Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 644
Filter
1.
Mikrochim Acta ; 191(10): 612, 2024 09 21.
Article in English | MEDLINE | ID: mdl-39305299

ABSTRACT

An innovative method is introduced based on the combination of label-free surface-enhanced Raman scattering with advanced multivariate analysis. This technique allows both quantitative and qualitative assessment of Salmonella typhimurium and Escherichia coli on eggshells. Using silver nanocubes embedded in polydimethylsiloxane, we consistently achieved Raman spectra of bacteria. The stability of the Ag NCs@PDMS substrate is confirmed using rhodamine 6G over 30 days under standard conditions. Principal component analysis (PCA) effectively distinguishes between S. typhimurium and E. coli spectra. Partial least squares regression (PLS) models were developed for quantitative determination of bacteria on egg surfaces, yielding accurate results with minimal error. The S. typhimurium model achieves Rc2 = 0.9563 and RMSEC = 0.601 in calibration, and Rv2 = 0.9113 and RMSEV = 0.907 in validation. Similarly, the E. coli model achieves Rc2 = 0.9877 and RMSEC = 0.322 in calibration, and Rv2 = 0.9606 and RMSEV = 0.579 in validation. Recoveries validate PLS predictions by inoculating egg surfaces with varying bacterial amounts. Our study demonstrates the feasibility of SERS-PLS for quantitative determination of S. typhimurium and E. coli on eggshells, promising enhanced food safety protocols.


Subject(s)
Dimethylpolysiloxanes , Eggs , Escherichia coli , Metal Nanoparticles , Salmonella typhimurium , Silver , Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Silver/chemistry , Salmonella typhimurium/isolation & purification , Escherichia coli/isolation & purification , Metal Nanoparticles/chemistry , Dimethylpolysiloxanes/chemistry , Eggs/microbiology , Animals , Food Microbiology/methods , Egg Shell/microbiology , Egg Shell/chemistry , Principal Component Analysis , Food Contamination/analysis
2.
Skin Res Technol ; 30(9): e70038, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39256190

ABSTRACT

BACKGROUND: Numerous studies have focused on skin damage, the most prevalent physical injury, aiming to improve wound healing. The exploration of biomaterials, specifically eggshell membranes (ESMs), is undertaken to accelerate the recovery of skin injuries. The membrane must be separated from the shell to make this biomaterial usable. Hence, this investigation aimed to identify more about the methods for membrane isolation and determine the most efficient one for usage as a biomaterial. METHODS AND MATERIALS: For this purpose, ESM was removed from eggs using different protocols (with sodium carbonate, acetic acid, HCl, calcium carbonate, and using forceps for separation). Consequently, we have examined the membranes' mechanical and morphological qualities. RESULTS: According to the analysis of microscopic surface morphology, the membranes have appropriate porosity. MTT assay also revealed that the membranes have no cytotoxic effect on 3T3 cells. The results indicated that the ESM had acquired acceptable coagulation and was compatible with blood. Based on the obtained results, Provacol 4 (0.5-mol HCl and neutralized with 0.1-mol NaOH) was better than other methods of extraction and eggshell separation because it was more cell-compatible and more compatible with blood. CONCLUSION: This study demonstrates that ESMs can be used as a suitable biomaterial in medical applications.


Subject(s)
Biocompatible Materials , Egg Shell , Powders , Egg Shell/chemistry , Animals , Biocompatible Materials/pharmacology , Biocompatible Materials/chemistry , Mice , Wound Healing/drug effects , Skin/drug effects , Skin/injuries , Chickens , Regeneration/drug effects , Materials Testing , 3T3 Cells , Porosity
3.
Waste Manag ; 189: 348-363, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39236470

ABSTRACT

The large-scale production of chicken eggs results in a substantial amount of eggshell (ES) residue, often considered as waste. These discarded shells naturally decompose in soil approximately within a year. Eggshells (ES), comparatively contribute lesser towards environmental pollution, contain a remarkable amount of calcium, which can be converted into various valuable products that finds applications in industries, pharmaceuticals, and medicine. Among the diverse applications of ES, most effective and promising applications are removal of heavy metals (Cd, Cr, Pb, Zn, and Cu) ∼93-99 % metal adsorption capacity and capturing of flue gases (CO2 and SO2) from the environment. With ES having a maximum CO2 sorption capacity of 92 % as compared to other sources, and SO2 adsorption capacity of Calcined ES∼11.68 mg/g. The abundance, low cost and easy availability of CaO from ES makes them sustainable and eco-friendly. Additionally, its versatility extends beyond environmental prospects, as it is widely used in various industries as a catalyst, sorbent, fertilizer, and calcium supplement in food for individuals, plants and animals, among other diverse fields of study. Owing to its versatile applications, current review focuses on structure, chemical composition, treatment methods, and valorization pathways for diverse applications, aiming to reduce the eggshells waste and mitigate environmental pollution.


