Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.710
Filter
1.
Radiology ; 312(3): e232401, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39315894

ABSTRACT

BACKGROUND: MR spectroscopic imaging (MRSI) can be used to quantify an extended brain metabolic profile but is confounded by changes in tissue water levels due to disease. PURPOSE: To develop a fast absolute quantification method for metabolite concentrations combining whole-brain MRSI with echo-planar time-resolved imaging (EPTI) relaxometry in individuals with glioma and healthy individuals. MATERIALS AND METHODS: In this prospective study performed from August 2022 to August 2023, using internal water as concentration reference, the MRSI-EPTI quantification method was compared with the conventional method using population-average literature relaxation values. Healthy participants and participants with mutant IDH1 gliomas underwent imaging at 3 T with a 32-channel coil. Real-time navigated adiabatic spiral three-dimensional MRSI scans were acquired in approximately 8 minutes and reconstructed with a super-resolution pipeline to obtain brain metabolic images at 2.4-mm isotropic resolution. High-spatial-resolution multiparametric EPTI was performed in 3 minutes, with 1-mm isotropic resolution, to correct the relaxation and proton density of the water reference signal. Bland-Altman analysis and the Wilcoxon signed rank test were used to compare absolute quantifications from the proposed and conventional methods. RESULTS: Six healthy participants (four male; mean age, 37 years ± 11 [SD]) and nine participants with glioma (six male; mean age, 41 years ± 15; one with wild-type IDH1 and eight with mutant IDH1) were included. In healthy participants, there was good agreement (+4% bias) between metabolic concentrations derived using the two methods, with a CI of plus or minus 26%. In participants with glioma, there was large disagreement between the two methods (+39% bias) and a CI of plus or minus 55%. The proposed quantification method improved tumor contrast-to-noise ratio (median values) for total N-acetyl-aspartate (EPTI: 0.541 [95% CI: 0.217, 0.910]; conventional: 0.484 [95% CI: 0.199, 0.823]), total choline (EPTI: 1.053 [95% CI: 0.681, 1.713]; conventional: 0.940 [95% CI: 0.617, 1.295]), and total creatine (EPTI: 0.745 [95% CI: 0.628, 0.909]; conventional: 0.553 [95% CI: 0.444, 0.828]) (P = .03 for all). CONCLUSION: The whole-brain MRSI-EPTI method provided fast absolute quantification of metabolic concentrations with individual-specific corrections at 2.4-mm isotropic resolution, yielding concentrations closer to the true value in disease than the conventional literature-based corrections. © RSNA, 2024 Supplemental material is available for this article.


Subject(s)
Brain Neoplasms , Echo-Planar Imaging , Glioma , Magnetic Resonance Spectroscopy , Humans , Glioma/diagnostic imaging , Glioma/metabolism , Male , Female , Prospective Studies , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/metabolism , Adult , Middle Aged , Magnetic Resonance Spectroscopy/methods , Echo-Planar Imaging/methods , Brain/diagnostic imaging , Brain/metabolism , Imaging, Three-Dimensional/methods
2.
Biomed Phys Eng Express ; 10(6)2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39214123

ABSTRACT

Objective. The apparent diffusion coefficient (ADC) extracted from diffusion-weighted magnetic resonance imaging (DWI) is a potential biomarker in radiotherapy (RT). DWI is often implemented with an echo-planar imaging (EPI) read-out due to speed, but unfortunately low geometric accuracy follows. This study aimed to investigate the influence of geometric distortions on the ADCs extracted from the gross tumor volume (GTV) and on the shape of the GTV in abdominal EPI-DWI.Approach. Twenty-one patients had EPI-DWI scans on a 1.5 T MRI sim before treatment and on a 1.5 T MRI-Linac at one of the first treatment fractions. Off-resonance correction with and without eddy current correction were applied to ADC maps. The clinical GTVs were deformed based on the same (but inverted) corrections to assess the local-regional geometric influence of distortions. Mean surface distance (MSD), Hausdorff distance (HD), and Dice similarity coefficient (DSC) were calculated to compare the original and distorted GTVs, and ADC values were calculated based on a mono-exponential model. Phantom measurements were performed to validate the applied correction method.Main results. The median (range) ADC change within the GTV after full distortion correction was 1.3% (0.02%-6.9%) for MRI-Sim and 1.5% (0.1%-6.4%) for MRI-Linac. The additional effect of the eddy current correction was small in both systems. The median (range) MSD, HD, and DSC comparing the original and off-resonance distorted GTVs for all patients were 0.43 mm (0.11-0.94 mm), 4.00 mm (1.00-7.81 mm) and 0.93 (0.82-0.99), respectively.Significance. Overall effect of distortion correction was small in terms of derived ADC values, indicating that distortion correction is unimportant for prediction of outcomes based on ADC. However, large local geometric changes occurred after off-resonance distortion correction for some patients, suggesting that if the spatial information from ADC maps is to be used for dose painting strategies, corrections should be applied.


