Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 126.048
1.
Parasit Vectors ; 17(1): 244, 2024 May 31.
Article En | MEDLINE | ID: mdl-38822348

BACKGROUND: Snails of the Lymnaeidae family are the intermediate hosts of Fasciola species, the causative agents of fascioliasis. The purpose of this study was to determine the prevalence of Fasciola species in lymnaeid snails and to investigate the association of geoclimatic factors and Fasciola species distribution in northwestern provinces of Iran using geographical information system (GIS) data. METHODS: A total of 2000 lymnaeid snails were collected from 33 permanent and seasonal habitats in northwestern Iran during the period from June to November 2021. After identification by standard morphological keys, they were subjected to shedding and crushing methods. Different stages of Fasciola obtained from these snails were subjected to the ITS1 polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method for species identification. The associations of weather temperature, rainfall, humidity, evaporation, air pressure, wind speed, elevation, and land cover with the distribution of Fasciola species were investigated. Geographical and statistical analysis was performed using ArcMap and SPSS software, respectively, to determine factors related to Fasciola species distribution. RESULTS: Of the 2000 snails collected, 19 were infected with Fasciola hepatica (0.09%), six with F. gigantica (0.03%), and 13 with other trematodes. Among geoclimatic and environmental factors, mean humidity, maximum humidity, and wind speed were significantly higher in areas where F. hepatica was more common than F. gigantica. The altitude of F. hepatica-prevalent areas was generally lower than F. gigantica areas. No significant relationship was observed between other investigated geoclimatic factors and the distribution of infected snails. CONCLUSIONS: The present study showed the relationship of humidity and wind speed with the distribution of snails infected with F. hepatica or F. gigantica in the northwestern regions of Iran. In contrast to F. gigantica, F. hepatica was more prevalent in low-altitude areas. Further research is recommended to elucidate the relationship between geoclimatic factors and the presence of intermediate hosts of the two Fasciola species.


Fasciola , Fascioliasis , Snails , Animals , Iran/epidemiology , Fascioliasis/epidemiology , Fascioliasis/veterinary , Fascioliasis/parasitology , Snails/parasitology , Fasciola/genetics , Fasciola/isolation & purification , Fasciola/classification , Fasciola hepatica/genetics , Fasciola hepatica/isolation & purification , Fasciola hepatica/physiology , Fasciola hepatica/classification , Climate , Ecosystem , Seasons , Polymorphism, Restriction Fragment Length
2.
Glob Chang Biol ; 30(6): e17338, 2024 Jun.
Article En | MEDLINE | ID: mdl-38822535

Nitrogen (N) immobilization (Nim, including microbial N assimilation) and plant N uptake (PNU) are the two most important pathways of N retention in soils. The ratio of Nim to PNU (hereafter Nim:PNU ratio) generally reflects the degree of N limitation for plant growth in terrestrial ecosystems. However, the key factors driving the pattern of Nim:PNU ratio across global ecosystems remain unclear. Here, using a global data set of 1018 observations from 184 studies, we examined the relative importance of mycorrhizal associations, climate, plant, and soil properties on the Nim:PNU ratio across terrestrial ecosystems. Our results show that mycorrhizal fungi type (arbuscular mycorrhizal (AM) or ectomycorrhizal (EM) fungi) in combination with soil inorganic N mainly explain the global variation in the Nim:PNU ratio in terrestrial ecosystems. In AM fungi-associated ecosystems, the relationship between Nim and PNU displays a weaker negative correlation (r = -.06, p < .001), whereas there is a stronger positive correlation (r = .25, p < .001) in EM fungi-associated ecosystems. Our meta-analysis thus suggests that the AM-associated plants display a weak interaction with soil microorganisms for N absorption, while EM-associated plants cooperate with soil microorganisms. Furthermore, we find that the Nim:PNU ratio for both AM- and EM-associated ecosystems gradually converge around a stable value (13.8 ± 0.5 for AM- and 12.1 ± 1.2 for EM-associated ecosystems) under high soil inorganic N conditions. Our findings highlight the dependence of plant-microbial interaction for N absorption on both plant mycorrhizal association and soil inorganic N, with the stable convergence of the Nim:PNU ratio under high soil N conditions.


