potassium Channel/antagonists & inhibitors , ERG1 Potassium Channel/metabolism , Heart Rate/drug effects , Disease Models, Animal , Child , Treatment Outcome
5.
Comput Methods Programs Biomed ; 254: 108293, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38936153

ABSTRACT

BACKGROUND AND OBJECTIVE: Assessment of drug cardiotoxicity is critical in the development of new compounds and modeling of drug-binding dynamics to hERG can improve early cardiotoxicity assessment. We previously developed a methodology to generate Markovian models reproducing preferential state-dependent binding properties, trapping dynamics and the onset of IKr block using simple voltage clamp protocols. Here, we test this methodology with real IKr blockers and investigate the impact of drug dynamics on action potential prolongation. METHODS: Experiments were performed on HEK cells stably transfected with hERG and using the Nanion SyncroPatch 384i. Three protocols, P-80, P0 and P 40, were applied to obtain the experimental data from the drugs and the Markovian models were generated using our pipeline. The corresponding static models were also generated and a modified version of the O´Hara-Rudy action potential model was used to simulate the action potential duration. RESULTS: The experimental Hill plots and the onset of IKr block of ten compounds were obtained using our voltage clamp protocols and the models generated successfully mimicked these experimental data, unlike the CiPA dynamic models. Marked differences in APD prolongation were observed when drug effects were simulated using the dynamic models and the static models. CONCLUSIONS: These new dynamic models of ten well-known IKr blockers constitute a validation of our methodology to model dynamic drug-hERG channel interactions and highlight the importance of state-dependent binding, trapping dynamics and the time-course of IKr block to assess drug effects even at the steady-state.


Subject(s)
Action Potentials , Humans , Action Potentials/drug effects , HEK293 Cells , ERG1 Potassium Channel/metabolism , ERG1 Potassium Channel/antagonists & inhibitors , Patch-Clamp Techniques , Protein Binding , Potassium Channel Blockers/pharmacology
6.
Lab Chip ; 24(12): 3183-3190, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38828904

ABSTRACT

hERG channel screening has been achieved based on electrical impedance tomography and extracellular voltage activation (EIT-EVA) to improve the non-invasive aspect of drug discovery. EIT-EVA screens hERG channels by considering the change in extracellular ion concentration which modifies the extracellular resistance in cell suspension. The rate of ion passing in cell suspension is calculated from the extracellular resistance Rex, which is obtained from the EIT measurement at a frequency of 500 kHz. In the experiment, non-invasive screening is applied by a novel integrated EIT-EVA printed circuit board (PCB) sensor to human embryonic kidney (HEK) 293 cells transfected with the human ether-a-go-go-related gene (hERG) ion channel, while the E-4031 antiarrhythmic drug is used for hERG channel inhibition. The extracellular resistance Rex of the HEK 293 cells suspension is measured by EIT as the hERG channels are activated by EVA over time. The Rex is reconstructed into extracellular conductivity distribution change Δσ to reflect the extracellular K+ ion concentration change Δc resulting from the activated hERG channel. Δc is increased rapidly during the hERG channel non-inhibition state while Δc is increased slower with increasing drug concentration cd. In order to evaluate the EIT-EVA system, the inhibitory ratio index (IR) was calculated based on the rate of Δc over time. Half-maximal inhibitory concentration (IC50) of 2.7 nM is obtained from the cd and IR dose-response relationship. The IR from EIT-EVA is compared with the results from the patch-clamp method, which gives R2 of 0.85. In conclusion, EIT-EVA is successfully applied to non-invasive hERG channel screening.


Subject(s)
Electric Impedance , Ether-A-Go-Go Potassium Channels , Humans , HEK293 Cells , Ether-A-Go-Go Potassium Channels/metabolism , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Tomography/instrumentation , ERG1 Potassium Channel/metabolism , ERG1 Potassium Channel/antagonists & inhibitors , Piperidines/pharmacology , Piperidines/chemistry , Pyridines/pharmacology , Pyridines/chemistry
7.
J Hazard Mater ; 474: 134724, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38805819

