Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 242
Filter
1.
Clin Exp Optom ; 106(5): 489-497, 2023 07.
Article in English | MEDLINE | ID: mdl-35658852

ABSTRACT

CLINICAL RELEVANCE: A leading reason for patients to abandon their contact lenses is discomfort. Mechanisms and biomarkers for lens discomfort remain to be elucidated. BACKGROUND: Physical stress and tear film interaction are likely factors for lens discomfort. Lipid mediators are generated from polyunsaturated fatty acids. They regulate ocular surface physiology and pathophysiology, are constituents of human tears and may interact with contact lenses. This study set out to determine if hydrogel lenses and silicone hydrogel lenses interact with tear film polyunsaturated fatty acids and polyunsaturated fatty acids-derived mediators. METHODS: In vitro incubations, rat experiments and analysis of worn human lenses assessed polyunsaturated fatty acids and lipid mediator interactions with lenses. Silicone hydrogel and hydrogel lenses were incubated with lipid mediators and polyunsaturated fatty acids up to 24 hours. Rats were fitted with custom silicone hydrogel lenses and basal tears collected. Silicone hydrogel lenses worn for 2 weeks were obtained from 57 human subjects. Tear and lens lipidomes were quantified by mass spectrometry. RESULTS: Silicone hydrogel lenses retained polyunsaturated fatty acids and lipid mediators within 15 minutes in vitro. Lenses contained 90% of total polyunsaturated fatty acids and 83-89% of total monohydroxy fatty acids by 12 hours. Retention correlated with polarity of lipid mediators and lipophilic properties of silicone hydrogel lenses. Polyunsaturated fatty acids and lipid mediators such as lipoxygenase- and cyclooxygenase-derived eicosanoids were present in tears and worn lenses from rats. Worn silicone hydrogel lenses from human subjects established robust and lens-type specific lipidomes with high levels of polyunsaturated fatty acids, lipoxygenase-pathway markers and subject-specific differences in lipoxin A4 and leukotriene B4. CONCLUSION: Worn silicone hydrogel lenses rapidly retain and accumulate tear polyunsaturated fatty acids and lipid mediators. Marked subject and lens type differences in the lipidome may document changes in ocular surface physiology, cell activation or infection that are associated with lens wear. If contact lens discomfort and adverse events induce specific tear and lens fatty acid and lipid mediator profiles warrants further studies.


Subject(s)
Contact Lenses, Hydrophilic , Silicones , Humans , Animals , Rats , Hydrogels , Contact Lenses, Hydrophilic/adverse effects , Lipids/analysis , Eicosanoids/analysis , Eicosanoids/metabolism , Lipoxygenases/metabolism , Tears/chemistry , Hydrogel, Polyethylene Glycol Dimethacrylate
2.
EBioMedicine ; 83: 104189, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35930887

ABSTRACT

BACKGROUND: Epoxyeicosatrienoic acids (EETs) are metabolites of arachidonic acid that may impact atherosclerosis, and animal experimental studies suggest EETs protect cardiac function. Plasma EETs are mostly esterified to phospholipids and part of an active pool. To address the limited information about EETs and CVD in humans, we conducted a prospective study of total plasma EETs (free + esterified) and diabetes-related CVD in the Cardiovascular Health Study (CHS). METHODS: We measured 4 EET species and their metabolites, dihydroxyepoxyeicosatrienoic acids (DHETs), in plasma samples from 892 CHS participants with type 2 diabetes. We determined the association of EETs and DHETs with incident myocardial infarction (MI) and ischemic stroke using Cox regression. FINDINGS: During follow-up (median 7.5 years), we identified 150 MI and 134 ischemic strokes. In primary, multivariable analyses, elevated levels of each EET species were associated with non-significant lower risk of incident MI (for example, hazard ratio for 1 SD higher 14,15-EET: 0.86, 95% CI: 0.72-1.02; p=0.08). The EETs-MI associations became significant in analyses further adjusted for DHETs (hazard ratio for 1 SD higher 14,15-EET adjusted for 14,15-DHET: 0.76, 95% CI: 0.63-0.91; p=0.004). Elevated EET levels were associated with higher risk of ischemic stroke in primary but not secondary analyses. Three DHET species were associated with higher risk of ischemic stroke in all analyses. INTERPRETATION: Findings from this prospective study complement the extensive studies in animal models showing EETs protect cardiac function and provide new information in humans. Replication is needed to confirm the associations. FUNDING: US National Institutes of Health.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Ischemic Stroke , Animals , Arachidonic Acids , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/etiology , Diabetes Mellitus, Type 2/complications , Eicosanoids/analysis , Eicosanoids/metabolism , Humans , Prospective Studies
3.
Am J Physiol Cell Physiol ; 322(5): C1011-C1021, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35385329

ABSTRACT

Arachidonic acid metabolites epoxyeicosatrienoates (EETs) and hydroxyeicosatetraenoates (HETEs) are important regulators of myocardial blood flow and coronary vascular resistance (CVR), but their mechanisms of action are not fully understood. We applied a chemoproteomics strategy using a clickable photoaffinity probe to identify G protein-coupled receptor 39 (GPR39) as a microvascular smooth muscle cell (mVSMC) receptor selective for two endogenous eicosanoids, 15-HETE and 14,15-EET, which act on the receptor to oppose each other's activity. The former increases mVSMC intracellular calcium via GPR39 and augments coronary microvascular resistance, and the latter inhibits these actions. Furthermore, we find that the efficacy of both ligands is potentiated by zinc acting as an allosteric modulator. Measurements of coronary perfusion pressure (CPP) in GPR39-null hearts using the Langendorff preparation indicate the receptor senses these eicosanoids to regulate microvascular tone. These results implicate GPR39 as an eicosanoid receptor and key regulator of myocardial tissue perfusion. Our findings will have a major impact on understanding the roles of eicosanoids in cardiovascular physiology and disease and provide an opportunity for the development of novel GPR39-targeting therapies for cardiovascular disease.