Mycorrhizae , Nitrogen , Soil Microbiology , Soil , Mycorrhizae/physiology , Mycorrhizae/metabolism , Nitrogen/metabolism , Soil/chemistry , Plants/metabolism , Plants/microbiology , Ecosystem
3.
Glob Chang Biol ; 30(6): e17362, 2024 Jun.
Article En | MEDLINE | ID: mdl-38822565

The presence of alien species represents a major cause of habitat degradation and biodiversity loss worldwide, constituting a critical environmental challenge of our time. Despite sometimes experiencing reduced propagule pressure, leading to a reduced genetic diversity and an increased chance of inbreeding depression, alien invaders are often able to thrive in the habitats of introduction, giving rise to the so-called "genetic paradox" of biological invasions. The adaptation of alien species to the new habitats is therefore a complex aspect of biological invasions, encompassing genetic, epigenetic, and ecological processes. Albeit numerous studies and reviews investigated the mechanistic foundation of the invaders' success, and aimed to solve the genetic paradox, still remains a crucial oversight regarding the temporal context in which adaptation takes place. Given the profound knowledge and management implications, this neglected aspect of invasion biology should receive more attention when examining invaders' ability to thrive in the habitats of introduction. Here, we discuss the adaptation mechanisms exhibited by alien species with the purpose of highlighting the timing of their occurrence during the invasion process. We analyze each stage of the invasion separately, providing evidence that adaptation mechanisms play a role in all of them. However, these mechanisms vary across the different stages of invasion, and are also influenced by other factors, such as the transport speed, the reproduction type of the invader, and the presence of human interventions. Finally, we provide insights into the implications for management, and identify knowledge gaps, suggesting avenues for future research that can shed light on species adaptability. This, in turn, will contribute to a more comprehensive understanding of biological invasions.


Adaptation, Physiological , Ecosystem , Introduced Species , Biodiversity , Animals
4.
Glob Chang Biol ; 30(6): e17357, 2024 Jun.
Article En | MEDLINE | ID: mdl-38822559

Determination of tipping points in nitrogen (N) isotope (δ15N) natural abundance, especially soil δ15N, with increasing aridity, is critical for estimating N-cycling dynamics and N limitation in terrestrial ecosystems. However, whether there are linear or nonlinear responses of soil δ15N to increases in aridity and if these responses correspond well with soil N cycling remains largely unknown. In this study, we investigated soil δ15N and soil N-cycling characteristics in both topsoil and subsoil layers along a drought gradient across a 3000-km transect of drylands on the Qinghai-Tibetan Plateau. We found that the effect of increasing aridity on soil δ15N values shifted from negative to positive with thresholds at aridity index (AI) = 0.27 and 0.29 for the topsoil and subsoil, respectively, although soil N pools and N transformation rates linearly decreased with increasing aridity in both soil layers. Furthermore, we identified markedly different correlations between soil δ15N and soil N-cycling traits above and below the AI thresholds (0.27 and 0.29 for topsoil and subsoil, respectively). Specifically, in wetter regions, soil δ15N positively correlated with most soil N-cycling traits, suggesting that high soil δ15N may result from the "openness" of soil N cycling. Conversely, in drier regions, soil δ15N showed insignificant relationships with soil N-cycling traits and correlated well with factors, such as soil-available phosphorus and foliage δ15N, demonstrating that pathways other than typical soil N cycling may dominate soil δ15N under drier conditions. Overall, these results highlight that different ecosystem N-cycling processes may drive soil δ15N along the aridity gradient, broadening our understanding of N cycling as indicated by soil δ15N under changing drought regimes. The aridity threshold of soil δ15N should be considered in terrestrial N-cycling models when incorporating 15N isotope signals to predict N cycling and availability under climatic dryness.