Subject(s)
Diffusion Magnetic Resonance Imaging , Echo-Planar Imaging , Phantoms, Imaging , Humans , Echo-Planar Imaging/methods , Diffusion Magnetic Resonance Imaging/methods , Female , Image Processing, Computer-Assisted/methods , Abdomen/diagnostic imaging , Male , Abdominal Neoplasms/radiotherapy , Abdominal Neoplasms/diagnostic imaging , Middle Aged , Aged , Tumor Burden , Algorithms , Radiotherapy Planning, Computer-Assisted/methods
3.
Radiography (Lond) ; 30(5): 1290-1296, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39029278

ABSTRACT

INTRODUCTION: Diffusion-weighted imaging (DWI) with radial acquisition regime (RADAR; RADAR-DWI) is a fast spin echo (FSE)-based DWI imaging technique that is known to be robust to magnetic susceptibility artifacts and distortions as compared with echo planar imaging DWI (EPI-DWI). Several reports have suggested that the apparent diffusion coefficient (ADC) values obtained with FSE-based DWI are different from those obtained with EPI-DWI. The purpose of this study was to create phantoms that mimic the T2 and ADC values of various tissues and to demonstrate the ADC values obtained with RADAR-DWI and EPI-DWI in low-field magnetic resonance imaging (MRI) systems. METHODS: Several phantoms were created using sucrose and manganese (II) chloride tetrahydrate mimicking various tissues. RADAR-DWI and EPI-DWI were used to scan the phantoms, and the obtained ADC values were compared. RESULTS: The ADC values obtained with RADAR-DWI were significantly higher than those obtained with EPI-DWI for all phantoms (P < 0.05). The ADC values obtained by RADAR-DWI ranged from 0.70 ± 0.01 to 1.21 ± 0.02 ( × 10-3mm2s-1). Meanwhile, the ADC values obtained with EPI-DWI ranged from 0.59 ± 0.01 to 1.08 ± 0.05 ( × 10-3mm2s-1). CONCLUSIONS: We created phantoms mimicking T2 and ADC values of various tissues and demonstrated the differences in ADC values obtained with RADAR-DWI and EPI-DWI using low-field MRI systems. IMPLICATIONS FOR PRACTICE: ADC values obtained by RADAR-DWI are significantly higher than those obtained by EPI-DWI, with different cutoff values for various tumor malignancies between them.


Subject(s)
Diffusion Magnetic Resonance Imaging , Echo-Planar Imaging , Phantoms, Imaging , Echo-Planar Imaging/methods , Diffusion Magnetic Resonance Imaging/methods , Humans
4.
Eur J Neurosci ; 60(5): 4987-4999, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39085986

ABSTRACT

Diffusion-based tractography in the optic nerve requires sampling strategies assisted by anatomical landmark information (regions of interest [ROIs]). We aimed to investigate the feasibility of expert-placed, high-resolution T1-weighted ROI-data transfer onto lower spatial resolution diffusion-weighted images. Slab volumes from 20 volunteers were acquired and preprocessed including distortion bias correction and artifact reduction. Constrained spherical deconvolution was used to generate a directional diffusion information grid (fibre orientation distribution-model [FOD]). Three neuroradiologists marked landmarks on both diffusion imaging variants and structural datasets. Structural ROI information (volumetric interpolated breath-hold sequence [VIBE]) was respectively registered (linear with 6/12 degrees of freedom [DOF]) onto single-shot EPI (ss-EPI) and readout-segmented EPI (rs-EPI) volumes, respectively. All eight ROI/FOD-combinations were compared in a targeted tractography task of the optic nerve pathway. Inter-rater reliability for placed ROIs among experts was highest in VIBE images (lower confidence interval 0.84 to 0.97, mean 0.91) and lower in both ss-EPI (0.61 to 0.95, mean 0.79) and rs-EPI (0.59 to 0.86, mean 0.70). Tractography success rate based on streamline selection performance was highest in VIBE-drawn ROIs registered (6-DOF) onto rs-EPI FOD (70.0% over 5%-threshold, capped to failed ratio 39/16) followed by both 12-DOF-registered (67.5%; 41/16) and nonregistered VIBE (67.5%; 40/23). On ss-EPI FOD, VIBE-ROI-datasets obtained fewer streamlines overall with each at 55.0% above 5%-threshold and with lower capped to failed ratio (6-DOF: 35/36; 12-DOF: 34/34, nonregistered 33/36). The combination of VIBE-placed ROIs (highest inter-rater reliability) with 6-DOF registration onto rs-EPI targets (best streamline selection performance) is most suitable for white matter template generation required in group studies.


Subject(s)
Diffusion Tensor Imaging , Optic Nerve , Humans , Adult , Male , Diffusion Tensor Imaging/methods , Female , Optic Nerve/diagnostic imaging , Optic Nerve/anatomy & histology , Echo-Planar Imaging/methods , Young Adult , Diffusion Magnetic Resonance Imaging/methods , Image Processing, Computer-Assisted/methods
5.
Invest Ophthalmol Vis Sci ; 65(8): 3, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38953846

ABSTRACT

Purpose: To investigate the correlation between apparent diffusion coefficient (ADC) histograms and high-risk clinicopathologic features related to uveal melanoma (UM) prognosis. Methods: This retrospective study included 53 patients with UM who underwent diffusion-weighted imaging (DWI) between August 2015 and March 2024. Axial DWI was performed with a single-shot spin-echo echo-planar imaging sequence. ADC histogram parameters of ADCmean, ADC50%, interquartile range (IQR), skewness, kurtosis, and entropy were obtained from DWI. The relationships between histogram parameters and high-risk clinicopathological characteristics including tumor size, preoperative retinal detachment, histological subtypes, Ki-67 index, and chromosome status, were analyzed by Spearman correlation analysis, Mann-Whitney U test, or Kruskal-Wallis test. Results: A total of 53 patients (mean ± SD age, 55 ± 15 years; 22 men) were evaluated. The largest basal diameter (LBD) was correlated with kurtosis (r = 0.311, P = 0.024). Tumor prominence (TP) was correlated with entropy (r = 0.581, P < 0.001) and kurtosis (r = 0.273, P = 0.048). Additionally, significant correlations were identified between the Ki-67 index and ADCmean (r = -0.444, P = 0.005), ADC50% (r = -0.487, P = 0.002), and skewness (r = 0.394, P = 0.014). Finally, entropy was correlated with monosomy 3 (r = 0.541, P = 0.017). Conclusions: The ADC histograms provided valuable insights into high-risk clinicopathologic features of UM and hold promise in the early prediction of UM prognosis.