Subject(s)
Cytochrome P-450 Enzyme System , Eicosanoids , Arachidonic Acid/metabolism , Coronary Vessels/metabolism , Cytochrome P-450 Enzyme System/metabolism , Eicosanoids/analysis , Eicosanoids/metabolism , Eicosanoids/pharmacology , Vascular Resistance
4.
Ocul Surf ; 26: 318-327, 2022 10.
Article in English | MEDLINE | ID: mdl-33022413

ABSTRACT

Human tear is a biological fluid rich in lipids that is increasingly collected in clinical and biological research. The repertoire of small lipids or lipid mediators (often termed eicosanoids or oxylipins) found in human tear provides insight into metabolism of fatty acids and physiology of the ocular surface and Meibomian glands. Disturbances in the tear lipid mediators profile also occur during inflammation of the ocular surface that is not directly linked to lipid metabolism. The changes in the levels of pro-inflammatory and pro-resolution lipid mediators in the tear help assess the severity and stage of inflammation in ocular surface tissues. Mass spectrometry, used in the evaluation of tear lipid mediators, is an emerging tool in clinical diagnostics and personalized medicine. Here we describe the reproducibility, accuracy, and precision of quantifying lipid mediators in human tears, with a suggested method for tear collection and sample handling. The ranges of lipid mediators concentrations in tear fluid of healthy and diseased individuals with Meibomian gland dysfunction are reported, as well as the impact of age and disease on individual lipid mediators. We would like to recommend a set of guidelines, which can be further discussed in workshops. This will facilitate harmonization of future tear lipid mediators data across different instrument platforms in various laboratories. We hope that other fields requiring lipid mediators assays will also benefit from such an effort.


Subject(s)
Dry Eye Syndromes , Meibomian Gland Dysfunction , Humans , Meibomian Gland Dysfunction/diagnosis , Dry Eye Syndromes/metabolism , Reproducibility of Results , Tears/metabolism , Meibomian Glands/metabolism , Eicosanoids/analysis , Eicosanoids/metabolism , Inflammation/diagnosis , Inflammation/metabolism , Biomarkers/metabolism
5.
Anal Bioanal Chem ; 413(26): 6551-6569, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34476519

ABSTRACT

Eicosanoids - oxidative derivatives from arachidonic acid - represent biologically active lipid mediators in inflammatory processes. Different analytical methods treat eicosanoid analysis. Among which, reverse phase liquid chromatography figures as the appropriate method for eicosanoid profiling. RP-HPLC for eicosanoid analysis is often conducted on C18 columns. Some studies focused on profiling one family of eicosanoids; others considered all eicosanoid families. In both cases, co-elution remained a major issue and detection in mass spectrometry partially resolves this problem. In fact, the mass transitions used to monitor eicosanoid species are not specific enough and many isobars can be listed. For this, optimizing the RP-HPLC separation remains important. Based on the parameter Fs - deriving from the hydrophobic-subtraction model - and radar plots, we chose columns with different selectivities. The hydrophobic-subtraction model guided our interpretation of molecular interactions between eicosanoids and stationary phases. We founded our approach for selectivity optimization on peak capacity per minute and time needed values. Herein, we screened seven stationary phases and evaluated their chromatographic performances in RP-HPLC. Stationary phases presented different chemistry, type of silica, length, and particle size. Superficially porous particle columns registered better chromatographic profiles than classical stationary phases; and columns with embedded polar group did not serve our purpose. The stationary phase Accucore C30 - even being the least retentive - revealed the best selectivity and efficiency, and recorded the shorter duration for eicosanoid analysis.


Subject(s)
Eicosanoids/analysis , Algorithms , Chromatography, High Pressure Liquid/methods , Chromatography, Reverse-Phase/methods , Eicosanoids/isolation & purification , Hydrophobic and Hydrophilic Interactions , Porosity , Silicon Dioxide/chemistry
6.
J Lipid Res ; 62: 100121, 2021.
Article in English | MEDLINE | ID: mdl-34560079