Droughts , Ecosystem , Nitrogen Cycle , Nitrogen Isotopes , Soil , Soil/chemistry , Nitrogen Isotopes/analysis , China , Nitrogen/analysis , Nitrogen/metabolism , Desert Climate
5.
Glob Chang Biol ; 30(6): e17361, 2024 Jun.
Article En | MEDLINE | ID: mdl-38822568

Our current planetary crisis, including multiple jointly acting factors of global change, moves the need for effective ecosystem restoration center stage and compels us to explore unusual options. We here propose exploring combinatorial approaches to restoration practices: management practices are drawn at random and combined from a locally relevant pool of possible management interventions, thus creating an experimental gradient in the number of interventions. This will move the current degree of interventions to higher dimensionality, opening new opportunities for unlocking unknown synergistic effects. Thus, the high dimensionality of global change (multiple jointly acting factors) would be more effectively countered by similar high-dimensionality in solutions. In this concept, regional restoration hubs play an important role as guardians of locally relevant information and sites of experimental exploration. Data collected from such studies could feed into a global database, which could be used to learn about general principles of combined restoration practices, helping to refine future experiments. Such combinatorial approaches to exploring restoration intervention options may be our best hope yet to achieve decisive progress in ecological restoration at the timescale needed to mitigate and reverse the most severe losses caused by global environmental change.


Conservation of Natural Resources , Ecosystem , Conservation of Natural Resources/methods , Environmental Restoration and Remediation/methods , Ecology/methods , Climate Change
6.
Glob Chang Biol ; 30(6): e17358, 2024 Jun.
Article En | MEDLINE | ID: mdl-38822590

Human activities and climate change cause abiotic factors to fluctuate through time, sometimes passing thresholds for organismal reproduction and survival. Multiple stressors can independently or interactively impact organisms; however, few studies have examined how they interact when they overlap spatially but occur asynchronously. Fluctuations in salinity have been found in freshwater habitats worldwide. Meanwhile, heatwaves have become more frequent and extreme. High salinity pulses and heatwaves are often decoupled in time but can still collectively impact freshwater zooplankton. The time intervals between them, during which population growth and community recovery could happen, can influence combined effects, but no one has examined these effects. We conducted a mesocosm experiment to examine how different recovery times (0-, 3-, 6-week) between salt treatment and heatwave exposure influence their combined effects. We hypothesized that antagonistic effects would appear when having short recovery time, because previous study found that similar species were affected by the two stressors, but effects would become additive with longer recovery time since fully recovered communities would respond to heatwave similar to undisturbed communities. Our findings showed that, when combined, the two-stressor joint impacts changed from antagonistic to additive with increased recovery time between stressors. Surprisingly, full compositional recovery was not achieved despite a recovery period that was long enough for population growth, suggesting legacy effects from earlier treatment. The recovery was mainly driven by small organisms, such as rotifers and small cladocerans. As a result, communities recovering from previous salt exposure responded differently to heatwaves than undisturbed communities, leading to similar zooplankton communities regardless of the recovery time between stressors. Our research bolsters the understanding and management of multiple-stressor issues by revealing that prior exposure to one stressor has long-lasting impacts on community recovery that can lead to unexpected joint effects of multiple stressors.


Climate Change , Salinity , Stress, Physiological , Zooplankton , Animals , Zooplankton/physiology , Time Factors , Fresh Water , Hot Temperature/adverse effects , Ecosystem
7.
Proc Natl Acad Sci U S A ; 121(24): e2318189121, 2024 Jun 11.
Article En | MEDLINE | ID: mdl-38814876

Fluorescence, the optical phenomenon whereby short-wavelength light is absorbed and emitted at longer wavelengths, has been widely described in aquatic habitats, in both invertebrates and fish. Recent years have seen a stream of articles reporting fluorescence, ranging from frogs, platypus, to even fully terrestrial organisms such as flying squirrels, often explicitly or implicitly linking the presence of fluorescence with sexual selection and communication. However, many of these studies fail to consider the physiological requirements of evolutionary stable signaling systems, the environmental dependence of perception, or the possible adaptive role of fluorescent coloration in a noncommunicative context. More importantly, the idea that fluorescence may simply constitute an indirect by-product of selection on other traits is often not explored. This is especially true for terrestrial systems where environmental light conditions are often not amenable for fluorescent signaling in contrast to, for example, aquatic habitats in which spectral properties of water promote functional roles for fluorescence. Despite the appeal of previously unknown ways in which coloration may drive evolution, the investigation of a putative role of fluorescence in communication must be tempered by a realistic understanding of its limitations. Here, we not only highlight and discuss the key body of literature but also address the potential pitfalls when reporting fluorescence and how to solve them. In addition, we propose exciting different research avenues to advance the field of tetrapod fluorescence.