Subject(s)
Egg Shell , Egg Shell/chemistry , Animals , Chickens , Metals, Heavy/analysis , Waste Management/methods , Environmental Pollution/prevention & control , Adsorption
4.
Compr Rev Food Sci Food Saf ; 23(5): e13433, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39217508

ABSTRACT

Food packaging plays a crucial role in the food supply chain by aiding in food preservation and reducing food losses throughout the distribution process. The extensive, unregulated utilization, and waste mismanagement of food packaging materials made up of conventional petroleum-based plastics has led to a significant environmental crisis. Egg components-based food packaging has attracted considerable attention from the global packaging industry as a viable alternative to synthetic polymers due to its biodegradability, sustainability, and health-related benefits. This comprehensive review explores the composition and properties of egg components (eggshell, eggshell membrane, egg white, and egg yolk), and recent advancements in biodegradable packaging films derived from them. Additionally, it introduces the characteristics of these films and their applications in food, highlighting their biodegradability, sustainability, and suitable mechanical, barrier, thermal, optical, antioxidant, and antimicrobial properties as substitutes for traditional synthetic polymers. The utilization of various egg components in the packaging industry is a safe, non-toxic, cost-effective, and economical approach. However, it was found that incorporating active compounds from natural sources into packaging films, as well as composite films composed of egg components combined with other biopolymers, resulted in superior properties, compared to single component films. Moreover, the application of novel technologies in film development has proven to be more effective than conventional methods. These innovative egg components-based packaging films can be optimized and commercialized for use as packaging materials for food products.


Subject(s)
Food Packaging , Food Packaging/methods , Eggs , Animals , Egg Shell/chemistry , Biodegradation, Environmental , Egg Yolk/chemistry , Food Preservation/methods , Egg White/chemistry
5.
Biomater Adv ; 165: 214004, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39213956

ABSTRACT

Skin is the largest organ in body which has important functions. Therefore, to have a healthy skin is very essential, and wound dressings are specifically designed to promote the wound healing process. The aim of this study is to prepare and characterize a fiber-hydrogel wound dressing based on eggshell membrane (ESM) enriched with postbiotic compounds extracted from Lactobacillus plantarum NIMBB003 bacteria. For this purpose, ESM was effectively separated from eggshells through acidic treatment. Then, ultrasound was used for an optimal duration of 1.89 min at 95 % of device's power to expand the pore size of ESM from 6.89 to 10.84 µm to enhance hydrogel infiltration into ESM. The hydrogel (alginate and oxidized alginate) was then infiltrated into the ESM. ATR, SEM, and weight measurement of samples showed the proper infiltration of the hydrogel within the ESM structure. However, biostability analysis revealed that alginate hydrogel was more stable in the hybrid structure compared to oxidase alginate hydrogel. Alginate infiltration into ESM, improved the ultimate strength of the ESM to 1.89 ± 0.17 MPa and water uptake degree to 368.05 % ± 24.34 %. The water vapor transmission rate of the designed dressing was 34.14 ± 1.05 mg/cm2 after 72 h, which means the proper moist management in wound bed. Finally, addition of postbiotics at a concentration of 10 mg/ml into the hydrogel improved cell proliferation in five days. Furthermore, human dermal fibroblast cells adhered to the wound dressings properly and spread along the fibers of the ESM. In general, the developed wound dressing composed of natural biomaterials with extracellular matrix-like structure, can be used effectively to assist the wound healing process.


Subject(s)
Alginates , Bandages , Egg Shell , Hydrogels , Wound Healing , Egg Shell/chemistry , Egg Shell/microbiology , Animals , Wound Healing/drug effects , Alginates/chemistry , Alginates/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Humans , Lactobacillus plantarum , Fibroblasts/drug effects
6.
Environ Monit Assess ; 196(9): 802, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39120741

ABSTRACT

This study assess how well diclofenac (DCF) can be separated from aqueous solution using potassium permanganate-modified eggshell biosorbent (MEB). The MEB produced was characterised using XRD, FTIR, and SEM. Batch experiments were conducted to examine and assess the impact of contact time, adsorbent dosage, initial concentration, and temperature on the adsorption capacity of the MEB in the DCF sequestration. The best parameters to obtained 95.64% DCF removal from liquid environment were 0.05 g MEB weight, 50 mg/L initial concentration, and 60 min contact time at room temperature. The maximum DCF sequestration capacity was found to be 159.57 mg/g with 0.05 g of MEB at 298 K. The adsorption isotherm data were more accurately predicted by the Freundlich model, indicating a process of heterogeneous multilayer adsorption. The results of the kinetic study indicated that the pseudo-second-order kinetic models best matched the experimental data. The findings revealed that the dynamic of DCF entrapment is largely chemisorption and diffusion controlled. Based on the values of thermodynamic parameters, the process is both spontaneous and endothermic. The primary processes of DCF sorption mechanism onto the MEB were chemical surface complexation, hydrogen bonding, π-π stacking, and electrostatic interactions. The produced MEB showed effective DCF separation from the aqueous solution and continued to have maximal adsorption capability even after five regeneration cycles. These findings suggest that MEB could be highly efficient adsorbent for the removal of DCF from pharmaceutical wastewater.