ABSTRACT

The cardiotoxic effects of various pollutants have been a growing concern in environmental and material science. These effects encompass arrhythmias, myocardial injury, cardiac insufficiency, and pericardial inflammation. Compounds such as organic solvents and air pollutants disrupt the potassium, sodium, and calcium ion channels cardiac cell membranes, leading to the dysregulation of cardiac function. However, current cardiotoxicity models have disadvantages of incomplete data, ion channels, interpretability issues, and inability of toxic structure visualization. Herein, an interpretable deep-learning model known as CardioDPi was developed, which is capable of discriminating cardiotoxicity induced by the human Ether-à-go-go-related gene (hERG) channel, sodium channel (Na_v1.5), and calcium channel (Ca_v1.5) blockade. External validation yielded promising area under the ROC curve (AUC) values of 0.89, 0.89, and 0.94 for the hERG, Na_v1.5, and Ca_v1.5 channels, respectively. The CardioDPi can be freely accessed on the web server CardioDPipredictor (http://cardiodpi.sapredictor.cn/). Furthermore, the structural characteristics of cardiotoxic compounds were analyzed and structural alerts (SAs) can be extracted using the user-friendly CardioDPi-SAdetector web service (http://cardiosa.sapredictor.cn/). CardioDPi is a valuable tool for identifying cardiotoxic chemicals that are environmental and health risks. Moreover, the SA system provides essential insights for mode-of-action studies concerning cardiotoxic compounds.


Subject(s)
Deep Learning , NAV1.5 Voltage-Gated Sodium Channel , Humans , NAV1.5 Voltage-Gated Sodium Channel/metabolism , NAV1.5 Voltage-Gated Sodium Channel/genetics , Cardiotoxicity/etiology , ERG1 Potassium Channel/metabolism , ERG1 Potassium Channel/antagonists & inhibitors , Calcium Channels, L-Type/metabolism , Calcium Channels, L-Type/drug effects , Calcium Channels, L-Type/chemistry , Cardiotoxins/toxicity , Cardiotoxins/chemistry
8.
J Med Chem ; 67(15): 12676-12694, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-38757601

ABSTRACT

Late sodium current (INa) inhibitors are a new subclass of antiarrhythmic agents. To overcome the drawbacks, e.g., low efficacy and inhibition effect on K+ current, of the FDA-approved late INa inhibitor ranolazine, chain amide 6a-6q, 1,4-disubstituted piperazin-2-ones 7a-7s, and their derivatives 8a-8n were successively designed, synthesized, and evaluated in vitro on the NaV1.5-transfected HEK293T cells by the whole-cell patch clamp recording assay at the concentration of 40 µM. Among the new skeleton compounds, 7d showed the highest efficacy (IC50 = 2.7 µM) and good selectivity (peak/late ratio >30 folds), as well as excellent pharmacokinetics properties in mice (T1/2 of 3.5 h, F = 90%, 3 mg/kg, po). It exhibited low hERG inhibition and was able to reverse the ATX-II-induced augmentation of late INa phenotype of LQT3 model in isolated rabbit hearts. These results suggest the application potentials of 7d in the treatments of arrhythmias related to the enhancement of late INa.


Subject(s)
Piperazines , Animals , Rabbits , HEK293 Cells , Humans , Piperazines/pharmacology , Piperazines/chemistry , Piperazines/chemical synthesis , Piperazines/pharmacokinetics , Anti-Arrhythmia Agents/pharmacology , Anti-Arrhythmia Agents/chemistry , Anti-Arrhythmia Agents/pharmacokinetics , Anti-Arrhythmia Agents/chemical synthesis , Sodium Channel Blockers/pharmacology , Sodium Channel Blockers/chemistry , Sodium Channel Blockers/chemical synthesis , Sodium Channel Blockers/pharmacokinetics , Mice , Long QT Syndrome/chemically induced , Structure-Activity Relationship , Male , NAV1.5 Voltage-Gated Sodium Channel/metabolism , Heart/drug effects , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Ether-A-Go-Go Potassium Channels/metabolism , ERG1 Potassium Channel/antagonists & inhibitors , ERG1 Potassium Channel/metabolism , Cardiac Conduction System Disease
9.
Toxicology ; 505: 153830, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754619