Subject(s)
Diffusion Magnetic Resonance Imaging , Melanoma , Uveal Neoplasms , Humans , Uveal Neoplasms/pathology , Uveal Neoplasms/genetics , Male , Female , Middle Aged , Melanoma/pathology , Retrospective Studies , Prognosis , Diffusion Magnetic Resonance Imaging/methods , Adult , Aged , Echo-Planar Imaging/methods
6.
Eur J Neurosci ; 60(4): 4624-4638, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39034499

ABSTRACT

Recent studies have shown that during the typical resting-state, echo planar imaging (EPI) time series obtained from the eye orbit area correlate with brain regions associated with oculomotor control and lower-level visual cortex. Here, we asked whether congenitally blind (CB) shows similar patterns, suggesting a hard-wired constraint on connectivity. We find that orbital EPI signals in CB do correlate with activity in the motor cortex, but less so with activity in the visual cortex. However, the temporal patterns of this eye movement-related signal differed strongly between CB and sighted controls. Furthermore, in CB, a few participants showed uncoordinated orbital EPI signals between the two eyes, each correlated with activity in different brain networks. Our findings suggest a retained circuitry between motor cortex and eye movements in blind, but also a moderate reorganization due to the absence of visual input, and the inability of CB to control their eye movements or sense their positions.


Subject(s)
Blindness , Eye Movements , Humans , Blindness/physiopathology , Blindness/congenital , Eye Movements/physiology , Adult , Female , Male , Middle Aged , Motor Cortex/physiopathology , Motor Cortex/diagnostic imaging , Visual Cortex/physiopathology , Visual Cortex/diagnostic imaging , Nerve Net/physiopathology , Nerve Net/diagnostic imaging , Echo-Planar Imaging/methods , Young Adult , Brain Mapping/methods
7.
Magn Reson Med ; 92(5): 1952-1964, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38888135

ABSTRACT

PURPOSE: To develop and demonstrate a fast 3D fMRI acquisition technique with high spatial resolution over a reduced FOV, named k-t 3D reduced FOV imaging (3D-rFOVI). METHODS: Based on 3D gradient-echo EPI, k-t 3D-rFOVI used a 2D RF pulse to reduce the FOV in the in-plane phase-encoding direction, boosting spatial resolution without increasing echo train length. For image acceleration, full sampling was applied in the central k-space region along the through-slab direction (kz) for all time frames, while randomized undersampling was used in outer kz regions at different time frames. Images were acquired at 3T and reconstructed using a method based on partial separability. fMRI detection sensitivity of k-t 3D-rFOVI was quantitively analyzed with simulation data. Human visual fMRI experiments were performed to evaluate k-t 3D-rFOVI and compare it with a commercial multiband EPI sequence. RESULTS: The simulation data showed that k-t 3D-rFOVI can detect 100% of fMRI activations with an acceleration factor (R) of 2 and ˜80% with R = 6. In the human fMRI data acquired with 1.5-mm spatial resolution and 800-ms volume TR (TRvol), k-t 3D-rFOVI with R = 4 detected 46% more activated voxels in the visual cortex than the multiband EPI. Additional fMRI experiments showed that k-t 3D-rFOVI can achieve TRvol of 480 ms with R = 6, while reliably detecting visual activation. CONCLUSIONS: k-t 3D-rFOVI can simultaneously achieve a high spatial resolution (1.5-mm isotropically) and short TRvol (480-ms) at 3T. It offers a robust acquisition technique for fast fMRI studies over a focused brain volume.


Subject(s)
Algorithms , Brain , Imaging, Three-Dimensional , Magnetic Resonance Imaging , Humans , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain Mapping/methods , Adult , Image Processing, Computer-Assisted/methods , Echo-Planar Imaging/methods , Computer Simulation , Male , Female
8.
MAGMA ; 37(4): 621-636, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38743376

ABSTRACT

PURPOSE: To investigate the effect of respiratory motion in terms of signal loss in prostate diffusion-weighted imaging (DWI), and to evaluate the usage of partial Fourier in a free-breathing protocol in a clinically relevant b-value range using both single-shot and multi-shot acquisitions. METHODS: A controlled breathing DWI acquisition was first employed at 3 T to measure signal loss from deep breathing patterns. Single-shot and multi-shot (2-shot) acquisitions without partial Fourier (no pF) and with partial Fourier (pF) factors of 0.75 and 0.65 were employed in a free-breathing protocol. The apparent SNR and ADC values were evaluated in 10 healthy subjects to measure if low pF factors caused low apparent SNR or overestimated ADC. RESULTS: Controlled breathing experiments showed a difference in signal coefficient of variation between shallow and deep breathing. In free-breathing single-shot acquisitions, the pF 0.65 scan showed a significantly (p < 0.05) higher apparent SNR than pF 0.75 and no pF in the peripheral zone (PZ) of the prostate. In the multi-shot acquisitions in the PZ, pF 0.75 had a significantly higher apparent SNR than 0.65 pF and no pF. The single-shot pF 0.65 scan had a significantly lower ADC than single-shot no pF. CONCLUSION: Deep breathing patterns can cause intravoxel dephasing in prostate DWI. For single-shot acquisitions at a b-value of 800 s/mm2, any potential risks of motion-related artefacts at low pF factors (pF 0.65) were outweighed by the increase in signal from a lower TE, as shown by the increase in apparent SNR. In multi-shot acquisitions however, the minimum pF factor should be larger, as shown by the lower apparent SNR at low pF factors.