Biological Evolution , Animals , Fluorescence , Vertebrates/physiology , Animal Communication , Ecosystem
8.
PeerJ ; 12: e17330, 2024.
Article En | MEDLINE | ID: mdl-38799066

With anthropogenic changes altering the environment and the subsequent decline of natural habitats, it can be challenging to predict essential habitats for elusive and difficult to study taxa. Primary burrowing crayfish are one such group due to the complexity in sampling their semi-terrestrial, subterranean habitat. Sampling burrows usually requires a labor-intensive, time-consuming excavation or trapping process. However, limited information on burrowing crayfish suggests that fine-scale habitat variation may drive burrowing crayfish habitat choice. This project aimed to evaluate the fine-scale habitat characteristics that influence burrowing crayfish presence and abundance at a large, restored-remnant grassland preserve in north-central Illinois. We documented burrow abundance and quadrat-specific habitat variables such as root biomass, canopy cover, apparent seasonal high-water table (water table) depth and dominant vegetation at sites with and without burrowing crayfish populations. Data was recorded at every quadrat and analyzed using generalized linear mixed models. A total of 21 models were created to determine what habitat variables affected burrow presence and abundance. We found that the water table depth was a significant driver of burrow presence and abundance. Root biomass and vegetation cover were not significant drivers, although they did show up in the final models, explaining the data. These findings demonstrate empirical support for previous observations from other burrowing crayfish research and demonstrate the influence of fine-scale habitat when modeling elusive taxa requirements.


Astacoidea , Ecosystem , Animals , Astacoidea/physiology , Illinois , Biomass , Population Density
9.
Braz J Biol ; 84: e280711, 2024.
Article En | MEDLINE | ID: mdl-38808787

In the Brazilian Cerrado, the Red-and-green Macaw (Ara chloropterus) populations are facing an accelerated rate of habitat loss. Despite this, their feeding areas and primary food sources remain poorly understood. In this study, I assessed the relationship between the diet of the Red-and-green Macaw and available food resources in a habitat mosaic from the fragmented Cerrado in Mato Grosso do Sul State, Brazil. Red-and-green Macaws fed on 20 native and five exotic species, mainly in dry habitats (Cerrado, dry forest, and an urban area along the Maracaju Cliffs) during the dry season, while year-round foraging in the riparian vegetation (Aquidauana River and streams). Then, the number of feeding macaws paralleled variations in food abundance and diversity, besides the number of food species. On the other hand, by using a wide variety of abundant foods, macaws' diet breadth presented high values throughout the year. The seasonal consumption of large-seeded fruits across the habitat mosaic displayed a gradient ranging from the urban area to dry habitats, along which macaws ate from exotic to Cerrado species. In this respect, Terminalia catappa seeds and Mangifera indica fruit pulp were important for Red-and-green Macaws in the urban area during the wet season, while Caryocar brasiliense seeds comprised the same in the Cerrado. At this site, both Dipteryx alata and Buchenavia tomentosa seeds composed much of the Red-and-green Macaws' diet during the dry season. Between those habitats, in the watercourse vegetation, macaws frequently foraged on palm fruits across seasons. Therefore, throughout the year, the abundance and variety of food resources strongly influenced the number of foraging Red-and-green Macaws across the habitat mosaic. Understanding the effect of varying seed availability on the spatial and temporal abundance patterns of Red-and-green Macaws, which primarily feed on large-seeded species, is central to developing effective conservation strategies. Due to the accelerated habitat loss, the Maracaju Cliffs emerge as crucial for the Red-and-green Macaw among the Cerrado remnants of Mato Grosso do Sul.