ABSTRACT

The use of tyrosine kinase inhibitors (TKIs) has resulted in significant occurrence of arrhythmias. However, the precise mechanism of the proarrhythmic effect is not fully understood. In this study, we found that nilotinib (NIL), vandetanib (VAN), and mobocertinib (MOB) induced the development of "cellrhythmia" (arrhythmia-like events) in a concentration-dependent manner in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Continuous administration of NIL, VAN, or MOB in animals significantly prolonged the action potential durations (APD) and increased susceptibility to arrhythmias. Using phosphoproteomic analysis, we identified proteins with altered phosphorylation levels after treatment with 3 µM NIL, VAN, and MOB for 1.5 h. Using these identified proteins as substrates, we performed kinase-substrate enrichment analysis to identify the kinases driving the changes in phosphorylation levels of these proteins. MAPK and WNK were both inhibited by NIL, VAN, and MOB. A selective inhibitor of WNK1, WNK-IN-11, induced concentration- and time-dependent cellrhythmias and prolonged field potential duration (FPD) in hiPSC-CMs in vitro; furthermore, administration in guinea pigs confirmed that WNK-IN-11 prolonged ventricular repolarization and increased susceptibility to arrhythmias. Fingding indicated that WNK1 inhibition had an in vivo and in vitro arrhythmogenic phenotype similar to TKIs. Additionally,three of TKIs reduced hERG and KCNQ1 expression at protein level, not at transcription level. Similarly, the knockdown of WNK1 decreased hERG and KCNQ1 protein expression in hiPSC-CMs. Collectively, our data suggest that the proarrhythmic effects of NIL, VAN, and MOB occur through a kinase inhibition mechanism. NIL, VAN, and MOB inhibit WNK1 kinase, leading to a decrease in hERG and KCNQ1 protein expression, thereby prolonging action potential repolarization and consequently cause arrhythmias.


Subject(s)
Action Potentials , Arrhythmias, Cardiac , Myocytes, Cardiac , Piperidines , Proteomics , Pyrimidines , Quinazolines , Humans , Arrhythmias, Cardiac/chemically induced , Animals , Proteomics/methods , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Piperidines/pharmacology , Piperidines/toxicity , Pyrimidines/toxicity , Pyrimidines/pharmacology , Quinazolines/toxicity , Quinazolines/pharmacology , Action Potentials/drug effects , Protein Kinase Inhibitors/toxicity , Protein Kinase Inhibitors/pharmacology , Phosphorylation , ERG1 Potassium Channel/metabolism , ERG1 Potassium Channel/antagonists & inhibitors , ERG1 Potassium Channel/genetics , Guinea Pigs , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , Male , KCNQ1 Potassium Channel/metabolism , KCNQ1 Potassium Channel/genetics , KCNQ1 Potassium Channel/drug effects , Phosphoproteins/metabolism , Dose-Response Relationship, Drug
10.
Naunyn Schmiedebergs Arch Pharmacol ; 397(7): 5093-5104, 2024 07.
Article in English | MEDLINE | ID: mdl-38224347

ABSTRACT

Cavutilide (niferidil, refralon) is a new class III antiarrhythmic drug which effectively terminates persistent atrial fibrillation (AF; 84.6% of patients, mean AF duration 3 months) and demonstrates low risk of torsade de pointes (1.7%). ERG channels of rapid delayed rectifier current(IKr) are the primary target of cavutilide, but the particular reasons of higher effectiveness and lower proarrhythmic risk in comparison with other class III IKr blockers are unclear. The inhibition of hERG channels expressed in CHO-K1 cells by cavutilide was studied using whole-cell patch-clamp. The present study demonstrates high sensitivity of IhERG expressed in CHO-K1 cells to cavutilide (IC50 = 12.8 nM). Similarly to methanesulfonanilide class III agents, but unlike amiodarone and related drugs, cavutilide does not bind to hERG channels in their resting state. However, in contrast to dofetilide, cavutilide binds not only to opened, but also to inactivated channels. Moreover, at positive constantly set membrane potential (+ 60 mV) inhibition of IhERG by 100 nM cavutilide develops faster than at 0 mV and, especially, - 30 mV (τ of inhibition was 78.8, 103, and 153 ms, respectively). Thereby, cavutilide produces IhERG inhibition only when the cell is depolarized. During the same period of time, cavutilide produces greater block of IhERG when the cell is depolarized with 2 Hz frequency, if compared to 0.2 Hz. We suggest that, during the limited time after injection, cavutilide produces stronger inhibition of IKr in fibrillating atrium than in non-fibrillating ventricle. This leads to beneficial combination of antiarrhythmic effectiveness and low proarrhythmicity of cavutilide.