Subject(s)
Diffusion Magnetic Resonance Imaging , Echo-Planar Imaging , Fourier Analysis , Motion , Prostate , Respiration , Signal-To-Noise Ratio , Humans , Male , Diffusion Magnetic Resonance Imaging/methods , Echo-Planar Imaging/methods , Prostate/diagnostic imaging , Adult , Prostatic Neoplasms/diagnostic imaging , Image Processing, Computer-Assisted/methods , Artifacts , Algorithms , Middle Aged , Image Interpretation, Computer-Assisted/methods
9.
Magn Reson Med ; 92(3): 997-1010, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38778631

ABSTRACT

PURPOSE: QSM provides insight into healthy brain aging and neuropathologies such as multiple sclerosis (MS), traumatic brain injuries, brain tumors, and neurodegenerative diseases. Phase data for QSM are usually acquired from 3D gradient-echo (3D GRE) scans with long acquisition times that are detrimental to patient comfort and susceptible to patient motion. This is particularly true for scans requiring whole-brain coverage and submillimeter resolutions. In this work, we use a multishot 3D echo plannar imaging (3D EPI) sequence with shot-selective 2D CAIPIRIHANA to acquire high-resolution, whole-brain data for QSM with minimal distortion and blurring. METHODS: To test clinical viability, the 3D EPI sequence was used to image a cohort of MS patients at 1-mm isotropic resolution at 3 T. Additionally, 3D EPI data of healthy subjects were acquired at 1-mm, 0.78-mm, and 0.65-mm isotropic resolution with varying echo train lengths (ETLs) and compared with a reference 3D GRE acquisition. RESULTS: The appearance of the susceptibility maps and the susceptibility values for segmented regions of interest were comparable between 3D EPI and 3D GRE acquisitions for both healthy and MS participants. Additionally, all lesions visible in the MS patients on the 3D GRE susceptibility maps were also visible on the 3D EPI susceptibility maps. The interplay among acquisition time, resolution, echo train length, and the effect of distortion on the calculated susceptibility maps was investigated. CONCLUSION: We demonstrate that the 3D EPI sequence is capable of rapidly acquiring submillimeter resolutions and providing high-quality, clinically relevant susceptibility maps.


Subject(s)
Brain , Echo-Planar Imaging , Imaging, Three-Dimensional , Multiple Sclerosis , Humans , Imaging, Three-Dimensional/methods , Multiple Sclerosis/diagnostic imaging , Brain/diagnostic imaging , Echo-Planar Imaging/methods , Adult , Male , Female , Algorithms , Middle Aged , Brain Mapping/methods , Image Processing, Computer-Assisted/methods , Image Interpretation, Computer-Assisted/methods
10.
Magn Reson Med ; 92(4): 1456-1470, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38748853

ABSTRACT

PURPOSE: To develop a 3D, high-sensitivity CEST mapping technique based on the 3D stack-of-spirals (SOS) gradient echo readout, the proposed approach was compared with conventional acquisition techniques and evaluated for its efficacy in concurrently mapping of guanidino (Guan) and amide CEST in human brain at 3 T, leveraging the polynomial Lorentzian line-shape fitting (PLOF) method. METHODS: Saturation time and recovery delay were optimized to achieve maximum CEST time efficiency. The 3DSOS method was compared with segmented 3D EPI (3DEPI), turbo spin echo, and gradient- and spin-echo techniques. Image quality, temporal SNR (tSNR), and test-retest reliability were assessed. Maps of Guan and amide CEST derived from 3DSOS were demonstrated on a low-grade glioma patient. RESULTS: The optimized recovery delay/saturation time was determined to be 1.4/2 s for Guan and amide CEST. In addition to nearly doubling the slice number, the gradient echo techniques also outperformed spin echo sequences in tSNR: 3DEPI (193.8 ± 6.6), 3DSOS (173.9 ± 5.6), and GRASE (141.0 ± 2.7). 3DSOS, compared with 3DEPI, demonstrated comparable GuanCEST signal in gray matter (GM) (3DSOS: [2.14%-2.59%] vs. 3DEPI: [2.15%-2.61%]), and white matter (WM) (3DSOS: [1.49%-2.11%] vs. 3DEPI: [1.64%-2.09%]). 3DSOS also achieves significantly higher amideCEST in both GM (3DSOS: [2.29%-3.00%] vs. 3DEPI: [2.06%-2.92%]) and WM (3DSOS: [2.23%-2.66%] vs. 3DEPI: [1.95%-2.57%]). 3DSOS outperforms 3DEPI in terms of scan-rescan reliability (correlation coefficient: 3DSOS: 0.58-0.96 vs. 3DEPI: -0.02 to 0.75) and robustness to motion as well. CONCLUSION: The 3DSOS CEST technique shows promise for whole-cerebrum CEST imaging, offering uniform contrast and robustness against motion artifacts.