Ecosystem , Feeding Behavior , Seasons , Animals , Brazil , Feeding Behavior/physiology
10.
An Acad Bras Cienc ; 96(1): e20230369, 2024.
Article En | MEDLINE | ID: mdl-38808813

The Northeastern Mata Atlântica Freshwater ecoregion (NMAF) is part of the 25 worlds biodiversity hotspots. It comprises the Central Atlantic Forest Ecological Corridor and Chapada Diamantina Complex (in part), including high rates of endemism in coastal freshwater ecosystems. However, estimates indicate a high population decline in Freshwater ecosystems. Trichoptera are the most affected insect order, with average extinction rates of ~9% and many unknown species (e.g., estimates are around 50% in Brazil and Ecuador). This crisis can be aggravated by gaps in the knowledge of species (Linnean shortfall) and their distribution (Wallacean shortfall), caused mainly by a lack of investment in extensive fauna inventories and human resources related to systematics. Thus, to face these shortfalls in NMAF, we describe four new species of. H. (Feropsyche) and provide new distribution records. In addition, we perform niche modeling based on the species distributions of the group to identify areas with high environmental suitability to direct biodiversity research efforts on NMAF, a highly endemic and underexplored ecoregion. We increased the number of known species of NMAF from seven to 16 species. The niche modeling pointed to two areas as priorities to guide the strategies to reduce shortfalls in the NMAF.


Biodiversity , Fresh Water , Insecta , Animals , Brazil , Insecta/classification , Ecosystem
11.
Environ Sci Pollut Res Int ; 31(23): 34271-34281, 2024 May.
Article En | MEDLINE | ID: mdl-38702483

The southwest coast of India experiences frequent Indian oil sardine (IOS) nearshore aggregation events, especially in the coastal waters off Kerala. These ephemeral dense IOS aggregation events are known as "Sardine Run". To investigate the reason and provide a scientific basis for these sporadic events, satellite/model-derived physical, meteorological, and biological parameters were analysed. Sea Surface Temperature during a majority of events was in the range of 26-29 °C, agreeing with the reported temperature conditions for IOS in the Arabian Sea. Additionally, a marginal lowering of SST as an effect of precipitation before most of the events might have attracted IOS towards the near-coastal waters in addition to the phytoplankton diet availability, resulting in the aggregation event. However, different scenarios also depicted coastal warming and probable hypoxic conditions in degrading IOS habitat and resulting in beach aggregation events. During most of the IOS aggregation events, the wind and surface current direction was alongshore/coastward, which complemented the propagation of live IOS shoals towards the beach.


Environmental Monitoring , India , Animals , Phytoplankton , Seawater/chemistry , Ecosystem
12.
Sci Total Environ ; 931: 172862, 2024 Jun 25.
Article En | MEDLINE | ID: mdl-38705286

Intricate microbial associations contribute greatly to the multiple functions (multifunctionality) of natural ecosystems. However, the relationship between microbial associations and soil multifunctionality (SMF) in artificial ecosystems, particularly in agricultural ecosystem with frequent fertilization, remains unclear. In this study, based on a 28-year paddy field experiment, high-throughput sequencing and networks analysis was performed to investigate changes in soil microbial (archaea, bacteria, fungi, and protists) associations and how these changes correlate with SMF under long-term fertilization. Compared to no fertilization (CK), both chemical fertilization with N, P, and K (CF) and chemical fertilization plus rice straw retention (CFR) treatments showed significantly higher soil nutrient content, grain yield, microbial abundance, and SMF. With the exception of archaeal diversity, the CF treatment exhibited the lowest bacterial, fungal, and protist diversity, and the simplest microbial co-occurrence network. In contrast, the CFR treatment had the lowest archaeal diversity, but the highest bacterial, fungal, and protist diversity. Moreover, the CFR treatment exhibited the most complex microbial co-occurrence network with the highest number of nodes, edges, and interkingdom edges. These results highlight that both chemical fertilization with and without straw retention caused high ecosystem multifunctionality while changing microbial association oppositely. Furthermore, these results indicate that rice straw retention contributes to the development of the soil microbiome and ensures the sustainability of high-level ecosystem multifunctionality.