Subject(s)
Anti-Arrhythmia Agents , Cricetulus , Anti-Arrhythmia Agents/pharmacology , CHO Cells , Animals , Humans , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Ether-A-Go-Go Potassium Channels/metabolism , Potassium Channel Blockers/pharmacology , Sulfonamides/pharmacology , Patch-Clamp Techniques , Phenethylamines/pharmacology , Cricetinae , ERG1 Potassium Channel/antagonists & inhibitors , ERG1 Potassium Channel/metabolism
11.
Sci China Life Sci ; 65(3): 529-539, 2022 03.
Article in English | MEDLINE | ID: mdl-34319533

ABSTRACT

Artificial intelligence (AI) models usually require large amounts of high-quality training data, which is in striking contrast to the situation of small and biased data faced by current drug discovery pipelines. The concept of federated learning has been proposed to utilize distributed data from different sources without leaking sensitive information of the data. This emerging decentralized machine learning paradigm is expected to dramatically improve the success rate of AI-powered drug discovery. Here, we simulated the federated learning process with different property and activity datasets from different sources, among which overlapping molecules with high or low biases exist in the recorded values. Beyond the benefit of gaining more data, we also demonstrated that federated training has a regularization effect superior to centralized training on the pooled datasets with high biases. Moreover, different network architectures for clients and aggregation algorithms for coordinators have been compared on the performance of federated learning, where personalized federated learning shows promising results. Our work demonstrates the applicability of federated learning in predicting drug-related properties and highlights its promising role in addressing the small and biased data dilemma in drug discovery.


Subject(s)
Artificial Intelligence , Drug Discovery , Algorithms , Datasets as Topic , ERG1 Potassium Channel/antagonists & inhibitors
12.
Cell Mol Life Sci ; 78(23): 7899-7914, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34727194

ABSTRACT

The lipophilic polycyclic aromatic hydrocarbon (PAH) phenanthrene is relatively abundant in polluted air and water and can access and accumulate in human tissue. Phenanthrene has been reported to interact with cardiac ion channels in several fish species. This study was undertaken to investigate the ability of phenanthrene to interact with hERG (human Ether-à-go-go-Related Gene) encoded Kv11.1 K+ channels, which play a central role in human ventricular repolarization. Pharmacological inhibition of hERG can be proarrhythmic. Whole-cell patch clamp recordings of hERG current (IhERG) were made from HEK293 cells expressing wild-type (WT) and mutant hERG channels. WT IhERG1a was inhibited by phenanthrene with an IC50 of 17.6 ± 1.7 µM, whilst IhERG1a/1b exhibited an IC50 of 1.8 ± 0.3 µM. WT IhERG block showed marked voltage and time dependence, indicative of dependence of inhibition on channel gating. The inhibitory effect of phenanthrene was markedly impaired by the attenuated inactivation N588K mutation. Remarkably, mutations of S6 domain aromatic amino acids (Y652, F656) in the canonical drug binding site did not impair the inhibitory action of phenanthrene; the Y652A mutation augmented IhERG block. In contrast, the F557L (S5) and M651A (S6) mutations impaired the ability of phenanthrene to inhibit IhERG, as did the S624A mutation below the selectivity filter region. Computational docking using a cryo-EM derived hERG structure supported the mutagenesis data. Thus, phenanthrene acts as an inhibitor of the hERG K+ channel by directly interacting with the channel, binding to a distinct site in the channel pore domain.


Subject(s)
ERG1 Potassium Channel/antagonists & inhibitors , Electrophysiological Phenomena , Molecular Docking Simulation , Mutation , Phenanthrenes/pharmacology , Dose-Response Relationship, Drug , ERG1 Potassium Channel/genetics , ERG1 Potassium Channel/metabolism , HEK293 Cells , Humans , Mutagenesis, Site-Directed
13.
Eur J Pharmacol ; 913: 174632, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34785211

ABSTRACT

Chloroquine and hydroxychloroquine have been proposed recently as therapy for SARS-CoV-2-infected patients, but during 3 months of extensive use concerns were raised related to their clinical effectiveness and arrhythmogenic risk. Therefore, we estimated for these compounds several proarrhythmogenic risk predictors according to the Comprehensive in vitro Proarrhythmia Assay (CiPA) paradigm. Experiments were performed with either CytoPatch™2 automated or manual patch-clamp setups on HEK293T cells stably or transiently transfected with hERG1, hNav1.5, hKir2.1, hKv7.1+hMinK, and on Pluricyte® cardiomyocytes (Ncardia), using physiological solutions. Dose-response plots of hERG1 inhibition fitted with Hill functions yielded IC50 values in the low micromolar range for both compounds. We found hyperpolarizing shifts of tens of mV, larger for chloroquine, in the voltage-dependent activation but not inactivation, as well as a voltage-dependent block of hERG current, larger at positive potentials. We also found inhibitory effects on peak and late INa and on IK1, with IC50 of tens of µM and larger for chloroquine. The two compounds, tested on Pluricyte® cardiomyocytes using the ß-escin-perforated method, inhibited IKr, ICaL, INa peak, but had no effect on If. In current-clamp they caused action potential prolongation. Our data and those from literature for Ito were used to compute proarrhythmogenic risk predictors Bnet (Mistry HB, 2018) and Qnet (Dutta S et al., 2017), with hERG1 blocking/unblocking rates estimated from time constants of fractional block. Although the two antimalarials are successfully used in autoimmune diseases, and chloroquine may be effective in atrial fibrillation, assays place these drugs in the intermediate proarrhythmogenic risk group.