ABSTRACT

Leukotrienes (LTs) and sphingolipids are critical lipid mediators participating in numerous cellular signal transduction events and developing various disorders, such as bronchial hyperactivity leading to asthma. Enzymatic reactions initiating production of these lipid mediators involve 5-lipoxygenase (5-LO)-mediated conversion of arachidonic acid to LTs and serine palmitoyltransferase (SPT)-mediated de novo synthesis of sphingolipids. Previous studies have shown that endoplasmic reticulum membrane protein ORM1-like protein 3 (ORMDL3) inhibits the activity of SPT and subsequent sphingolipid synthesis. However, the role of ORMDL3 in the synthesis of LTs is not known. In this study, we used peritoneal-derived mast cells isolated from ORMDL3 KO or control mice and examined their calcium mobilization, degranulation, NF-κB inhibitor-α phosphorylation, and TNF-α production. We found that peritoneal-derived mast cells with ORMDL3 KO exhibited increased responsiveness to antigen. Detailed lipid analysis showed that compared with WT cells, ORMDL3-deficient cells exhibited not only enhanced production of sphingolipids but also of LT signaling mediators LTB4, 6t-LTB4, LTC4, LTB5, and 6t-LTB5. The crosstalk between ORMDL3 and 5-LO metabolic pathways was supported by the finding that endogenous ORMDL3 and 5-LO are localized in similar endoplasmic reticulum domains in human mast cells and that ORMDL3 physically interacts with 5-LO. Further experiments showed that 5-LO also interacts with the long-chain 1 and long-chain 2 subunits of SPT. In agreement with these findings, 5-LO knockdown increased ceramide levels, and silencing of SPTLC1 decreased arachidonic acid metabolism to LTs to levels observed upon 5-LO knockdown. These results demonstrate functional crosstalk between the LT and sphingolipid metabolic pathways, leading to the production of lipid signaling mediators.


Subject(s)
Arachidonate 5-Lipoxygenase/metabolism , Eicosanoids/metabolism , Membrane Proteins/metabolism , Serine C-Palmitoyltransferase/metabolism , Sphingolipids/metabolism , Animals , Eicosanoids/analysis , Mice , Mice, Inbred C57BL , Mice, Knockout , Sphingolipids/analysis
7.
Methods Mol Biol ; 2163: 311-322, 2020.
Article in English | MEDLINE | ID: mdl-32766986

ABSTRACT

Despite the growing use of flow cytometry to analyze the functional characteristics of basophils, the intracellular signaling cascades that control their ability to elaborate various pro-allergic and inflammatory mediators and cytokines remain comparatively obscure. Additionally, some studies require the analysis of pro-allergic and inflammatory mediators, such as histamine, LTC4, and various basophil-derived cytokines (e.g., IL-4 and IL-13). Elucidation of intracellular signaling proteins by Western blotting, cytosolic free calcium concentration by spectrofluorophotometry, and detection of mediator releases, as well as analysis of gene expressions by RT-PCR, generally requires relatively large numbers of purified basophils. In selected assays, flow cytometry enables the analysis of relatively low cell numbers and purity for the expression of intracellular signaling proteins or measurement of cytosolic free calcium concentrations by basophil-specific gating strategies. Unfortunately, many aspects of signal transduction relevant to human basophils cannot be readily extrapolated from the use of basophil or mast cell lines. This chapter therefore focuses on how to employ primary human basophils for studying mediator releases and signaling characteristics.


Subject(s)
Basophils/metabolism , Flow Cytometry/methods , Signal Transduction , Spectrometry, Fluorescence/methods , Blotting, Western , Calcium/analysis , Calcium/metabolism , Cell Degranulation/physiology , Cells, Cultured , Cytokines/analysis , Cytokines/metabolism , Eicosanoids/analysis , Eicosanoids/metabolism , Enzyme-Linked Immunosorbent Assay , Histamine/analysis , Histamine/metabolism , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Staining and Labeling/methods
8.
Article in English | MEDLINE | ID: mdl-31778792

ABSTRACT

Increasing evidence underline the role of inflammation in the behavioral, emotional and cognitive dysregulations displayed in anorexia nervosa (AN). Among the inflammatory mediators acting at both peripheral and central levels, growing attention receives a class of lipids derived from arachidonic acid (AA), called eicosanoids (eiCs), which exert a complex, multifaceted role in a wide range of neuroinflammatory processes, peripheral inflammation, and generally in immune system function. To date, little is known about their possible involvement in the neurobiological underpinnings of AN. The present study evaluated whether the activity-based model of AN (ABA) may alter AA-metabolic pathways by changing the levels of AA-derived eiCs in specific brain areas implicated in the development of the typical anorexic-like phenotype, i.e. in prefrontal cortex, cerebral cortex, nucleus accumbens, caudate putamen, amygdala, hippocampus, hypothalamus and cerebellum. Our results point to brain region-specific alterations of the cyclooxygenase (COX), lipoxygenase (LOX) and cytochrome P450 epoxygenase (CYP) metabolic pathways rendering altered levels of AA-derived eiCs (i.e. prostaglandins, thromboxanes and hydroxyeicosatetraenoic acids) in response to induction of and recovery from the ABA condition. These changes, supported by altered messenger RNA (mRNA) levels of genes coding for enzymes involved in eiCs-related methabolic pathways (i.e., PLA2, COX-2, 5-LOX and 15-LOX), underlie a widespread brain dysregulation of pro- and anti-inflammatory eiC-mediated processes in the ABA model of AN. These data suggest the importance of eiCs signaling within corticolimbic areas in regulating key neurobehavioral functions and highlight eiCs as biomarker candidates for monitoring the onset and development of AN, and/or as possible targets for pharmacological management.