Agriculture , Fertilizers , Soil Microbiology , Soil , Fertilizers/analysis , Soil/chemistry , Agriculture/methods , Bacteria/classification , Fungi , Oryza , Ecosystem , Microbiota/drug effects , Archaea
13.
J Math Biol ; 89(1): 8, 2024 May 27.
Article En | MEDLINE | ID: mdl-38801565

Decline of the dissolved oxygen in the ocean is a growing concern, as it may eventually lead to global anoxia, an elevated mortality of marine fauna and even a mass extinction. Deoxygenation of the ocean often results in the formation of oxygen minimum zones (OMZ): large domains where the abundance of oxygen is much lower than that in the surrounding ocean environment. Factors and processes resulting in the OMZ formation remain controversial. We consider a conceptual model of coupled plankton-oxygen dynamics that, apart from the plankton growth and the oxygen production by phytoplankton, also accounts for the difference in the timescales for phyto- and zooplankton (making it a "slow-fast system") and for the implicit effect of upper trophic levels resulting in density dependent (nonlinear) zooplankton mortality. The model is investigated using a combination of analytical techniques and numerical simulations. The slow-fast system is decomposed into its slow and fast subsystems. The critical manifold of the slow-fast system and its stability is then studied by analyzing the bifurcation structure of the fast subsystem. We obtain the canard cycles of the slow-fast system for a range of parameter values. However, the system does not allow for persistent relaxation oscillations; instead, the blowup of the canard cycle results in plankton extinction and oxygen depletion. For the spatially explicit model, the earlier works in this direction did not take into account the density dependent mortality rate of the zooplankton, and thus could exhibit Turing pattern. However, the inclusion of the density dependent mortality into the system can lead to stationary Turing patterns. The dynamics of the system is then studied near the Turing bifurcation threshold. We further consider the effect of the self-movement of the zooplankton along with the turbulent mixing. We show that an initial non-uniform perturbation can lead to the formation of an OMZ, which then grows in size and spreads over space. For a sufficiently large timescale separation, the spread of the OMZ can result in global anoxia.


Computer Simulation , Models, Biological , Oxygen , Phytoplankton , Zooplankton , Animals , Oxygen/metabolism , Zooplankton/metabolism , Zooplankton/growth & development , Zooplankton/physiology , Phytoplankton/metabolism , Phytoplankton/growth & development , Phytoplankton/physiology , Oceans and Seas , Plankton/metabolism , Plankton/growth & development , Mathematical Concepts , Ecosystem , Seawater/chemistry , Food Chain , Anaerobiosis
14.
Nat Commun ; 15(1): 4490, 2024 May 27.
Article En | MEDLINE | ID: mdl-38802424

Mercury (Hg), a potent neurotoxin posing risks to human health, is cycled through vegetation uptake, which is susceptible to climate change impacts. However, the extent and pattern of these impacts are largely unknown, obstructing predictions of Hg's fate in terrestrial ecosystems. Here, we evaluate the effects of climate change on vegetation elemental Hg [Hg(0)] uptake using a state-of-the-art global terrestrial Hg model (CLM5-Hg) that incorporates plant physiology. In a business-as-usual scenario, the terrestrial Hg(0) sink is predicted to decrease by 1870 Mg yr-1 in 2100, that is ~60% lower than the present-day condition. We find a potential decoupling between the trends of CO2 assimilation and Hg(0) uptake process by vegetation in the 21st century, caused by the decreased stomatal conductance with increasing CO2. This implies a substantial influx of Hg into aquatic ecosystems, posing an elevated threat that warrants consideration during the evaluation of the effectiveness of the Minamata Convention.