Subject(s)
Antiviral Agents/adverse effects , Arrhythmias, Cardiac/chemically induced , Chloroquine/pharmacology , Hydroxychloroquine/adverse effects , Action Potentials/drug effects , Biological Assay , Computer Simulation , Correlation of Data , Dose-Response Relationship, Drug , ERG1 Potassium Channel/agonists , ERG1 Potassium Channel/antagonists & inhibitors , ERG1 Potassium Channel/metabolism , HEK293 Cells , Humans , Inhibitory Concentration 50 , KCNQ1 Potassium Channel/antagonists & inhibitors , KCNQ1 Potassium Channel/metabolism , Kinetics , Myocytes, Cardiac/drug effects , NAV1.5 Voltage-Gated Sodium Channel/metabolism , Patch-Clamp Techniques , Potassium Channels, Inwardly Rectifying/antagonists & inhibitors , Potassium Channels, Inwardly Rectifying/metabolism , Potassium Channels, Voltage-Gated/metabolism , Risk Assessment , SARS-CoV-2/drug effects , COVID-19 Drug Treatment
14.
Toxicology ; 464: 153018, 2021 12.
Article in English | MEDLINE | ID: mdl-34757159

ABSTRACT

The human ether-à-go-go-related gene (hERG) encodes the Kv11.1 voltage-gated potassium ion (K+) channel that conducts the rapidly activating delayed rectifier current (IKr) in cardiomyocytes to regulate the repolarization process. Some drugs, as blockers of hERG potassium channels, cannot be marketed due to prolonged QT intervals, as well known as cardiotoxicity. Predetermining the binding affinity values between drugs and hERG through in silico methods can greatly reduce the time and cost required for experimental verification. In this study, we collected 9,215 compounds with AutoDock Vina's docking structures as training set, and collected compounds from four references as test sets. A series of models for predicting the binding affinities of hERG blockers were built based on five machine learning algorithms and combinations of interaction features and ligand features. The model built by support vector regression (SVR) using the combination of all features achieved the best performance on both tenfold cross-validation and external verification, which was selected and named as TSSF-hERG (target-specific scoring function for hERG). TSSF-hERG is more accurate than the classic scoring function of AutoDock Vina and the machine-learning-based generic scoring function RF-Score, with a Pearson's correlation coefficient (Rp) of 0.765, a Spearman's rank correlation coefficient (Rs) of 0.757, a root-mean-square error (RMSE) of 0.585 in a tenfold cross-validation study. All results demonstrated that TSSF-hERG would be useful for improving the power of binding affinity prediction between hERG and compounds, which can be further used for prediction or virtual screening of the hERG-related cardiotoxicity of drug candidates.


Subject(s)
Cardiotoxicity/etiology , ERG1 Potassium Channel/antagonists & inhibitors , Machine Learning , Potassium Channel Blockers/toxicity , Algorithms , Cardiotoxicity/physiopathology , ERG1 Potassium Channel/metabolism , Humans , Molecular Docking Simulation , Potassium Channel Blockers/chemistry , Potassium Channel Blockers/metabolism , Protein Binding
15.
Toxicol Appl Pharmacol ; 431: 115731, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34592322