Subject(s)
Anorexia Nervosa/pathology , Arachidonic Acid/analysis , Brain/pathology , Eicosanoids/analysis , Inflammation/pathology , Animals , Anorexia Nervosa/metabolism , Arachidonic Acid/metabolism , Brain/metabolism , Disease Models, Animal , Eicosanoids/metabolism , Female , Inflammation/metabolism , Metabolic Networks and Pathways , Rats, Sprague-Dawley
9.
BMC Cancer ; 19(1): 1166, 2019 Dec 02.
Article in English | MEDLINE | ID: mdl-31791289

ABSTRACT

BACKGROUND: Lung cancer (LC) is one of the leading causes of death worldwide, which highlights the urgent need for better therapies. Peroxisome proliferator-activated nuclear receptor alpha (PPARα), known as a key nuclear transcription factor involved in glucose and lipid metabolism, has been also implicated in endothelial proliferation and angiogenesis. However, the effects and potential mechanisms of the novel PPARα ligand, AVE8134, on LC growth and progression remain unclear. METHODS: A subcutaneous tumour was established in mice by injecting TC-1 lung tumour cells (~ 1 × 106 cells) into their shaved left flank. These mice were treated with three different PPARα ligands: AVE8134 (0.025% in drinking water), Wyeth-14,643 (0.025%), or Bezafibrate (0.3%). Tumour sizes and metastasis between treated and untreated mice were then compared by morphology and histology, and the metabolites of arachidonic acid (AA) were detected by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Inhibition of either Cyp2c44 expression by genetic disruption or cyclooxygenase (COX) activity by indomethacin was used to test the mechanisms by which AVE8134 affects tumour growth. RESULTS: The pharmacodynamics effects of AVE8134, Wyeth-14,643, and Bezafibrate on lipids control were similar. However, their effects on tumour suppression were different. Eicosanoid profile analysis showed that all PPARα ligands reduced the production of AA-derived epoxyeicosatrienoic acids (EETs) and increased the hydroxyl product, 11-hydroxyeicosatetraenoic acids (11-HETE). Moreover, increased 11-HETE promoted endothelial proliferation, angiogenesis, and subsequent tumour deterioration in a dose-dependent manner possibly via activating the AKT/extracellular signal-regulated kinase (ERK) pathway. The increased 11-HETE partly neutralized the benefits provided by the Cyp2c44-EETs system inhibited by PPARα ligands in tumour-bearing mice. AVE8134 treatment worsened the tumour phenotype in Cyp2c44 knockout mice, indicating that AVE8134 has contradictory effects on tumour growth. The COX inhibitor indomethacin strengthened the inhibitory actions of AVE8134 on tumour growth and metastasis by inhibiting the 11-HETE production in vivo and in vitro. CONCLUSION: In this study, we found that the degrees of inhibition on LC growth and metastasis by PPARα ligands depended on their bidirectional regulation on EETs and 11-HETE. Considering their safety and efficacy, the novel PPARα ligand, AVE8134, is a potentially ideal anti-angiogenesis drug for cancer treatment when jointly applied with the COX inhibitor indomethacin.


Subject(s)
Antineoplastic Agents/therapeutic use , Benzoates/therapeutic use , Cyclooxygenase Inhibitors/therapeutic use , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Oxazoles/therapeutic use , PPAR alpha/agonists , Animals , Bezafibrate/therapeutic use , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cytochrome P450 Family 2/antagonists & inhibitors , Cytochrome P450 Family 2/genetics , Cytochrome P450 Family 2/metabolism , Drug Evaluation, Preclinical , Drug Therapy, Combination , Eicosanoids/analysis , Eicosanoids/metabolism , Indomethacin/therapeutic use , Lung Neoplasms/blood supply , Mice , Mice, Inbred C57BL , Mice, Knockout , Neoplasm Metastasis , Neovascularization, Pathologic , Pyrimidines/therapeutic use , Treatment Outcome , Xenograft Model Antitumor Assays
10.
Article in English | MEDLINE | ID: mdl-31260873

ABSTRACT

Sample pretreatment is an important process in liquid chromatography-mass spectrometry-based quantitative lipidomics. Reversed-phase solid phase extraction (RP-SPE) has been widely used for analyzing various types of samples, including aqueous samples such as cell culture media, plasma, serum, urine, and other biological fluids. Because lipid mediators are often protein-bound, prior deproteinization is necessary for their effective recovery. Deproteinization is typically performed by the addition of organic solvents, which requires time-consuming evaporation-reconstitution, or dilution with aqueous solvents before RP-SPE; however, both of these approaches compromise the analytical performance. As a potential alternative, we attempted to utilize supported liquid extraction (SLE), an automation-compatible variant of liquid-liquid extraction, for the determination of eicosanoids and related metabolites in aqueous samples. We screened 81 different sample diluent-eluent conditions and found that the use of 0.1% formic acid-water as the diluent and 0.1% formic acid-methyl acetate as the eluent enabled the optimum recovery of a variety of eicosanoids, except for peptide leukotrienes. The optimized SLE method efficiently removed protein from human plasma, while phospholipids and neutral lipids were modestly recovered. Moreover, the proposed method exhibited a quantitative performance comparable to that of typical ordinary RP-SPE method in the analysis of human platelets stimulated with thrombin receptor-activating peptide 6. Thus, we propose SLE as an attractive option for rapid lipid mediator extraction from aqueous samples.