Subject(s)
Amides , Brain , Imaging, Three-Dimensional , Magnetic Resonance Imaging , Humans , Amides/chemistry , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Reproducibility of Results , Echo-Planar Imaging/methods , Glioma/diagnostic imaging , Algorithms , Signal-To-Noise Ratio , Brain Neoplasms/diagnostic imaging , Adult , Image Processing, Computer-Assisted/methods , Male , Female , Guanidine/chemistry
11.
Magn Reson Med ; 92(3): 926-944, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38725389

ABSTRACT

PURPOSE: Demonstrate the feasibility and evaluate the performance of single-shot diffusion trace-weighted radial echo planar spectroscopic imaging (Trace DW-REPSI) for quantifying the trace ADC in phantom and in vivo using a 3T clinical scanner. THEORY AND METHODS: Trace DW-REPSI datasets were acquired in 10 phantom and 10 healthy volunteers, with a maximum b-value of 1601 s/mm2 and diffusion time of 10.75 ms. The self-navigation properties of radial acquisitions were used for corrections of shot-to-shot phase and frequency shift fluctuations of the raw data. In vivo trace ADCs of total NAA (tNAA), total creatine (tCr), and total choline (tCho) extrapolated to pure gray and white matter fractions were compared, as well as trace ADCs estimated in voxels within white or gray matter-dominant regions. RESULTS: Trace ADCs in phantom show excellent agreement with reported values, and in vivo ADCs agree well with the expected differences between gray and white matter. For tNAA, tCr, and tCho, the trace ADCs extrapolated to pure gray and white matter ranged from 0.18-0.27 and 0.26-0.38 µm2/ms, respectively. In sets of gray and white matter-dominant voxels, the values ranged from 0.21 to 0.27 and 0.24 to 0.31 µm2/ms, respectively. The overestimated trace ADCs from this sequence can be attributed to the short diffusion time. CONCLUSION: This study presents the first demonstration of the single-shot diffusion trace-weighted spectroscopic imaging sequence using radial echo planar trajectories. The Trace DW-REPSI sequence could provide an estimate of the trace ADC in a much shorter scan time compared to conventional approaches that require three separate measurements.


Subject(s)
Brain , Diffusion Magnetic Resonance Imaging , Echo-Planar Imaging , Phantoms, Imaging , Humans , Echo-Planar Imaging/methods , Diffusion Magnetic Resonance Imaging/methods , Adult , Brain/diagnostic imaging , Brain/metabolism , Male , Female , Choline/metabolism , White Matter/diagnostic imaging , Image Processing, Computer-Assisted/methods , Healthy Volunteers , Creatine/metabolism , Gray Matter/diagnostic imaging , Gray Matter/metabolism , Algorithms , Aspartic Acid/analogs & derivatives , Aspartic Acid/metabolism , Magnetic Resonance Spectroscopy/methods
12.
PLoS One ; 19(5): e0299925, 2024.
Article in English | MEDLINE | ID: mdl-38739571

ABSTRACT

The quest for higher spatial and/or temporal resolution in functional MRI (fMRI) while preserving a sufficient temporal signal-to-noise ratio (tSNR) has generated a tremendous amount of methodological contributions in the last decade ranging from Cartesian vs. non-Cartesian readouts, 2D vs. 3D acquisition strategies, parallel imaging and/or compressed sensing (CS) accelerations and simultaneous multi-slice acquisitions to cite a few. In this paper, we investigate the use of a finely tuned version of 3D-SPARKLING. This is a non-Cartesian CS-based acquisition technique for high spatial resolution whole-brain fMRI. We compare it to state-of-the-art Cartesian 3D-EPI during both a retinotopic mapping paradigm and resting-state acquisitions at 1mm3 (isotropic spatial resolution). This study involves six healthy volunteers and both acquisition sequences were run on each individual in a randomly-balanced order across subjects. The performances of both acquisition techniques are compared to each other in regards to tSNR, sensitivity to the BOLD effect and spatial specificity. Our findings reveal that 3D-SPARKLING has a higher tSNR than 3D-EPI, an improved sensitivity to detect the BOLD contrast in the gray matter, and an improved spatial specificity. Compared to 3D-EPI, 3D-SPARKLING yields, on average, 7% more activated voxels in the gray matter relative to the total number of activated voxels.


Subject(s)
Brain Mapping , Brain , Imaging, Three-Dimensional , Magnetic Resonance Imaging , Signal-To-Noise Ratio , Humans , Adult , Magnetic Resonance Imaging/methods , Male , Brain Mapping/methods , Imaging, Three-Dimensional/methods , Brain/diagnostic imaging , Brain/physiology , Female , Echo-Planar Imaging/methods , Young Adult
13.
Sci Rep ; 14(1): 12135, 2024 05 27.
Article in English | MEDLINE | ID: mdl-38802446