Subject(s)
Diclofenac , Egg Shell , Potassium Permanganate , Thermodynamics , Water Pollutants, Chemical , Diclofenac/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Adsorption , Kinetics , Egg Shell/chemistry , Potassium Permanganate/chemistry , Water Purification/methods , Waste Disposal, Fluid/methods , Animals
7.
Chemosphere ; 364: 143018, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39111674

ABSTRACT

In this paper, we report hydroxyapatite derived from egg-shell biowaste embedded on diglycolamic acid functionalized graphitic carbon nitride nanocomposite (abbreviated as HAp@D-gCN). The compositional and morphological characteristics of HAp@D-gCN were evaluated using scanning electron microscope, X-ray diffraction, BET, FTIR techniques and surface charge using zeta potential measurement. The sorption of U(VI) species on HAp@D-gCN was investigated through batch studies as a function of pH, contact time, initial U(VI) concentration, adsorbent dosage and ionic strength. The adsorption of U(VI) onto HAp@D-gCN was confirmed by FTIR, XRD and EDS elemental mapping. Adsorption kinetics follow pseudo second order model and it attains equilibrium within 20 min. Adsorption isotherm data correlates well with Langmuir isotherm model with a maximum sorption capacity of 993.6 mg of U(VI) per gram of HAp@D-gCN at 298K. U(VI) can be leached from the loaded adsorbent using 0.01 M Na2CO3 as desorbing agent and its sorption capacity remains unaffected even after 4 adsorption-desorption cycles. Hence, the present study reveals that HAp@D-gCN nanocomposite could serve as an environmental friendly material with potential application in environmental remediation.


Subject(s)
Durapatite , Egg Shell , Nanocomposites , Uranium , Durapatite/chemistry , Adsorption , Egg Shell/chemistry , Nanocomposites/chemistry , Uranium/chemistry , Graphite/chemistry , Kinetics , Nitrogen Compounds/chemistry , Animals , Hydrogen-Ion Concentration , Nitriles/chemistry , Water Purification/methods , Water Pollutants, Radioactive/chemistry , Water Pollutants, Radioactive/isolation & purification , Water Pollutants, Chemical/chemistry , X-Ray Diffraction
8.
Poult Sci ; 103(10): 104004, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39067125

ABSTRACT

To elucidate the regulatory mechanisms that impact variability in albumen quality of laying hens from the peak of lay to the late production phase. A 60-wk study was conducted on a cohort of 20,000 Hy-Line Brown laying hens from 20 to 80 wk old. Before commencement at 20 wk, the 10-wk-old hens were acclimatized for 10 wk. This study examined changes in albumen quality, serum, and liver antioxidant capacity, magnum morphology, and expression of albumen-protein-related genes in the magnum. To reduce sampling error, we collected eggs (n = 90) from pre-determined cages at every sampling point (5-wk intervals), and 8 hens were selected at 10-wk intervals for blood and tissue collection. Our findings revealed that age significantly affected most evaluated parameters. Albumen gel properties, including hardness, gumminess, and chewiness, increased significantly with age (P < 0.05). With the increasing of hens' age from 20 to 80 wk, the albumen proportion of eggs was decreased, but eggshell proportion, yolk proportion, thick albumen proportion, thick to thin ratio, thick albumen solid content, albumen height, Haugh units (HU), and yolk color were increased and then decreased (P < 0.05). Compared to hens aged 20 to 60 wk, the hens (70-80 wk) had significantly reduced total antioxidant capacity (TAC) and glutathione levels (GSH) in the liver and lower serum TAC and superoxide dismutase levels (SOD) (P < 0.05). The magnum mucosal folds were highest in 40 to 60 wk-old hens, and the luminal diameter increased with age (P < 0.05). In the magnum, the mRNA expression levels for OVA, CPE, and NUP205 increased significantly between 30 and 40 wk, while FBN1 expression was higher between 30 and 50 wk (P < 0.05). At 70 to 80 wk, the expression of BRCA2 was significantly downregulated (P < 0.05). Albumen height, thick albumen proportion with protein secretion-related genes, enhanced antioxidant function, and luminal diameter correlated positively. However, the thick-to-thin albumen ratio negatively correlated with BRCA2, downregulated in aged laying hens. We used principal component and cluster analysis to deduce albumen quality changes during 3 phases: 25 to 35, 40 to 55, and 60 to 80 wk. The decline in albumen quality in aging hens is linked with decreased antioxidant capacity, magnum health, and downregulation of key genes involved in protein synthesis and secretion. These findings emphasize critical albumen quality changes in laying hens and suggest molecular pathways underlying age-related albumen quality alterations.