Subject(s)
Analytic Sample Preparation Methods/methods , Eicosanoids/analysis , Eicosanoids/isolation & purification , Liquid-Liquid Extraction/methods , Chromatography, High Pressure Liquid , Culture Media/chemistry , Eicosanoids/blood , Eicosanoids/urine , Humans , Mass Spectrometry , Plasma/chemistry
11.
J Chromatogr A ; 1600: 127-136, 2019 Aug 30.
Article in English | MEDLINE | ID: mdl-31047664

ABSTRACT

Faeces are comprised of a wide array of metabolites arising from the circulatory system as well as the human microbiome. A global metabolite analysis (metabolomics) of faecal extracts offers the potential to uncover new compounds which may be indicative of the onset of bowel diseases such as colorectal cancer (CRC). To date, faecal metabolomics is still in its infancy and the compounds of low abundance present in faecal extracts poorly characterised. In this study, extracts of faeces from healthy subjects were profiled using a sensitive nanoflow-nanospray LC-MS platform which resulted in highly repeatable peak retention times (<2% CV) and intensities (<15% CV). Analysis of the extracts revealed wide coverage of the faecal metabolome including detection of low abundant signalling compounds such as sex steroids and eicosanoids, alongside highly abundant pharmaceuticals and tetrapyrrole metabolites. A small pilot study investigating differences in metabolomics profiles of faecal samples obtained from 7 CRC, 25 adenomatous polyp and 26 healthy groups revealed that secondary bile acids, conjugated androgens, eicosanoids, phospholipids and an unidentified haem metabolite were potential classes of metabolites that discriminated between the CRC and control sample groups. However, much larger follow up studies are needed to confirm which components of the faecal metabolome are associated with actual CRC disease rather than dietary influences. This study reveals the potential of nanospray-nanoflow LC-MS profiling of faecal samples from large scale cohort studies for uncovering the role of the faecal metabolome in colorectal disease formation.


Subject(s)
Chromatography, Liquid , Feces/chemistry , Metabolome , Spectrometry, Mass, Electrospray Ionization , Bile Acids and Salts/analysis , Eicosanoids/analysis , Female , Healthy Volunteers , Humans , Male , Metabolomics , Phospholipids/analysis , Pilot Projects
12.
Free Radic Biol Med ; 144: 72-89, 2019 11 20.
Article in English | MEDLINE | ID: mdl-31085232

ABSTRACT

Oxylipins, including the well-known eicosanoids, are potent lipid mediators involved in numerous physiological and pathological processes. Therefore, their quantitative profiling has gained a lot of attention during the last years notably in the active field of health biomarker discovery. Oxylipins include hundreds of structurally and stereochemically distinct lipid species which today are most commonly analyzed by (ultra) high performance liquid chromatography-mass spectrometry based ((U)HPLC-MS) methods. To maximize the utility of oxylipin profiling in clinical research, it is crucial to understand and assess the factors contributing to the analytical and biological variability of oxylipin profiles in humans. In this review, these factors and their impacts are summarized and discussed, providing a framework for recommendations expected to enhance the interlaboratory comparability and biological interpretation of oxylipin profiling in clinical research.


Subject(s)
Cardiovascular Diseases/metabolism , Chromatography, High Pressure Liquid/standards , Eicosanoids/analysis , Neurodegenerative Diseases/metabolism , Oxylipins/analysis , Tandem Mass Spectrometry/standards , Arachidonic Acid/chemistry , Arachidonic Acid/metabolism , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/physiopathology , Eicosanoids/chemistry , Eicosanoids/metabolism , Fatty Acids, Unsaturated/chemistry , Fatty Acids, Unsaturated/metabolism , Humans , Inflammation , Metabolomics/instrumentation , Metabolomics/methods , Metabolomics/organization & administration , Neurodegenerative Diseases/diagnosis , Neurodegenerative Diseases/physiopathology , Observer Variation , Oxylipins/chemistry , Oxylipins/metabolism , Reproducibility of Results , Vasoconstriction/physiology , Vasodilation/physiology
13.
J Biol Chem ; 294(23): 9225-9238, 2019 06 07.
Article in English | MEDLINE | ID: mdl-31061099

ABSTRACT

Eicosanoids are critical mediators of fever, pain, and inflammation generated by immune and tissue cells. We recently described a new bioactive eicosanoid generated by cyclooxygenase-1 (COX-1) turnover during platelet activation that can stimulate human neutrophil integrin expression. On the basis of mass spectrometry (MS/MS and MS3), stable isotope labeling, and GC-MS analysis, we previously proposed a structure of 8-hydroxy-9,11-dioxolane eicosatetraenoic acid (DXA3). Here, we achieved enzymatic synthesis and 1H NMR characterization of this compound with results in conflict with the previously proposed structural assignment. Accordingly, by using LC-MS, we screened autoxidation reactions of 11-hydroperoxy-eicosatetraenoic acid (11-HpETE) and thereby identified a candidate sharing the precise reverse-phase chromatographic and MS characteristics of the platelet product. We optimized these methods to increase yield, allowing full structural analysis by 1H NMR. The revised assignment is presented here as 8,9-11,12-diepoxy-13-hydroxyeicosadienoic acid, abbreviated to 8,9-11,12-DiEp-13-HEDE or DiEpHEDE, substituted for the previous name DXA3 We found that in platelets, the lipid likely forms via dioxolane ring opening with rearrangement to the diepoxy moieties followed by oxygen insertion at C13. We present its enzymatic biosynthetic pathway and MS/MS fragmentation pattern and, using the synthetic compound, demonstrate that it has bioactivity. For the platelet lipid, we estimate 16 isomers based on our current knowledge (and four isomers for the synthetic lipid). Determining the exact isomeric structure of the platelet lipid remains to be undertaken.