Carbon Dioxide , Climate Change , Ecosystem , Mercury , Plants , Carbon Dioxide/metabolism , Mercury/metabolism , Plants/metabolism
15.
Sci Data ; 11(1): 558, 2024 May 30.
Article En | MEDLINE | ID: mdl-38816416

Insect activity powers ecosystems and food production globally. Although insect activity is known to vary with the rise and setting of the sun, there is surprisingly limited empirical information on how insect abundance and richness varies across the 24-hour day-night (diel) cycle. Moreover, commonly used methods for sampling insects such as light traps do not provide suitable comparisons of community properties between diel periods. We present a dataset of 1512 observations of abundance and richness during diurnal and nocturnal periods in insect communities worldwide. The data were collected from 99 studies that systematically sampled insect communities during day and night, using sampling methods minimally influenced by diel variation, such as movement-based interception traps. Spanning six continents, 41 countries and 16 insect orders, the data can support investigations into the factors influencing insect diel preferences as well as the causes and consequences of temporal changes in insect biodiversity. The data also provides key baseline information on the diel activity patterns of insect communities for long-term ecological monitoring. These pursuits take on added significance considering contemporary 'insect declines' and increasing anthropogenic impacts on diurnal and nocturnal biodiversity.


Biodiversity , Circadian Rhythm , Insecta , Animals , Ecosystem , Insecta/physiology
16.
Adv Microb Physiol ; 84: 1-49, 2024.
Article En | MEDLINE | ID: mdl-38821631

In terrestrial and aquatic ecosystems, phosphorus (P) availability controls primary production, with consequences for climate regulation and global food security. Understanding the microbial controls on the global P cycle is a prerequisite for minimising our reliance on non-renewable phosphate rock reserves and reducing pollution associated with excessive P fertiliser use. This recognised importance has reinvigorated research into microbial P cycling, which was pioneered over 75 years ago through the study of human pathogenic bacteria-host interactions. Immobilised organic P represents a significant fraction of the total P pool. Hence, microbes have evolved a plethora of mechanisms to transform this fraction into labile inorganic phosphate, the building block for numerous biological molecules. The 'genomics era' has revealed an extraordinary diversity of organic P cycling genes exist in the environment and studies going 'back to the lab' are determining how this diversity relates to function. Through this integrated approach, many hitherto unknown genes and proteins that are involved in microbial P cycling have been discovered. Not only do these fundamental discoveries push the frontier of our knowledge, but several examples also provide exciting opportunities for biotechnology and present possible solutions for improving the sustainability of how we grow our food, both locally and globally. In this review, we provide a comprehensive overview of bacterial organic P cycling, covering studies on human pathogens and how this knowledge is informing new discoveries in environmental microbiology.


Bacteria , Bacteria/metabolism , Bacteria/genetics , Humans , Phosphorus/metabolism , Ecosystem , Environmental Microbiology , Organophosphorus Compounds/metabolism , Phosphates/metabolism
17.
Environ Sci Pollut Res Int ; 31(24): 35779-35788, 2024 May.
Article En | MEDLINE | ID: mdl-38744760

Studies on functional traits of aquatic communities are useful for understanding the ecosystem dynamics as well as the diversity of ecological niches. Here, we characterize zooplankton functional groups and which limnological factors are responsible to changes in traits. Water samples were collected to evaluate limnological parameters and vertical hauls with plankton net (68 µm) were performed to characterize the community in seven reservoirs (Itupararanga, Atibainha, Salto Grande, Rio Grande, Igaratá, Barra Bonita, and Broa, São Paulo state, Brazil). Each species identified was classified according to a trophic group, reproduction mode, body length, habitat, and feeding habitats. Our results showed a predominance of pelagic suspensory herbivores with cilia (31%) followed by pelagic herbivore suspension filter feeders (17%) and raptorial omnivores (15.38%). The other individuals were categorized as pelagic herbivore suspension with oral device (12.3%), littoral herbivores suspensive with cilia (12.3%), pelagic-sucking herbivores (9.2%), and littoral grazing herbivores (3%). The dominance of herbivores may be influenced by the availability of nutrients, influencing their food sources. The abundance of omnivores engaged in predatory behavior can be attributed to disponible prey, thereby exerting significant repercussions on the organization of biological communities.