ABSTRACT

To compare diffusion-kurtosis imaging (DKI) and diffusion-weighted imaging (DWI) parameters of single-shot echo-planar imaging (ss-EPI) and readout-segmented echo-planar imaging (rs-EPI) in the differentiation of luminal vs. non-luminal breast cancer using histogram analysis. One hundred and sixty women with 111 luminal and 49 non-luminal breast lesions were enrolled in this study. All patients underwent ss-EPI and rs-EPI sequences on a 3.0T scanner. Histogram metrics were derived from mean kurtosis (MK), mean diffusion (MD) and the apparent diffusion coefficient (ADC) maps of two DWI sequences respectively. Student's t test or Mann-Whitney U test was performed for differentiating luminal subtype from non-luminal subtype. The ROC curves were plotted for evaluating the diagnostic performances of significant histogram metrics in differentiating luminal from non-luminal BC. The histogram metrics MKmean, MK50th, MK75th of luminal BC were significantly higher than those of non-luminal BC for both two DWI sequences (all P<0.05). Histogram metrics from rs-EPI sequence had better diagnostic performance in differentiating luminal from non-Luminal breast cancer compared to those from ss-EPI sequence. MK75th derived from rs-EPI sequence was the most valuable single metric (AUC, 0.891; sensitivity, 78.4%; specificity, 87.8%) for differentiating luminal from non-luminal BC among all the histogram metrics. Histogram metrics of MK derived from rs-EPI yielded better diagnostic performance for distinguishing luminal from non-luminal BC than that from ss-EPI. MK75th was the most valuable metric among all the histogram metrics.


Subject(s)
Breast Neoplasms , Diffusion Magnetic Resonance Imaging , Echo-Planar Imaging , Humans , Female , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Echo-Planar Imaging/methods , Middle Aged , Adult , Diffusion Magnetic Resonance Imaging/methods , Aged , Diagnosis, Differential , ROC Curve
14.
Radiol Phys Technol ; 17(3): 610-619, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38805078

ABSTRACT

The purpose of this study was to investigate the spatial resolution of non-contrast-enhanced (CE) T2prep multi-shot gradient echo planar imaging (MSG-EPI) magnetic resonance angiography (MRA) required to identify peroneal artery perforators and demonstrate its effectiveness in preoperative simulation. Twenty-six legs of 13 volunteers were scanned using non-CE T2prep MSG-EPI-MRA at three spatial resolutions: 1.0-, 0.8-, and 0.6-mm isotropic voxels. The location and number of peroneal artery perforators that could be candidates for free fibula flaps were identified by consensus among three plastic surgeons. Surgeons distinguished between septocutaneous and musculocutaneous perforators using MRA, and confirmed the accuracy of their presence and identification using ultrasonography (US). The ability to detect hypoplasia or stenosis of the anterior tibial, posterior tibial, and peroneal arteries was evaluated by confirming the consistency between the MRA and US results. The number of cutaneous perforators identified using MRA and confirmed using US was 39, 51, and 52 at each respective resolution. The discrimination accuracies between septocutaneous and musculocutaneous perforators were 92.3%, 96.1%, and 96.2%. The number of identified septocutaneous perforators was 1.3 ± 0.6, 1.6 ± 0.8, and 1.7 ± 0.8 at 1.0-, 0.8-, and 0.6-mm data, respectively. All the MRA results, including hypoplasia and stenosis, were consistent with the US results. Non-CE T2prep MSG-EPI-MRA with a spatial resolution of 0.8 mm or less shows promise for identifying septocutaneous perforators of the peroneal artery, suggesting its potential as an alternative to conventional imaging methods for the preoperative planning of free fibula osteocutaneous flap transfers.


Subject(s)
Echo-Planar Imaging , Magnetic Resonance Angiography , Humans , Magnetic Resonance Angiography/methods , Adult , Female , Male , Echo-Planar Imaging/methods , Arteries/diagnostic imaging , Young Adult , Middle Aged
15.
Magn Reson Med ; 92(5): 1898-1912, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38817204

ABSTRACT

PURPOSE: To compare MR axon radius estimation in human white matter using a multiband spiral sequence combined with field monitoring to the current state-of-the-art echo-planar imaging (EPI)-based approach. METHODS: A custom multiband spiral sequence was used for diffusion-weighted imaging at ultra-high b $$ b $$ -values. Field monitoring and higher order image reconstruction were employed to greatly reduce artifacts in spiral images. Diffusion weighting parameters were chosen to match a state-of-the art EPI-based axon radius mapping protocol. The spiral approach was compared to the EPI approach by comparing the image signal-to-noise ratio (SNR) and performing a test-retest study to assess the respective variability and repeatability of axon radius mapping. Effective axon radius estimates were compared over white matter voxels and along the left corticospinal tract. RESULTS: Increased SNR and reduced artifacts in spiral images led to reduced variability in resulting axon radius maps, especially in low-SNR regions. Test-retest variability was reduced by a factor of approximately 1.5 using the spiral approach. Reduced repeatability due to significant bias was found for some subjects in both spiral and EPI approaches, and attributed to scanner instability, pointing to a previously unknown limitation of the state-of-the-art approach. CONCLUSION: Combining spiral readouts with field monitoring improved mapping of the effective axon radius compared to the conventional EPI approach.