Subject(s)
Blood Platelets/metabolism , Eicosanoids/chemistry , Hydroxyeicosatetraenoic Acids/chemistry , Chromatography, High Pressure Liquid , Cyclooxygenase 1/metabolism , Eicosanoids/analysis , Gas Chromatography-Mass Spectrometry , Humans , Hydroxyeicosatetraenoic Acids/analysis , Hydroxyeicosatetraenoic Acids/chemical synthesis , Isomerism , Magnetic Resonance Spectroscopy , Molecular Conformation , Tandem Mass Spectrometry
14.
Anal Chem ; 91(13): 8025-8035, 2019 07 02.
Article in English | MEDLINE | ID: mdl-31074960

ABSTRACT

Analysis of oxylipins by liquid chromatography mass spectrometry (LC/MS) is challenging because of the small mass range occupied by this diverse lipid class, the presence of numerous structural isomers, and their low abundance in biological samples. Although highly sensitive LC/MS/MS methods are commonly used, further separation is achievable by using drift tube ion mobility coupled with high-resolution mass spectrometry (DTIM-MS). Herein, we present a combined analytical and computational method for the identification of oxylipins and fatty acids. We use a reversed-phase LC/DTIM-MS workflow able to profile and quantify (based on chromatographic peak area) the oxylipin and fatty acid content of biological samples while simultaneously acquiring full scan and product ion spectra. The information regarding accurate mass, collision-cross-section values in nitrogen (DTCCSN2), and retention times of the species found are compared to an internal library of lipid standards as well as the LIPID MAPS Structure Database by using specifically developed processing tools. Features detected within the DTCCSN2 and m/ z ranges of the analyzed standards are flagged as oxylipin-like species, which can be further characterized using drift-time alignment of product and precursor ions distinctive of DTIM-MS. This not only helps identification by reducing the number of annotations from LIPID MAPS but also guides discovery studies of potentially novel species. Testing the methodology on Salmonella enterica serovar Typhimurium-infected murine bone-marrow-derived macrophages and thrombin activated human platelets yields results in agreement with literature. This workflow has also annotated features as potentially novel oxylipins, confirming its ability in providing further insights into lipid analysis of biological samples.


Subject(s)
Chromatography, High Pressure Liquid/methods , Eicosanoids/analysis , Fatty Acids/analysis , Oxylipins/analysis , Tandem Mass Spectrometry/methods , Animals , Cells, Cultured , Humans , Ion Mobility Spectrometry/methods , Mice, Inbred C57BL
15.
Metabolomics ; 15(4): 65, 2019 04 19.
Article in English | MEDLINE | ID: mdl-31004236

ABSTRACT

INTRODUCTION: Eicosanoids are biological lipids that serve as both activators and suppressors of inflammation. Eicosanoid pathways are implicated in synovitis and joint destruction in inflammatory arthritis, yet they might also have a protective function, underscoring the need for a comprehensive understanding of how eicosanoid pathways might be imbalanced. Until recently, sensitive and scalable methods for detecting and quantifying a high number of eicosanoids have not been available. OBJECTIVE: Here, we intend to describe a detailed eicosanoid profiling in patients with psoriatic arthritis (PsA) and evaluate correlations with parameters of disease activity. METHODS: Forty-one patients with PsA, all of whom satisfied the CASPAR classification criteria for PsA, were studied. Outcomes reflecting the activity of peripheral arthritis as well as skin psoriasis, Disease Activity Score (DAS)28, Clinical Disease Index (CDAI) and Body Surface Area (BSA) were assessed. Serum eicosanoids were determined by LC-MS, and the correlation between metabolite levels and disease scores was evaluated. RESULTS: Sixty-six eicosanoids were identified by reverse-phase LC/MS. Certain eicosanoids species including several pro-inflammatory eicosanoids such as PGE2, HXB3 or 6,15-dk,dh,PGF1a correlated with joint disease score. Several eicosapentaenoic acid (EPA)-derived eicosanoids, which associate with anti-inflammatory properties, such as 11-HEPE, 12-HEPE and 15-HEPE, correlated with DAS28 (Disease Activity Score) and CDAI (Clinical Disease Activity Index) as well. Of interest, resolvin D1, a DHA-derived anti-inflammatory eicosanoid, was down-regulated in patients with high disease activity. CONCLUSION: Both pro- and anti-inflammatory eicosanoids were associated with joint disease score, potentially representing pathways of harm as well as benefit. Further studies are needed to determine whether these eicosanoid species might also play a role in the pathogenesis of joint inflammation in PsA.