Subject(s)
Chickens , Animals , Chickens/physiology , Chickens/genetics , Female , Albumins/metabolism , Egg Shell/physiology , Egg Shell/chemistry , Antioxidants/metabolism , Oviposition/physiology , Avian Proteins/metabolism , Avian Proteins/genetics , Ovum/physiology , Ovum/chemistry
9.
J Agric Food Chem ; 72(28): 15523-15529, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38963614

ABSTRACT

The eggshell is a composite and highly ordered structure formed by biomineralization. Besides other functions, it has a vital and intricate role in the protection of an embryo from various potentially harsh environmental conditions. Solid-state nuclear magnetic resonance (SSNMR) has been used for detailed structural investigations of the chicken, tinamou, and flamingo eggshell materials. 31P NMR spectra reveal that hydroxyapatite and ß-tricalcium phosphate in the ratio 3:2 represent major constituents of phosphate species in the eggshells. All three eggshells exhibit similar spectra, except for the line widths, which implies different structural order of phosphate species in the chicken, tinamou, and flamingo eggshells. 1H NMR spectra for these materials are comparable, differentiating overlapped peaks in three spectral regions at around 7, 4-5, and 1-2 ppm. These spectral regions have been attributed to protons from NH or CaHCO3, water, and possibly isolated monomeric water molecules or hydroxyl groups in calcium-deficient hydroxyapatite. 1H-13C CP MAS NMR revealed the presence of organic matter in the form of lipids and proteins. Two overlapped resonances in the carbonyl region at around 173 and 169 ppm are assigned to the carbonyls of the peptide bonds and the bicarbonate unit in calcite, respectively. Fourier-transform infrared spectroscopy (FTIR) spectra confirmed the presence of structural units detected in the NMR spectra.


Subject(s)
Chickens , Egg Shell , Magnetic Resonance Spectroscopy , Animals , Egg Shell/chemistry , Magnetic Resonance Spectroscopy/methods , Durapatite/chemistry , Birds , Calcium Phosphates/chemistry
10.
Environ Res ; 260: 119626, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39019143

ABSTRACT

The utilization of bio-oil derived from biomass presents a promising alternative to fossil fuels, though it faces challenges when directly applied in diesel engines. Microemulsification has emerged as a viable strategy to enhance bio-oil properties, facilitating its use in hybrid fuels. This study explores the microemulsification of Jatropha bio-oil with ethanol, aided by a surfactant, to formulate a hybrid liquid fuel. Additionally, a bio-nano CaO heterogeneous catalyst synthesized from eggshells is employed to catalyse the production of Jatropha biodiesel from the microemulsified fuel using microwave irradiation. The catalyst is characterized through UV-Vis, XRD, and SEM analysis. The investigation reveals a significant reduction in CO, CO2, and NOX emissions with the utilization of microemulsion-based biodiesel blends. Various blends of conventional diesel, Jatropha biodiesel, and ethanol are prepared with different ethanol concentrations (5, 10, and 20 wt%). Engine performance parameters, including fuel consumption, NOX emission, and brake specific fuel consumption, are analyzed. Results indicate that the conventional diesel/Jatropha biodiesel/ethanol (10 wt%) blend exhibits superior performance compared to conventional diesel, Jatropha biodiesel, and other blends. The fuel consumption of the conventional diesel/Jatropha biodiesel/ethanol (10 wt%) blend is measured at 554.6 g/h, surpassing that of conventional diesel and other biodiesel blends. The presence of water (0.14 %) in the blend reduces the heating value, consequently increasing the energy requirement. CO and CO2 emissions for the conventional diesel/Jatropha biodiesel/ethanol (10 wt%) blend are notably lower compared to conventional C-18 hydrocarbons and various biodiesel blends. These findings accentuate the efficacy of the microemulsion process in enhancing fuel characteristics and reducing emissions. Further investigations could explore optimizing the emulsifying agents and their impact on engine performance and emission characteristics, contributing to the advancement of sustainable fuel technologies.