Subject(s)
Axons , Image Processing, Computer-Assisted , Signal-To-Noise Ratio , White Matter , Humans , White Matter/diagnostic imaging , Image Processing, Computer-Assisted/methods , Adult , Reproducibility of Results , Male , Algorithms , Echo-Planar Imaging/methods , Female , Diffusion Magnetic Resonance Imaging/methods , Artifacts , Brain/diagnostic imaging
16.
Magn Reson Imaging ; 111: 57-66, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38599504

ABSTRACT

PURPOSE: To develop acceleration strategies for 3D multi-slab diffusion weighted imaging (3D ms-DWI) for enabling applications that require simultaneously high spatial (1 mm isotropic) and angular (> 30 directions) resolutions. METHODS: 3D ms-DWI offers high SNR-efficiency, with the ability to achieve high isotropic spatial resolution, yet suffers from long scan-times for studies requiring high angular resolutions. We develop 6D k-q space acceleration strategies to reduce the scan-time. Specifically, we develop non-uniform 3D ky-kz under-sampling employing a shot-selective 2D CAIPI sampling approach. To achieve inter-shot phase-compensation, 2D navigators were employed that utilize the same CAIPI trajectory. An iterative model-based 3D multi-shot reconstruction was designed by incorporating phase into the forward encoding process. Additionally, the shot-selective non-uniform ky-kz CAIPI acceleration was randomized along the q-dimension. The 3D model-based multi-shot reconstruction is then extended to a joint reconstruction that simultaneously reconstructs all the q-space points, with the help of a spatial total variation and deep-learned q-space regularization. RESULTS: The proposed reconstruction is shown to achieve adequate phase-compensation in both 2D CAIPI accelerated and additional ky-kz under-sampled cases. Using retrospective under-sampling experiments, we show that k-q accelerations close a factor of 12 can be achieved with a reconstruction error < 3% for both single and multi-shell data. This translates to a scan-time reduction by 3-fold for experiments with simultaneously high spatial and angular resolutions. CONCLUSION: The proposed method facilitates the utilization of 3D ms-DWI for simultaneously high k-q resolution applications with close to 3× reduced scan-time.


Subject(s)
Algorithms , Diffusion Magnetic Resonance Imaging , Imaging, Three-Dimensional , Imaging, Three-Dimensional/methods , Humans , Diffusion Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Echo-Planar Imaging/methods , Image Processing, Computer-Assisted/methods , Signal-To-Noise Ratio , Phantoms, Imaging
17.
Magn Reson Med ; 92(3): 1263-1276, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38650351

ABSTRACT

PURPOSE: Widening the availability of fetal MRI with fully automatic real-time planning of radiological brain planes on 0.55T MRI. METHODS: Deep learning-based detection of key brain landmarks on a whole-uterus echo planar imaging scan enables the subsequent fully automatic planning of the radiological single-shot Turbo Spin Echo acquisitions. The landmark detection pipeline was trained on over 120 datasets from varying field strength, echo times, and resolutions and quantitatively evaluated. The entire automatic planning solution was tested prospectively in nine fetal subjects between 20 and 37 weeks. A comprehensive evaluation of all steps, the distance between manual and automatic landmarks, the planning quality, and the resulting image quality was conducted. RESULTS: Prospective automatic planning was performed in real-time without latency in all subjects. The landmark detection accuracy was 4.2 ± $$ \pm $$ 2.6 mm for the fetal eyes and 6.5 ± $$ \pm $$ 3.2 for the cerebellum, planning quality was 2.4/3 (compared to 2.6/3 for manual planning) and diagnostic image quality was 2.2 compared to 2.1 for manual planning. CONCLUSIONS: Real-time automatic planning of all three key fetal brain planes was successfully achieved and will pave the way toward simplifying the acquisition of fetal MRI thereby widening the availability of this modality in nonspecialist centers.


Subject(s)
Brain , Fetus , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Humans , Brain/diagnostic imaging , Brain/embryology , Magnetic Resonance Imaging/methods , Female , Pregnancy , Fetus/diagnostic imaging , Image Processing, Computer-Assisted/methods , Deep Learning , Prenatal Diagnosis/methods , Prospective Studies , Echo-Planar Imaging/methods , Algorithms , Image Interpretation, Computer-Assisted/methods
18.
Magn Reson Imaging ; 110: 138-148, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38641211

ABSTRACT

PURPOSE: Multi-Shot (MS) Echo-Planar Imaging (EPI) may improve the in-plane resolution of multi-b-value DWI, yet it also considerably increases the scan time. Here we explored the combination of EPI with Keyhole (EPIK) and a calibrationless reconstruction algorithm for acceleration of multi-b-value MS-DWI. METHODS: We firstly analyzed the impact of nonuniform phase accrual in EPIK on the reconstructed image. Based on insights gained from the analysis, we developed a calibrationless reconstruction algorithm based on a Space-Contrast-Coil Locally Low-Rank Tensor (SCC-LLRT) constraint for reconstruction of EPIK-acquired data. We compared the algorithm with a modified SPatial-Angular Locally Low-Rank (SPA-LLR) algorithm through simulations, phantoms, and in vivo study. We then compared EPIK with uniformly undersampled EPI for accelerating multi-b-value DWI in 6 healthy subjects. RESULTS: Through theoretical derivations, we found that the reconstruction of EPIK with a SENSE-encoding-based algorithm, such as SPA-LLR, may cause additional aliasing artifacts due to the frequency-dependent distortion of the coil sensitivity. Results from simulations, phantoms, and in vivo study verified the theoretical finding by showing that the calibrationless SCC-LLRT algorithm reduced aliasing artifacts compared with SPA-LLR. Finally, EPIK with SCC-LLRT substantially reduced the ghosting artifacts compared with uniform undersampled multi-b-value DWI, decreasing the fitting errors in ADC (0.05 ± 0.01 vs 0.10 ± 0.01, P < 0.001) and IVIM mapping (0.026 ± 0.004 vs 0.06 ± 0.006, P < 0.001). CONCLUSION: The SCC-LLRT algorithm reduced the aliasing artifacts of EPIK by using a calibrationless modeling of the multi-coil data. The dense sampling of k-space center offers EPIK a potential to improve image quality for acceleration of multi-b-value MS-DWI.