Subject(s)
Arthritis, Psoriatic/immunology , Arthritis, Psoriatic/metabolism , Eicosanoids/analysis , Adult , Anti-Inflammatory Agents , Chromatography, Reverse-Phase/methods , Eicosanoids/metabolism , Female , Humans , Inflammation/immunology , Inflammation/metabolism , Male , Mass Spectrometry/methods , Middle Aged , Skin/metabolism
16.
J Neurosci ; 39(23): 4606-4623, 2019 06 05.
Article in English | MEDLINE | ID: mdl-30902874

ABSTRACT

Major depressive disorder is the most common mental illness. Mounting evidence indicates that astrocytes play a crucial role in the pathophysiology of depression; however, the underlying molecular mechanisms remain elusive. Compared with other neuronal cell types, astrocytes are enriched for arachidonic acid metabolism. Herein, we observed brain-region-specific alterations of epoxyeicosatrienoic acid (EET) signaling, which is an arachidonic acid metabolic pathway, in both a mouse model of depression and postmortem samples from patients with depression. The enzymatic activity of soluble epoxide hydrolase (sEH), the key enzyme in EET signaling, was selectively increased in the mPFC of susceptible mice after chronic social defeated stress and was negatively correlated with the social interaction ratio, which is an indicator of depressive-like behavior. The specific deletion of Ephx2 (encode sEH) in adult astrocytes induced resilience to stress, whereas the impaired EET signaling in the mPFC evoked depressive-like behaviors in response to stress. sEH was mainly expressed on lysosomes of astrocytes. Using pharmacological and genetic approaches performed on C57BL/6J background adult male mice, we found that EET signaling modulated astrocytic ATP release in vitro and in vivo Moreover, astrocytic ATP release was required for the antidepressant-like effect of Ephx2 deletion in adult astrocytes. In addition, sEH inhibitors produced rapid antidepressant-like effects in multiple animal models of depression, including chronic social defeated stress and chronic mild stress. Together, our results highlight that EET signaling in astrocytes in the mPFC is essential for behavioral adaptation in response to psychiatric stress.SIGNIFICANCE STATEMENT Astrocytes, the most abundant glial cells of the brain, play a vital role in the pathophysiology of depression. Astrocytes secrete adenosine ATP, which modulates depressive-like behaviors. Notably, astrocytes are enriched for arachidonic acid metabolism. In the present study, we explored the hypothesis that epoxyeicosatrienoic acid signaling, an arachidonic acid metabolic pathway, modulates astrocytic ATP release and the expression of depressive-like behaviors. Our work demonstrated that epoxyeicosatrienoic acid signaling in astrocytes in the mPFC is essential for behavioral homeostatic adaptation in response to stress, and the extent of astrocyte functioning is greater than expected based on earlier reports.


Subject(s)
Astrocytes/metabolism , Depressive Disorder, Major/physiopathology , Eicosanoids/physiology , Prefrontal Cortex/physiology , Adult , Animals , Arachidonic Acids/metabolism , Behavior, Animal/drug effects , Brain Chemistry , Cells, Cultured , Depressive Disorder, Major/genetics , Disease Models, Animal , Double-Blind Method , Eicosanoids/analysis , Epoxide Hydrolases/deficiency , Epoxide Hydrolases/genetics , Epoxide Hydrolases/physiology , Genes, Reporter , Genetic Vectors/administration & dosage , Humans , Lentivirus/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Prefrontal Cortex/chemistry , Receptor, Fibroblast Growth Factor, Type 3/genetics , Receptor, Fibroblast Growth Factor, Type 3/physiology , Signal Transduction , Stress, Psychological/metabolism , Stress, Psychological/psychology , Suicide , Young Adult
17.
J Lipid Res ; 60(4): 758-766, 2019 04.
Article in English | MEDLINE | ID: mdl-30696699

ABSTRACT

Eicosanoids are lipid-mediator molecules with key roles in inflammatory skin diseases, such as psoriasis. Eicosanoids are released close to the source of inflammation, where they elicit local pleiotropic effects and dysregulations. Monitoring inflammatory mediators directly in skin lesions could provide new insights and therapeutic possibilities. Here, we analyzed dermal interstitial fluid samples obtained by dermal open-flow microperfusion in a rat model of skin inflammation. We developed a solid-phase extraction ultra-HPLC/MS/MS method to reliably and precisely analyze small-volume samples and quantified 11 eicosanoids [thromboxane B2, prostaglandin (PG) E2, PGD2, PGF2α, leukotriene B4, 15-HETE, 12-HETE, 5-HETE, 12-hydroxyeicosapentaenoic acid, 13-HODE, and 17-hydroxydocosahexaenoic acid]. Our method achieved a median intraday precision of approximately 5% and interday precision of approximately 8%. All calibration curves showed excellent linearity between 0.01 and 50 ng/ml (R2 > 0.980). In the rat model, eicosanoids were significantly increased in imiquimod-treated inflamed skin sites compared with untreated control sites. Oral treatment with an anti-inflammatory glucocorticoid decreased eicosanoid concentrations. These results show that a combination of tissue-specific sampling with LC/MS analytics is well suited for analyzing small sample volumes from minimally invasive sampling methods such as open-flow microperfusion or microdialysis to study local inflammation and the effect of treatments in skin diseases.