Subject(s)
Biofuels , Egg Shell , Jatropha , Oxides , Biofuels/analysis , Egg Shell/chemistry , Jatropha/chemistry , Catalysis , Oxides/chemistry , Animals , Emulsions , Calcium Compounds/chemistry , Ethanol/chemistry , Vehicle Emissions/analysis
11.
ACS Appl Mater Interfaces ; 16(26): 32957-32970, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38885611

ABSTRACT

Three-dimensional (3D) printing, an additive manufacturing technique, is increasingly used in the field of tissue engineering. The ability to create complex structures with high precision makes the 3D printing of this material a preferred method for constructing personalized and functional materials. However, the challenge lies in developing affordable and accessible materials with the desired physiochemical and biological properties. In this study, we used eggshell microparticles (ESPs), an example of bioceramic and unconventional biomaterials, to reinforce thermoplastic poly(ε-caprolactone) (PCL) scaffolds via extrusion-based 3D printing. The goal was to conceive a sustainable, affordable, and unique personalized medicine approach. The scaffolds were fabricated with varying concentrations of eggshells, ranging from 0 to 50% (w/w) in the PCL scaffolds. To assess the physicochemical properties, we employed scanning electron microscopy, Fourier-transform infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry, and X-ray diffraction analysis. Mechanical properties were evaluated through compression testing, and degradation kinetics were studied through accelerated degradation with the remaining mass ranging between 89.4 and 28.3%. In vitro, we evaluated the characteristics of the scaffolds using the MC3T3-E1 preosteoblasts over a 14 day period. In vitro characterization involved the use of the Alamar blue assay, confocal imaging, and real-time quantitative polymerase chain reaction. The results of this study demonstrate the potential of 3D printed biocomposite scaffolds, consisting of thermoplastic PCL reinforced with ESPs, as a promising alternative for bone-graft applications.


Subject(s)
Egg Shell , Polyesters , Printing, Three-Dimensional , Tissue Engineering , Tissue Scaffolds , Tissue Scaffolds/chemistry , Animals , Mice , Egg Shell/chemistry , Polyesters/chemistry , Bone and Bones , Cell Line , Biocompatible Materials/chemistry , Osteoblasts/cytology , Osteoblasts/drug effects
12.
ACS Biomater Sci Eng ; 10(7): 4510-4524, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38826128

ABSTRACT

Eggshell membrane-based biomedical applications have recently received great attention for their wound-healing properties. However, there are limited studies on diabetic wound healing. In this regard, we devised four types of composite eggshell membrane mats with nanoscale coatings of bioactive glass/Zn/Co-doped bioactive glass (ESM + BAG, ESM + ZnBAG, ESM + CoBAG, and ESM + ZnCoBAG) as wound-dressing materials for chronic nonhealing diabetic wounds. A detailed study of the physicochemical properties of the mats was conducted. In vitro studies demonstrated cytocompatibility and viability of human dermal fibroblasts on all four types of mats. The cells also attached finely on the mats with the help of cellular extensions, as evident from scanning electron microscopy (SEM) and rhodamine-phalloidin and Hoechst 33342 staining of cellular components. Endowed with bioactive properties, these mats influenced all aspects of full-thickness skin wound healing in diabetic animal model studies. All of the mats, especially the ESM + ZnCoBAG mat, showed the earliest wound closure, effective renewal, and restructuring of the extracellular matrix in terms of an accurate and timely accumulation of collagen, elastin, and reticulin fibers. Hydroxyproline and sulfated glycosaminoglycans were significantly (p < 0.01, p < 0.05) higher in ESM-ZnCoBAG-treated wounds in comparison to ESM-BAG-treated wounds, which suggests that these newly developed mats have potential as an affordable diabetic wound care solution in biomedical research.


Subject(s)
Bandages , Cobalt , Diabetes Mellitus, Experimental , Egg Shell , Glass , Wound Healing , Zinc , Animals , Wound Healing/drug effects , Zinc/chemistry , Zinc/pharmacology , Egg Shell/chemistry , Diabetes Mellitus, Experimental/pathology , Glass/chemistry , Rabbits , Cobalt/chemistry , Cobalt/pharmacology , Humans , Skin/pathology , Skin/drug effects , Skin/injuries , Fibroblasts/drug effects
13.
Acta Odontol Scand ; 83: 264-272, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709122