ABSTRACT

Benzethonium chloride (BZT) and domiphen bromide (DMP) are widely used as antimicrobials in drugs, vaccines and industry. However, no cardiac safety data has been developed on both compounds. Previously we reported BZT and DMP as high-affinity human ether-a-go-go related gene (HERG) channel inhibitors with unknown proarrhythmic risk. Here, we investigate the cardiotoxicity of BZT and DMP in vitro and in vivo, aiming to improve the safety-in-use of both antimicrobials. In the present study, human iPSC derived cardiomyocytes (hiPSC-CMs) were generated and rabbit models were used to examine the proarrhythmic potential of BZT and DMP. Our results found that BZT and DMP induced time- and dose-dependent decrease in the contractile parameters of hiPSC-CMs, prolonged FPDc (≥ 0.1 µM), caused tachycardia/fibrillation-like oscillation (0.3-1 µM), ultimately progressing to irreversible arrest of beating (≥ 1 µM). The IC50 values of BZT and DMP derived from normalized beat rate were 0.13 µM and 0.10 µM on hiPSC-CMs at 76 days. Moreover, in vivo rabbit ECG data demonstrated that 12.85 mg/kg BZT and 3.85 mg/kg DMP evoked QTc prolongation, noncomplex arrhythmias and ventricular tachycardias. Our findings support the cardiac safety of 0.01 µM BZT/DMP in vitro and the intravenous infusion of 3.85 mg/kg BZT and 1.28 mg/kg DMP in vivo, whereas higher concentrations of both compounds cause mild to moderate cardiotoxicity that should not be neglected during medical and industrial applications.


Subject(s)
Anti-Infective Agents/toxicity , Arrhythmias, Cardiac/chemically induced , Benzethonium/toxicity , ERG1 Potassium Channel/antagonists & inhibitors , Heart Rate/drug effects , Induced Pluripotent Stem Cells/drug effects , Myocytes, Cardiac/drug effects , Potassium Channel Blockers/toxicity , Quaternary Ammonium Compounds/toxicity , Action Potentials/drug effects , Animals , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/physiopathology , Cardiotoxicity , Cell Line , Dose-Response Relationship, Drug , ERG1 Potassium Channel/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Male , Myocytes, Cardiac/metabolism , Rabbits , Risk Assessment , Time Factors , Toxicity Tests
16.
Eur J Pharmacol ; 910: 174441, 2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34474028

ABSTRACT

Gefitinib, a tyrosine kinase inhibitor, was the first targeted therapy for non-small cell lung cancer (NSCLC). Gefitinib could block human Ether-à-go-go-Related Gene (hERG) channel, an important target in drug-induced long QT syndrome. However, it is unclear whether gefitinib could induce QT interval prolongation. Here, whole-cell patch-clamp technique was used for evaluating the effect of gefitinib on rapidly-activating delayed rectifier K+ current (IKr), slowly-activating delayed rectifier K+ current (IKs), transient outward potassium current (Ito), inward rectifier K+ current (IK1) and on action potentials in guinea pig ventricular myocytes. The Langendorff heart perfusion technique was used to determine drug effect on the ECG. Gefitinib depressed IKr by binding to open and closed hERG channels in a concentration-dependent way (IC50: 1.91 µM). The inhibitory effect of gefitinib on wildtype hERG channels was reduced at the hERG mutants Y652A, S636A, F656V and S631A (IC50: 8.51, 13.97, 18.86, 32.99 µM), indicating that gefitinib is a pore inhibitor of hERG channels. In addition, gefitinib accelerated hERG channel inactivation and decreased channel steady-state inactivation. Gefitinib also decreased IKs with IC50 of 23.8 µM. Moreover, gefitinib increased action potential duration (APD) in guinea pig ventricular myocytes and the corrected QT interval (QTc) in isolated perfused guinea pig hearts in a concentration-dependent way (1-30 µM). These findings indicate that gefitinib could prolong QTc interval by potently blocking hERG channel, modulating kinetic properties of hERG channel. Partial block of KCNQ1/KCNE1 could also contribute to delayed repolarization and prolonged QT interval. Thus, caution should be taken when gefitinib is used for NSCLC treatment.


Subject(s)
Gefitinib/pharmacology , Long QT Syndrome/metabolism , Potassium Channel Blockers/pharmacology , Action Potentials/drug effects , Animals , ERG1 Potassium Channel/antagonists & inhibitors , ERG1 Potassium Channel/metabolism , Electrocardiography/drug effects , Guinea Pigs , HEK293 Cells , Heart Ventricles/drug effects , Humans , Long QT Syndrome/chemically induced , Male , Myocardial Contraction/drug effects , Myocytes, Cardiac/drug effects , Patch-Clamp Techniques
17.
Heart Rhythm ; 18(12): 2177-2186, 2021 12.
Article in English | MEDLINE | ID: mdl-34481984