Subject(s)
Disease Models, Animal , Eicosanoids/analysis , Inflammation/metabolism , Skin Diseases/metabolism , Skin/chemistry , Solid Phase Extraction , Animals , Anti-Inflammatory Agents/pharmacology , Chromatography, High Pressure Liquid , Eicosanoids/antagonists & inhibitors , Eicosanoids/metabolism , Glucocorticoids/pharmacology , Inflammation/drug therapy , Male , Rats , Rats, Sprague-Dawley , Skin/metabolism , Skin Diseases/drug therapy , Tandem Mass Spectrometry
18.
Cell Chem Biol ; 26(3): 433-442.e4, 2019 03 21.
Article in English | MEDLINE | ID: mdl-30661990

ABSTRACT

Eicosanoids and related oxylipins are critical, small bioactive mediators of human physiology and inflammation. While ∼1,100 distinct species have been predicted to exist, to date, less than 150 of these molecules have been measured in humans, limiting our understanding of their role in human biology. Using a directed non-targeted mass spectrometry approach in conjunction with chemical networking of spectral fragmentation patterns, we find over 500 discrete chemical signals highly consistent with known and putative eicosanoids and related oxylipins in human plasma including 46 putative molecules not previously described. In plasma samples from 1,500 individuals, we find members of this expanded oxylipin library hold close association with markers of inflammation, as well as clinical characteristics linked with inflammation, including advancing age and obesity. These experimental and computational approaches enable discovery of new chemical entities and will shed important insight into the role of bioactive molecules in human health and disease.


Subject(s)
Eicosanoids/analysis , Oxylipins/analysis , Aged , Chromatography, High Pressure Liquid , Eicosanoids/blood , Eicosanoids/isolation & purification , Female , Humans , Inflammation/metabolism , Inflammation/pathology , Male , Middle Aged , Oxylipins/blood , Oxylipins/isolation & purification , Tandem Mass Spectrometry
19.
Differentiation ; 105: 27-32, 2019.
Article in English | MEDLINE | ID: mdl-30554008

ABSTRACT

Horse serum is commonly used as an additive to support the maintenance of hematopoietic progenitor cells in culture. However, the wide variability in the performance of different lots calls for parallel testing of multiple batches over extended periods of culture. Identification of the serum components that determine hematopoietic support would therefore save considerable time and effort and would help to standardize culture procedures. We report here that the ability of horse serum to support the self-renewal of multipotent murine hematopoietic progenitor FDCP-Mix cells is correlated to the concentration of specific fatty acid products of phospholipase A2 and more closely to the spectrum of eicosanoids generated by their further processing through cyclooxygenase and lipoxygenase pathways. Supportive sera have low levels of lysophosphatidylcholine and inflammatory eicosanoids. This links known markers of inflammation, infection and platelet activation to the ability of serum to maintain progenitor cells in an undifferentiated state, providing a means for prospective identification of suitable sera as well as quality control of the production process.


Subject(s)
Hematopoiesis , Hematopoietic Stem Cells/drug effects , Phospholipases A2/analysis , Serum/chemistry , Animals , Eicosanoids/analysis , Eicosanoids/pharmacology , Hematopoietic Stem Cells/cytology , Horses , Lipids/analysis , Lipids/pharmacology , Lipoxygenase/metabolism , Lysophosphatidylcholines/analysis , Lysophosphatidylcholines/pharmacology , Mass Spectrometry , Mice , Phospholipases A2/metabolism , Prostaglandin-Endoperoxide Synthases/metabolism , Serum/metabolism
20.
Eye Contact Lens ; 45(3): 171-181, 2019 May.
Article in English | MEDLINE | ID: mdl-30303825

ABSTRACT

PURPOSE: Lipid mediators of inflammation are a group of signaling molecules produced by various cells under physiological conditions and modulate the inflammatory process during various pathologic conditions. Although eicosanoids and F2-isoprostanes are recognized lipid mediators of inflammation, there is no consensus yet on the extraction and mass spectrometry (MS) method for their analysis in individual human tear samples. Thus, the aim of this study was to develop an optimal method for extraction of lipid mediators of inflammation in the tear film and evaluate MS techniques for their analysis. METHODS: Basal tears were collected from each eye of 19 subjects using glass microcapillaries. Lipid extraction was performed using either varying concentrations of acidified methanol, a modified Folch method, or solid-phase extraction. Initially, an untargeted analysis of the extracts was performed using SCIEX TripleTOF 5600 mass spectrometer to identify any lipid mediators of inflammation (eicosanoids) and later a targeted analysis was performed using the SCIEX 6500 Qtrap to identify and quantify prostaglandins and isoprostanes. Mass spectra and chromatograms were analyzed using Peakview, XCMS, and Multiquant software. RESULTS: Prostaglandins and isoprostanes were observed and quantified using the Qtrap mass spectrometer under multiple reaction monitoring (MRM) mode after solid-phase extraction. Extraction with acidified methanol along with the Folch method produced cleaner spectra during MS with the Triple time of flight (TOF) mass spectrometer. Lipid mediators of inflammation were not observed in any of the tear samples using the Triple TOF mass spectrometer. CONCLUSIONS: Solid-phase extraction may be the method of choice for extraction of prostaglandins and isoprostanes in low volumes of tears. The SCIEX Qtrap 6500 in MRM mode may be suitable to identify and quantify similar lipid mediators of inflammation.


Subject(s)
Eicosanoids/analysis , Inflammation Mediators/analysis , Isoprostanes/analysis , Tears/chemistry , Chromatography, High Pressure Liquid , Female , Humans , Male , Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...