Subject(s)
Algorithms , Diffusion Magnetic Resonance Imaging , Echo-Planar Imaging , Image Processing, Computer-Assisted , Phantoms, Imaging , Humans , Echo-Planar Imaging/methods , Diffusion Magnetic Resonance Imaging/methods , Image Processing, Computer-Assisted/methods , Brain/diagnostic imaging , Adult , Male , Artifacts , Computer Simulation , Female , Reproducibility of Results , Image Enhancement/methods
19.
Magn Reson Med ; 92(2): 519-531, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38623901

ABSTRACT

PURPOSE: Diffusion-weighted (DW) imaging provides a useful clinical contrast, but is susceptible to motion-induced dephasing caused by the application of strong diffusion gradients. Phase navigators are commonly used to resolve shot-to-shot motion-induced phase in multishot reconstructions, but poor phase estimates result in signal dropout and Apparent Diffusion Coefficient (ADC) overestimation. These artifacts are prominent in the abdomen, a region prone to involuntary cardiac and respiratory motion. To improve the robustness of DW imaging in the abdomen, region-based shot rejection schemes that selectively weight regions where the shot-to-shot phase is poorly estimated were evaluated. METHODS: Spatially varying weights for each shot, reflecting both the accuracy of the estimated phase and the degree of subvoxel dephasing, were estimated from the phase navigator magnitude images. The weighting was integrated into a multishot reconstruction using different formulations and phase navigator resolutions and tested with different phase navigator resolutions in multishot DW-echo Planar Imaging acquisitions of the liver and pancreas, using conventional monopolar and velocity-compensated diffusion encoding. Reconstructed images and ADC estimates were compared qualitatively. RESULTS: The proposed region-based shot rejection reduces banding and signal dropout artifacts caused by physiological motion in the liver and pancreas. Shot rejection allows conventional monopolar diffusion encoding to achieve median ADCs in the pancreas comparable to motion-compensated diffusion encoding, albeit with a greater spread of ADCs. CONCLUSION: Region-based shot rejection is a linear reconstruction that improves the motion robustness of multi-shot DWI and requires no sequence modifications.


Subject(s)
Abdomen , Algorithms , Artifacts , Diffusion Magnetic Resonance Imaging , Humans , Diffusion Magnetic Resonance Imaging/methods , Abdomen/diagnostic imaging , Image Processing, Computer-Assisted/methods , Pancreas/diagnostic imaging , Liver/diagnostic imaging , Image Interpretation, Computer-Assisted/methods , Reproducibility of Results , Motion , Echo-Planar Imaging/methods , Image Enhancement/methods , Adult
20.
Magn Reson Imaging ; 110: 17-22, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38452829

ABSTRACT

PURPOSE: To compare the image quality of multiplexed sensitivity-encoding diffusion-weighted imaging (MUSE-DWI) and single-shot echo-planar imaging (SS-EPI-DWI) techniques in uterine MRI. METHODS: Eighty-eight eligible patients underwent MUSE-DWI and SS-EPI-DWI examinations simultaneously using a 3.0 T MRI system. Two radiologists independently performed quantitative and qualitative analysis of the two groups of images using a double-blind method. The weighted Kappa test was used to evaluate the interobserver agreement. Wilcoxon's rank sum test was used for qualitative parameters, and paired t-test was used for quantitative parameters. Spearman rank correlation analysis was used to obtained correlation between pathological results and mean apparent diffusion coefficient (ADC) value. RESULTS: The qualitative and quantitative analysis of the images by the two radiologists were in good or excellent agreement, with weighted kappa value ranging from 0.636 to 0.981. The scores of total subjective image quality (15.4 ± 0.99) and signal-to-noise ratio (158.99 ± 60.71) of MUSE-DWI were significantly higher than those of SS-EPI-DWI (12.93 ± 1.62 P < 0.001; 130.23 ± 48.29 P < 0.05). It effectively reduced image distortion and artifact, and had better lesion conspicuity. There was no significant difference in contrast-to-noise ratio score and average ADC values between the two DWI sequences. The average ADC values of the two DWI sequences were highest in the normal uterus group and lowest in the endometrial cancer group, with statistically significant differences among groups (P < 0.01). In addition, the average ADC values of the two DWI sequences were negatively correlated with the type of lesions, decreasing with the malignancy of the lesions (r = -0.805 P < 0.01, r = -0.815 P < 0.01). CONCLUSION: Compared to SS-EPI-DWI, MUSE-DWI can significantly reduce distortion, artifacts, and fuzziness in MRI of uterine lesions, which is more conducive to lesion detection.


Subject(s)
Diffusion Magnetic Resonance Imaging , Echo-Planar Imaging , Signal-To-Noise Ratio , Uterine Neoplasms , Uterus , Humans , Female , Diffusion Magnetic Resonance Imaging/methods , Middle Aged , Adult , Uterine Neoplasms/diagnostic imaging , Echo-Planar Imaging/methods , Uterus/diagnostic imaging , Uterus/pathology , Observer Variation , Aged , Reproducibility of Results , Sensitivity and Specificity , Image Interpretation, Computer-Assisted/methods , Double-Blind Method , Image Processing, Computer-Assisted/methods , Image Enhancement/methods
SELECTION OF CITATIONS
SEARCH DETAIL