Biodiversity , Zooplankton , Brazil , Zooplankton/classification , Animals , Ecosystem , Lakes , Feeding Behavior/physiology
18.
Nat Commun ; 15(1): 4085, 2024 May 14.
Article En | MEDLINE | ID: mdl-38744837

Global riverine nitrous oxide (N2O) emissions have increased more than 4-fold in the last century. It has been estimated that the hyporheic zones in small streams alone may contribute approximately 85% of these N2O emissions. However, the mechanisms and pathways controlling hyporheic N2O production in stream ecosystems remain unknown. Here, we report that ammonia-derived pathways, rather than the nitrate-derived pathways, are the dominant hyporheic N2O sources (69.6 ± 2.1%) in agricultural streams around the world. The N2O fluxes are mainly in positive correlation with ammonia. The potential N2O metabolic pathways of metagenome-assembled genomes (MAGs) provides evidence that nitrifying bacteria contain greater abundances of N2O production-related genes than denitrifying bacteria. Taken together, this study highlights the importance of mitigating agriculturally derived ammonium in low-order agricultural streams in controlling N2O emissions. Global models of riverine ecosystems need to better represent ammonia-derived pathways for accurately estimating and predicting riverine N2O emissions.


Ammonia , Ammonium Compounds , Bacteria , Ecosystem , Nitrous Oxide , Rivers , Nitrous Oxide/metabolism , Rivers/microbiology , Rivers/chemistry , Ammonium Compounds/metabolism , Bacteria/metabolism , Bacteria/genetics , Bacteria/classification , Ammonia/metabolism , Metagenome , Agriculture , Nitrates/metabolism , Denitrification , Nitrification , Metabolic Networks and Pathways/genetics
19.
Front Public Health ; 12: 1358051, 2024.
Article En | MEDLINE | ID: mdl-38818450

The sustainable development of ecologically fragile areas and the implementation of regional coordinated development strategies cannot be separated from the coordinated development and common progress of urbanization and the ecological environment, and this is particularly the case in Southwest China. This study examines the interplay between urbanization and the ecological environment across 26 cities in Southwest China from 2009 to 2019, utilizing 30 statistical indicators to analyze their coupling coordination relationship and its spatiotemporal evolution. The Entropy TOPSIS method, the coupling coordination degree model, and the obstacle factors model were used to calculate the subsystem score, coupling coordination degree, and obstacle factors, respectively. Our findings reveal an upward trajectory in urbanization scores across the 26 cities, juxtaposed with a fluctuating downward trend in ecological environment scores. The coupling coordination degree of urbanization and ecological environment in most cities maintained a rapid upward trend and showed spatial distribution characteristics of "strong core, weak middle, and edge." Moreover, our analysis identified public transport facilities, aggregate purchasing power, and cultural supply service services as primary obstacle factors impeding the development of coupling coordination degrees. These research results offer valuable insights for informing future endeavors in achieving high-quality development and fostering ecological civilization.


Urbanization , China , Humans , Cities , Sustainable Development , Ecosystem
20.
PLoS One ; 19(5): e0304421, 2024.
Article En | MEDLINE | ID: mdl-38820267

Forest birds respond to a diverse set of environmental factors, including those altered by forest management intensity, such as resource and habitat availability in the form of food or nesting sites. Although resource/habitat availability and bird traits likely mediate responses of bird diversity to global change drivers, no study has assessed the direct and indirect effects of changes in forest management and traits on bird assemblages jointly at large spatial scales. In this context the questions remain whether (1) the birds' response to forest management changes through alterations in structural properties and/or food availability, or (2) if birds' eco-morphological traits act as environmental filters in response to environmental factors. We audio-visually recorded birds at 150 forest plots in three regions of Germany and assessed the forest structure (LiDAR) as well as the diversity of the herbaceous layer and diversity and biomass of arthropods. We further assessed eco-morphological traits of the birds and tested if effects on bird assemblages are mediated by changes in eco-morphological traits' composition. We found that abundance and species numbers of birds are explained best by models including the major environmental factors, forest structure, plants, and arthropods. Eco-morphological traits only increased model fit for indirect effects on abundance of birds. We found minor differences between the three regions in Germany, indicating spatial congruency of the processes at the local and regional scale. Our results suggest that most birds are not specialized on a particular food type, but that the size, diversity and species composition of arthropods are important. Our findings question the general view that bird traits adapt to the resources available.


Arthropods , Birds , Forests , Animals , Birds/physiology , Germany , Arthropods/physiology , Biodiversity , Ecosystem , Plants
...