ABSTRACT

PURPOSE: The purpose of the present in vitro study is to investigate and compare the remineralising potential of Moringa Oleifera extract, eggshell, and sodium fluoride varnish on microhardness of artificially demineralised enamel of primary teeth with biomimetic minimally invasive approach following the world paradigm shift towards natural products in paediatric dentistry. MATERIAL AND METHODS: Sample size included 44 primary molars. The mineral content and surface microhardness of all specimens were initially assessed using energy dispersive x-ray examination (EDX) and Vickers microhardness. The specimens were artificially demineralised for 96 h at a temperature of 37°C and then reassessed directly after demineralisation. The demineralised enamel specimens were randomly divided into four groups according to the remineralisation regimen utilised. Group 1: Artificial saliva (control); Group 2: Sodium fluoride varnish; Group 3: Eggshell hydrogel; and Group 4: Moringa Oleifera hydrogel. The specimens were stored for 8 days and then subsequently evaluated using EDX and microhardness assessment by Vickers microhardness test and scanning electron microscope (SEM).  Results: Regarding the microhardness test, there was a significant difference between the Moringa Oleifera group and Eggshell group compared to fluoride varnish (p < 0.05). Regarding EDX analysis, there was a statistically significant difference (p < 0.05) between Moringa Oleifera group and Eggshell group compared to fluoride varnish as the highest values were for Moringa Oleifera and Eggshell. On the other hand, there was no statistically significant difference (p > 0.05) between Moringa Oleifera and Eggshell in both the measurements. CONCLUSION: Moringa Oleifera and Eggshell might be considered as a biomimetic natural material capable of guiding enamel tissue remineralisation in early carious lesion of primary teeth. CLINICAL RELEVANCE: This research demonstrated the capability for early enamel caries to be remineralised using novel materials with a naturally counterpart implicated in biomineralisation as proved to be more effective than traditionally used fluoride varnish in primary teeth.


Subject(s)
Egg Shell , Hydrogels , Moringa oleifera , Sodium Fluoride , Tooth, Deciduous , Sodium Fluoride/administration & dosage , Tooth, Deciduous/drug effects , Egg Shell/chemistry , Humans , Moringa oleifera/chemistry , Tooth Remineralization/methods , Animals , In Vitro Techniques , Fluorides, Topical/administration & dosage , Microscopy, Electron, Scanning , Dental Enamel/drug effects , Hardness/drug effects , Spectrometry, X-Ray Emission , Tooth Demineralization/prevention & control , Tooth Demineralization/drug therapy
14.
Int J Biol Macromol ; 271(Pt 1): 132620, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38795888

ABSTRACT

Hybrid nanohydroxyapatite/carboxymethyl chitosan (nHAp-CMC) scaffolds have garnered significant attention in the field of regenerative engineering. The current study comparatively analyzed the physicochemical and biological properties of synthetic nanohydroxyapatite (SnHA)- and eggshell-sourced nanohydroxyapatite (EnHA)- based CMC biocomposites for pulp-dentin regeneration. EnHA and CMC were synthesized through a chemical process, whereas SnHA was commercially obtained. Composite scaffolds of SnHA-CMC and EnHA-CMC (1:5 w/w) were prepared using freeze-drying method. All biomaterials were characterized by FTIR, micro-Raman, XRD, HRSEM-EDX, and TEM analyses, and their in vitro bioactivity was assessed by immersing them in simulated body fluid for 21 days. The biological properties of the composite scaffolds were evaluated by assessing cytocompatibility using MTT assay and biomineralization potential by analyzing the odontogenic gene expressions (ALP, DSPP, DMP-1 and VEGF) in human dental pulp stem cells (DPSCs) using RT-qPCR method. Characterization studies revealed that EnHA displayed higher crystallinity and superior surface morphology compared to SnHA. The composite scaffolds showed a highly interconnected porous microstructure with pore sizes ranging between 60 and 220 µm, ideal for cell seeding. All tested materials, SnHA, EnHA, and their respective composites, displayed high cytocompatibility, increased ALP activity and degree of mineralization with significant upregulation of odontogenic-related genes on DPSCs (p < 0.05). Nevertheless, the odontogenic differentiation potential of EnHA-CMC on DPSCs was significantly higher when compared to SnHA-CMC. The findings from this study highlight the potential of EnHA-CMC as a promising candidate for pulp-dentin engineering.


Subject(s)
Chitosan , Dental Pulp , Durapatite , Egg Shell , Tissue Engineering , Tissue Scaffolds , Chitosan/chemistry , Chitosan/analogs & derivatives , Tissue Engineering/methods , Dental Pulp/cytology , Egg Shell/chemistry , Humans , Durapatite/chemistry , Tissue Scaffolds/chemistry , Animals , Dentin/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Stem Cells/drug effects , Stem Cells/cytology , Stem Cells/metabolism , Nanocomposites/chemistry , Chemical Phenomena
15.
Integr Comp Biol ; 64(1): 107-119, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-38755009

ABSTRACT

The amniotic egg fulfils a critical role in reproduction by serving as an interface between the external environment and the embryo. Because non-avian reptiles are rarely incubated, they must be heated by, and absorb water from, the oviposition site for the developing embryo. The mechanisms by which they absorb sufficient, but not excess, water and how these mechanisms vary with local habitat is largely unknown, despite its significance to their evolution. Here, we first performed histology, Fourier-transform infrared spectroscopy and dynamic vapor sorption experiments to elucidate the mechanisms of eggshell absorption for 56 reptile species. Then, we used phylogenetic comparative analysis to test the hypothesis that the absorptive capacity of reptile eggshells increases with aridity of the environment. We found that water absorption increases in the presence of a superficial mucopolysaccharide layer and decreases with increased calcium content. We found that eggs from arid environments have highly absorbent eggshells, but only in species with weakly calcified shells. Our results suggest that reptile eggshells have over evolutionary time tuned absorptive capacity to environmental moisture level. Since these eggs often must sustain conflicting constraints, they may serve as inspirations for new biomimetic materials, such as water filtering membranes or humidity sensors.