ABSTRACT

BACKGROUND: Oliceridine is a biased ligand at the µ-opioid receptor recently approved for the treatment of acute pain. In a thorough QT study, corrected QT (QTc) prolongation displayed peaks at 2.5 and 60 minutes after a supratherapeutic dose. The mean plasma concentration peaked at 5 minutes, declining rapidly thereafter. OBJECTIVE: The purpose of this study was to examine the basis for the delayed effect of oliceridine to prolong the QTc interval. METHODS: Repolarization parameters and tissue accumulation of oliceridine were evaluated in rabbit left ventricular wedge preparations over a period of 5 hours. The effects of oliceridine on ion channel currents were evaluated in human embryonic kidney and Chinese hamster ovary cells. Quinidine was used as a control. RESULTS: Oliceridine and quinidine produced a progressive prolongation of the QTc interval and action potential duration over a period of 5 hours, paralleling slow progressive tissue uptake of the drugs. Oliceridine caused modest prolongation of these parameters, whereas quinidine produced a prominent prolongation of action potential duration and QTc interval as well as development of early afterdepolarization (after 2 hours), resulting in a high torsades de pointes score. The 50% inhibitory concentration values for the oliceridine inhibition of the rapidly activating delayed rectifier current (human ether a-go-go current) and late sodium channel current were 2.2 and 3.45 µM when assessed after traditional acute exposure but much lower after 3 hours of drug exposure. CONCLUSION: Our findings suggest that a gradual increase of intracellular access of drugs to the hERG channels as a result of their intracellular uptake and accumulation can significantly delay effects on repolarization, thus confounding the assessment of QT interval prolongation and arrhythmic risk when studied acutely. The multi-ion channel effects of oliceridine, late sodium channel current inhibition in particular, point to a low risk of devloping torsades de pointes.


Subject(s)
Arrhythmias, Cardiac , ERG1 Potassium Channel/antagonists & inhibitors , Spiro Compounds/pharmacokinetics , Thiophenes/pharmacokinetics , Analgesics, Opioid/pharmacokinetics , Animals , Arrhythmias, Cardiac/etiology , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/physiopathology , Arrhythmias, Cardiac/prevention & control , Cell Line , Cricetulus , Humans , Inhibitory Concentration 50 , Long QT Syndrome/chemically induced , Long QT Syndrome/metabolism , Long QT Syndrome/physiopathology , Membrane Transport Modulators/pharmacology , Quinidine/pharmacokinetics , Tissue Distribution , Voltage-Gated Sodium Channel Blockers/pharmacokinetics
18.
Molecules ; 26(12)2021 Jun 09.
Article in English | MEDLINE | ID: mdl-34207748

ABSTRACT

Tiagabine is an antiepileptic drug used for the treatment of partial seizures in humans. Recently, this drug has been found useful in several non-epileptic conditions, including anxiety, chronic pain and sleep disorders. Since tachycardia-an impairment of cardiac rhythm due to cardiac ion channel dysfunction-is one of the most commonly reported non-neurological adverse effects of this drug, in the present paper we have undertaken pharmacological and numerical studies to assess a potential cardiovascular risk associated with the use of tiagabine. A chemical interaction of tiagabine with a model of human voltage-gated ion channels (VGICs) is described using the molecular docking method. The obtained in silico results imply that the adverse effects reported so far in the clinical cardiological of tiagabine could not be directly attributed to its interactions with VGICs. This is also confirmed by the results from the isolated organ studies (i.e., calcium entry blocking properties test) and in vivo (electrocardiogram study) assays of the present research. It was found that tachycardia and other tiagabine-induced cardiac complications are not due to a direct effect of this drug on ventricular depolarization and repolarization.


Subject(s)
Calcium Channels, L-Type/chemistry , ERG1 Potassium Channel/antagonists & inhibitors , Epilepsy/drug therapy , Heart/drug effects , NAV1.5 Voltage-Gated Sodium Channel/chemistry , Tiagabine/pharmacology , Action Potentials , Animals , Anticonvulsants/adverse effects , Calcium Channels, L-Type/metabolism , Computer Simulation , ERG1 Potassium Channel/metabolism , Epilepsy/complications , Epilepsy/metabolism , Humans , Male , Molecular Docking Simulation/methods , NAV1.5 Voltage-Gated Sodium Channel/metabolism , Rats , Rats, Wistar , Tiagabine/adverse effects
19.
Sci Rep ; 11(1): 12014, 2021 06 08.
Article in English | MEDLINE | ID: mdl-34103608