Subject(s)
Egg Shell , Reptiles , Animals , Egg Shell/chemistry , Egg Shell/physiology , Reptiles/physiology , Phylogeny , Water/chemistry , Spectroscopy, Fourier Transform Infrared , Ecosystem
16.
Int J Biol Macromol ; 270(Pt 1): 132359, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754678

ABSTRACT

The objective of this study was to evaluate the synergistic effect of eggshell-derived nanohydroxyapatite (EnHA) and carboxymethyl chitosan (CMC) in remineralizing artificially induced dentinal lesions. EnHA and CMC were synthesized using simple chemical processes and characterized using FTIR, XRD, HRSEM-EDX, TEM, DLS and TGA/DTA analyses. A total of 64 pre-demineralized coronal dentin specimens were randomly subjected to following treatments (n = 16):artificial saliva (AS), EnHA, CMC, and EnHA-CMC, followed by pH cycling for 7 days. HRSEM-EDX, Vickers-indenter, and micro-Raman analyses were used to assess surface-topography, microhardness, and chemical analysis, respectively. All tested materials demonstrated non-cytotoxicity when assessed on hDPSCs using MTT assay. FTIR, XRD and thermal analyses confirmed the characteristics of both EnHA and CMC. EnHA showed irregular rod-shaped nanoparticles (30-70 nm) with the presence of Ca,P,Na, and Mg ions. Dentin treated with EnHA-CMC exhibited complete tubular occlusion and highest microhardness whereas the AS group revealed the least mineral deposits (p < 0.05). No significant differences were observed between EnHA and CMC groups (p > 0.05). In addition, molecular conformation analysis revealed peak intensities in collagen's polypeptide chains in dentin treated with CMC and EnHA-CMC, whereas other groups showed poor collagen stability. The results highlighted that EnHA-CMC aided in rapid and effective biomineralization, suggesting its potential as a therapeutic solution for treating dentin caries.


Subject(s)
Chitosan , Dentin , Durapatite , Egg Shell , Chitosan/analogs & derivatives , Chitosan/chemistry , Chitosan/pharmacology , Durapatite/chemistry , Durapatite/pharmacology , Dentin/chemistry , Dentin/drug effects , Egg Shell/chemistry , Animals , Humans , Tooth Remineralization/methods , Nanoparticles/chemistry , Biomimetic Materials/pharmacology , Biomimetic Materials/chemistry , Hydrogen-Ion Concentration
17.
Int J Biol Macromol ; 269(Pt 2): 131879, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692527

ABSTRACT

Multifunctional polysaccharide hydrogels with strong tissue adhesion, and antimicrobial and hemostatic properties are attractive wound healing materials. In this study, a chitosan-based hydrogel (HCS) was designed, and its properties were enhanced by incorporating oxidized eggshell membrane (OEM). Hydrogel characterization and testing results showed that the hydrogel had excellent antimicrobial properties, cytocompatibility, satisfactory adhesion properties on common substrates, and wet-state adhesion capacity. A rat liver injury model confirmed the significant hemostatic effect of the hydrogel. Finally, the ability of the hydrogel to promote wound healing was verified using rat skin wound repair experiments. Our findings indicate that HCS/OEM hydrogels with added eggshell membrane fibers have better self-healing properties, mechanical strength, adhesion, hemostatic properties, and biocompatibility than HCS hydrogels, in addition to having superior repair performance in wound repair experiments. Overall, the multifunctional polysaccharide hydrogels fabricated in this study are ideal for wound repair.


Subject(s)
Egg Shell , Hydrogels , Polysaccharides , Wound Healing , Wound Healing/drug effects , Animals , Hydrogels/chemistry , Hydrogels/pharmacology , Egg Shell/chemistry , Rats , Polysaccharides/chemistry , Polysaccharides/pharmacology , Chitosan/chemistry , Chitosan/pharmacology , Powders , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Rats, Sprague-Dawley
18.
Chemosphere ; 358: 142226, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704039

ABSTRACT

Cellulosic substrates, including wood and thatch, have become icons for sustainable architecture and construction, however, they suffer from high flammability because of their inherent cellulosic composition. Current control measures for such hazards include applying intumescent fire-retardant (IFR) coatings that swell and form a char layer upon ignition, protecting the underlying substrate from burning. Typically, conventional IFR coatings are opaque and are made of halogenated compounds that release toxic fumes when ignited, compromising the roofing's aesthetic value and sustainability. In this work, phytic acid, a naturally occurring phosphorus source extracted from rice bran, was used to synthesize phytic acid-based fire-retardants (PFR) via esterification under reflux, along with powdered chicken eggshells (CES) as calcium carbonate (CaCO3) bio-filler. These components were incorporated into melamine formaldehyde resin to produce the transparent IFR coating. It was revealed that the developed IFR coatings achieved the highest fire protection rating based on UL94 flammability standards compared to the control. The coatings also yielded increased LOI values, indicative of self-extinguishing properties. A 17 °C elevation of the IFR coating's melting temperature and a significant ∼172% increase in enthalpy change from the control were observed, indicating enhanced fire-retardancy. The thermal stability of the coatings was improved, denoted by reduced mass losses, and increased residual masses after thermal degradation. As validated by microscopy and spectroscopy, the abundance of phosphorus and carbon groups in the coatings' condensed phase after combustion indicates enhanced char formation. In the gas phase, TG-FTIR showed the evolution of non-flammable CO2, and fire-retardant PO and P-O-C. Mechanical property testing confirmed no reduction in the adhesion strength of the IFR coating. With these results, the developed IFR coating exhibited enhanced fire-retardancy whilst remaining optically transparent, suggestive of a dual-phase IFR protective mechanism involving the release of gaseous combustion diluents and the formation of a thermally insulating char layer.


Subject(s)
Egg Shell , Flame Retardants , Phytic Acid , Egg Shell/chemistry , Phytic Acid/chemistry , Animals , Fires , Cellulose/chemistry , Calcium Carbonate/chemistry , Chickens
19.
J Environ Manage ; 359: 120782, 2024 May.
Article in English | MEDLINE | ID: mdl-38669884

ABSTRACT

Capturing CO2 using clamshell/eggshell-derived CaO adsorbent can not only reduce carbon emissions but also alleviate the impact of trash on the environment. However, organic acid was usually used, high-temperature calcination was often performed, and CO2 was inevitably released during preparing CaO adsorbents from shell wastes. In this work, CaO-based CO2 adsorbent was greenly prepared by calcium-induced hydrogenation of clamshell and eggshell wastes in one pot at room/moderate temperature. CO2 adsorption experiments were performed in a thermogravimetric analyzer (TGA). The adsorption performance of the adsorbents obtained from the mechanochemical reaction (BM-C/E-CaO) was superior to that of the adsorbents obtained from the thermochemical reaction (Cal-C/E-CaO). The CO2 adsorption capacity of BM-C-CaO at 650 °C is up to 36.82 wt%, but the adsorption decay rate of the sample after 20 carbonation/calcination cycles is only 30.17%. This study offers an alternative energy-saving method for greenly preparing CaO-based adsorbent from shell wastes.


Subject(s)
Carbon Dioxide , Green Chemistry Technology , Refuse Disposal , Green Chemistry Technology/methods , Carbon Dioxide/analysis , Carbon Dioxide/chemistry , Hydrogenation , Temperature , Animal Shells/chemistry , Egg Shell/chemistry , Refuse Disposal/methods , Adsorption
20.
Food Chem ; 450: 139314, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38636383

ABSTRACT

Food waste occurs frequently worldwide, though hunger and malnutrition issues have received global attention. Short-term spoilage of perishable foods causes a significant proportion of food waste. Developing simple, green, and low-cost strategies to preserve the freshness of perishable foods is important to address this issue and improving food safety. By using strawberries as the model perishable fruit, this study reported a pectin/carboxy methyl starch sodium (PC) based coating using epigallocatechin gallate-loaded eggshell powder (ES@EGCG) as the functional fillers. In comparison to PC coating, the PC-ES@EGCG coating displayed much-enhanced performance, such as enhanced mechanical (2 folds) and barrier (water vapor & oxygen) properties. This composite coating reduced the weight loss of strawberries from over 60% to around 30% after 7-day storage. Coated strawberries exhibit better freshness retention, which achieves the purpose of preserving strawberries during storage. This study provided a cost-effective and eco-friendly coating strategy for reducing food waste.


Subject(s)
Food Preservation , Fragaria , Pectins , Starch , Fragaria/chemistry , Pectins/chemistry , Starch/chemistry , Food Preservation/methods , Food Preservation/instrumentation , Egg Shell/chemistry , Animals , Fruit/chemistry , Catechin/chemistry , Catechin/analogs & derivatives
SELECTION OF CITATIONS
SEARCH DETAIL