ABSTRACT

Late sodium current (late INa) inhibition has been proposed to suppress the incidence of arrhythmias generated by pathological states or induced by drugs. However, the role of late INa in the human heart is still poorly understood. We therefore investigated the role of this conductance in arrhythmias using adult primary cardiomyocytes and tissues from donor hearts. Potentiation of late INa with ATX-II (anemonia sulcata toxin II) and E-4031 (selective blocker of the hERG channel) slowed the kinetics of action potential repolarization, impaired Ca2+ homeostasis, increased contractility, and increased the manifestation of arrhythmia markers. These effects could be reversed by late INa inhibitors, ranolazine and GS-967. We also report that atrial tissues from donor hearts affected by atrial fibrillation exhibit arrhythmia markers in the absence of drug treatment and inhibition of late INa with GS-967 leads to a significant reduction in arrhythmic behaviour. These findings reveal a critical role for the late INa in cardiac arrhythmias and suggest that inhibition of this conductance could provide an effective therapeutic strategy. Finally, this study highlights the utility of human ex-vivo heart models for advancing cardiac translational sciences.


Subject(s)
Atrial Fibrillation/metabolism , ERG1 Potassium Channel/metabolism , Membrane Potentials , Models, Cardiovascular , Myocytes, Cardiac/metabolism , Adult , Calcium/metabolism , Cnidarian Venoms/pharmacology , ERG1 Potassium Channel/antagonists & inhibitors , Heart Atria/metabolism , Humans , Myocytes, Cardiac/pathology , Piperidines/pharmacology , Pyridines/pharmacology , Ranolazine/pharmacology , Sodium , Triazoles/pharmacology
20.
J Cell Mol Med ; 25(11): 4938-4949, 2021 06.
Article in English | MEDLINE | ID: mdl-33939251

ABSTRACT

Drug-mediated or medical condition-mediated disruption of hERG function accounts for the main cause of acquired long-QT syndrome (acLQTs), which predisposes affected individuals to ventricular arrhythmias (VA) and sudden death. Many Chinese herbal medicines, especially alkaloids, have risks of arrhythmia in clinical application. The characterized mechanisms behind this adverse effect are frequently associated with inhibition of cardiac hERG channels. The present study aimed to assess the potent effect of Rutaecarpine (Rut) on hERG channels. hERG-HEK293 cell was applied for evaluating the effect of Rut on hERG channels and the underlying mechanism. hERG current (IhERG ) was measured by patch-clamp technique. Protein levels were analysed by Western blot, and the phosphorylation of Sp1 was determined by immunoprecipitation. Optical mapping and programmed electrical stimulation were used to evaluate cardiac electrophysiological activities, such as APD, QT/QTc, occurrence of arrhythmia, phase singularities (PSs), and dominant frequency (DF). Our results demonstrated that Rut reduced the IhERG by binding to F656 and Y652 amino acid residues of hERG channel instantaneously, subsequently accelerating the channel inactivation, and being trapped in the channel. The level of hERG channels was reduced by incubating with Rut for 24 hours, and Sp1 in nucleus was inhibited simultaneously. Mechanismly, Rut reduced threonine (Thr)/ tyrosine (Tyr) phosphorylation of Sp1 through PI3K/Akt pathway to regulate hERG channels expression. Cell-based model unables to fully reveal the pathological process of arrhythmia. In vivo study, we found that Rut prolonged QT/QTc intervals and increased induction rate of ventricular fibrillation (VF) in guinea pig heart after being dosed Rut for 2 weeks. The critical reasons led to increased incidence of arrhythmias eventually were prolonged APD90 and APD50 and the increase of DF, numbers of PSs, incidence of early after-depolarizations (EADs). Collectively, the results of this study suggest that Rut could reduce the IhERG by binding to hERG channels through F656 and Y652 instantaneously. While, the PI3K/Akt/Sp1 axis may play an essential role in the regulation of hERG channels, from the perspective of the long-term effects of Rut (incubating for 24 hours). Importantly, the changes of electrophysiological properties by Rut were the main cause of VA.


Subject(s)
Action Potentials , Arrhythmias, Cardiac/pathology , ERG1 Potassium Channel/antagonists & inhibitors , Indole Alkaloids/adverse effects , Long QT Syndrome/pathology , Quinazolines/adverse effects , Vasodilator Agents/adverse effects , Ventricular Dysfunction/pathology , Animals , Arrhythmias, Cardiac/chemically induced , Arrhythmias, Cardiac/metabolism , Cells, Cultured , Electrophysiological Phenomena , Guinea Pigs , HEK293 Cells , Humans , Long QT Syndrome/chemically induced , Long QT Syndrome/metabolism , Male , Ventricular Dysfunction/chemically induced , Ventricular Dysfunction/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL