Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 895
Filter
1.
Phys Med ; 121: 103360, 2024 May.
Article in English | MEDLINE | ID: mdl-38692114

ABSTRACT

This paper reports the development of dosimeters based on plastic scintillating fibers imaged by a charge-coupled device camera, and their performance evaluation through irradiations with the electron Flash research accelerator located at the Centro Pisano Flash Radiotherapy. The dosimeter prototypes were composed of a piece of plastic scintillating fiber optically coupled to a clear optical fiber which transported the scintillation signal to the readout systems (an imaging system and a photodiode). The following properties were tested: linearity, capability to reconstruct the percentage depth dose curve in solid water and to sample in time the single beam pulse. The stem effect contribution was evaluated with three methods, and a proof-of-concept one-dimensional array was developed and tested for online beam profiling. Results show linearity up to 10 Gy per pulse, and good capability to reconstruct both the timing and spatial profiles of the beam, thus suggesting that plastic scintillating fibers may be good candidates for low-energy electron Flash dosimetry.


Subject(s)
Electrons , Plastics , Radiation Dosimeters , Radiotherapy Dosage , Scintillation Counting , Electrons/therapeutic use , Scintillation Counting/instrumentation , Radiometry/instrumentation
2.
Sci Rep ; 14(1): 10957, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38740830

ABSTRACT

Very high energy electrons (VHEE) are a potential candidate for radiotherapy applications. This includes tumours in inhomogeneous regions such as lung and prostate cancers, due to the insensitivity of VHEE to inhomogeneities. This study explores how electrons in the VHEE range can be used to perform successful in vitro radiobiological studies. The ARES (accelerator research experiment at SINBAD) facility at DESY, Hamburg, Germany was used to deliver 154 MeV electrons to both prostate (PC3) and lung (A549) cancer cells in suspension. Dose was delivered to samples with repeatability and uniformity, quantified with Gafchromic film. Cell survival in response to VHEE was measured using the clonogenic assay to determine the biological effectiveness of VHEE in cancer cells for the first time using this method. Equivalent experiments were performed using 300 kVp X-rays, to enable VHEE irradiated cells to be compared with conventional photons. VHEE irradiated cancer cell survival was fitted to the linear quadratic (LQ) model (R2 = 0.96-0.97). The damage from VHEE and X-ray irradiated cells at doses between 1.41 and 6.33 Gy are comparable, suggesting similar relative biological effectiveness (RBE) between the two modalities. This suggests VHEE is as damaging as photon radiotherapy and therefore could be used to successfully damage cancer cells during radiotherapy. The RBE of VHEE was quantified as the relative doses required for 50% (D0.5) and 10% (D0.1) cell survival. Using these values, VHEE RBE was measured as 0.93 (D0.5) and 0.99 (D0.1) for A549 and 0.74 (D0.5) and 0.93 (D0.1) for PC3 cell lines respectively. For the first time, this study has shown that 154 MeV electrons can be used to effectively kill lung and prostate cancer cells, suggesting that VHEE would be a viable radiotherapy modality. Several studies have shown that VHEE has characteristics that would offer significant improvements over conventional photon radiotherapy for example, electrons are relatively easy to steer and can be used to deliver dose rapidly and with high efficiency. Studies have shown improved dose distribution with VHEE in treatment plans, in comparison to VMAT, indicating that VHEE can offer improved and safer treatment plans with reduced side effects. The biological response of cancer cells to VHEE has not been sufficiently studied as of yet, however this initial study provides some initial insights into cell damage. VHEE offers significant benefits over photon radiotherapy and therefore more studies are required to fully understand the biological effectiveness of VHEE.


Subject(s)
Cell Survival , Lung Neoplasms , Prostatic Neoplasms , Relative Biological Effectiveness , Humans , Prostatic Neoplasms/radiotherapy , Prostatic Neoplasms/pathology , Male , Lung Neoplasms/radiotherapy , Lung Neoplasms/pathology , Cell Survival/radiation effects , Electrons/therapeutic use , Particle Accelerators , PC-3 Cells , Cell Line, Tumor , A549 Cells
3.
Phys Med Biol ; 69(12)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38776943

ABSTRACT

Objective.To compare the accuracy with which different hadronic inelastic physics models across ten Geant4 Monte Carlo simulation toolkit versions can predict positron-emitting fragments produced along the beam path during carbon and oxygen ion therapy.Approach.Phantoms of polyethylene, gelatin, or poly(methyl methacrylate) were irradiated with monoenergetic carbon and oxygen ion beams. Post-irradiation, 4D PET images were acquired and parent11C,10C and15O radionuclides contributions in each voxel were determined from the extracted time activity curves. Next, the experimental configurations were simulated in Geant4 Monte Carlo versions 10.0 to 11.1, with three different fragmentation models-binary ion cascade (BIC), quantum molecular dynamics (QMD) and the Liege intranuclear cascade (INCL++) - 30 model-version combinations. Total positron annihilation and parent isotope production yields predicted by each simulation were compared between simulations and experiments using normalised mean squared error and Pearson cross-correlation coefficient. Finally, we compared the depth of the maximum positron annihilation yield and the distal point at which the positron yield decreases to 50% of peak between each model and the experimental results.Main results.Performance varied considerably across versions and models, with no one version/model combination providing the best prediction of all positron-emitting fragments in all evaluated target materials and irradiation conditions. BIC in Geant4 10.2 provided the best overall agreement with experimental results in the largest number of test cases. QMD consistently provided the best estimates of both the depth of peak positron yield (10.4 and 10.6) and the distal 50%-of-peak point (10.2), while BIC also performed well and INCL generally performed the worst across most Geant4 versions.Significance.The best predictions of the spatial distribution of positron annihilations and positron-emitting fragment production along the beam path during carbon and oxygen ion therapy was obtained using Geant4 10.2.p03 with BIC or QMD. These version/model combinations are recommended for future heavy ion therapy research.


Subject(s)
Monte Carlo Method , Electrons/therapeutic use , Heavy Ion Radiotherapy/methods , Positron-Emission Tomography , Phantoms, Imaging
4.
Biomed Phys Eng Express ; 10(4)2024 May 14.
Article in English | MEDLINE | ID: mdl-38688251

ABSTRACT

Purpose.The aim of this study is to determine the planar dose distribution of irregularly-shaped electron beams at their maximum dose depth (zmax) using the modied lateral build-up ratio (LBR) and curve-fitting methods.Methods.Circular and irregular cutouts were created using Cerrobend alloy for a 14 × 14 cm2applicator. Percentage depth dose (PDD) at the standard source-surface-distance (SSD = 100 cm) and point dose at different SSD were measured for each cutout. Orthogonal profiles of the cutouts were measured atzmax. Data were collected for 6, 9, 12, and 15 MeV electron beam energies on a VERSA HDTMLINAC using the IBA Blue Phantom23D water phantom system. The planar dose distributions of the cutouts were also measured atzmaxin solid water using EDR2 films.Results.The measured PDD curves were normalized to a normalization depth (d0) of 1 mm. The lateral-buildup-ratio (LBR), lateral spread parameter (σR(z)), and effective SSD (SSDeff) for each cutout were calculated using the PDD of the open applicator as the reference field. The modified LBR method was then employed to calculate the planar dose distribution of the irregular cutouts within the field at least 5 mm from the edge. A simple curve-fitting model was developed based on the profile shapes of the circular cutouts around the field edge. This model was used to calculate the planar dose distribution of the irregular cutouts in the region from 3 mm outside to 5 mm inside the field edge. Finally, the calculated planar dose distribution was compared with the film measurement.Conclusions.The planar dose distribution of electron therapy for irregular cutouts atzmaxwas calculated using the improved LBR method and a simple curve-fitting model. The calculated profiles were within 3% of the measured values. The gamma passing rate with a 3%/3 mm and 10% dose threshold was more than 96%.


Subject(s)
Electrons , Phantoms, Imaging , Radiotherapy Dosage , Electrons/therapeutic use , Humans , Radiotherapy Planning, Computer-Assisted/methods , Algorithms , Water/chemistry , Monte Carlo Method
5.
J Appl Clin Med Phys ; 25(5): e14366, 2024 May.
Article in English | MEDLINE | ID: mdl-38669190

ABSTRACT

PURPOSE: Skin collimation is a useful tool in electron beam therapy (EBT) to decrease the penumbra at the field edge and minimize dose to nearby superficial organs at risk (OARs), but manually fabricating these collimation devices in the clinic to conform to the patient's anatomy can be a difficult and time intensive process. This work compares two types of patient-specific skin collimation (in-house 3D printed and vendor-provided machined brass) using clinically relevant metrics. METHODS: Attenuation measurements were performed to determine the thickness of each material needed to adequately shield both 6 and 9 MeV electron beams. Relative and absolute dose planes at various depths were measured using radiochromic film to compare the surface dose, flatness, and penumbra of the different skin collimation materials. RESULTS: Clinically acceptable thicknesses of each material were determined for both 6 and 9 MeV electron beams. Field width, flatness, and penumbra results between the two systems were very similar and significantly improved compared to measurements performed with no surface collimation. CONCLUSION: Both skin collimation methods investigated in this work generate sharp penumbras at the field edge and can minimize dose to superficial OARs compared to treatment fields with no surface collimation. The benefits of skin collimation are greatest for lower energy electron beams, and the benefits decrease as the measurement depth increases. Using bolus with skin collimation is recommended to avoid surface dose enhancement seen with collimators placed on the skin surface. Ultimately, the appropriate choice of material will depend on the desire to create these devices in-house or outsource the fabrication to a vendor.


Subject(s)
Electrons , Organs at Risk , Printing, Three-Dimensional , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Skin , Humans , Electrons/therapeutic use , Radiotherapy Planning, Computer-Assisted/methods , Organs at Risk/radiation effects , Skin/radiation effects , Phantoms, Imaging , Neoplasms/radiotherapy , Particle Accelerators/instrumentation
6.
Phys Med ; 121: 103346, 2024 May.
Article in English | MEDLINE | ID: mdl-38608421

ABSTRACT

Partial breast irradiation for the treatment of early-stage breast cancer patients can be performed by means of Intra Operative electron Radiation Therapy (IOeRT). One of the main limitations of this technique is the absence of a treatment planning system (TPS) that could greatly help in ensuring a proper coverage of the target volume during irradiation. An IOeRT TPS has been developed using a fast Monte Carlo (MC) and an ultrasound imaging system to provide the best irradiation strategy (electron beam energy, applicator position and bevel angle) and to facilitate the optimisation of dose prescription and delivery to the target volume while maximising the organs at risk sparing. The study has been performed in silico, exploiting MC simulations of a breast cancer treatment. Ultrasound-based input has been used to compute the absorbed dose maps in different irradiation strategies and a quantitative comparison between the different options was carried out using Dose Volume Histograms. The system was capable of exploring different beam energies and applicator positions in few minutes, identifying the best strategy with an overall computation time that was found to be completely compatible with clinical implementation. The systematic uncertainty related to tissue deformation during treatment delivery with respect to imaging acquisition was taken into account. The potential and feasibility of a GPU based full MC TPS implementation of IOeRT breast cancer treatments has been demonstrated in-silico. This long awaited tool will greatly improve the treatment safety and efficacy, overcoming the limits identified within the clinical trials carried out so far.


Subject(s)
Breast Neoplasms , Monte Carlo Method , Radiotherapy Planning, Computer-Assisted , Breast Neoplasms/radiotherapy , Breast Neoplasms/diagnostic imaging , Humans , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy Dosage , Electrons/therapeutic use , Time Factors , Computer Graphics , Female , Organs at Risk/radiation effects
7.
Phys Med Biol ; 69(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38640916

ABSTRACT

Objective.Beam current transformers (BCT) are promising detectors for real-time beam monitoring in ultra-high dose rate (UHDR) electron radiotherapy. However, previous studies have reported a significant sensitivity of the BCT signal to changes in source-to-surface distance (SSD), field size, and phantom material which have until now been attributed to the fluctuating levels of electrons backscattered within the BCT. The purpose of this study is to evaluate this hypothesis, with the goal of understanding and mitigating the variations in BCT signal due to changes in irradiation conditions.Approach.Monte Carlo simulations and experimental measurements were conducted with a UHDR-capable intra-operative electron linear accelerator to analyze the impact of backscattered electrons on BCT signal. The potential influence of charge accumulation in media as a mechanism affecting BCT signal perturbation was further investigated by examining the effects of phantom conductivity and electrical grounding. Finally, the effectiveness of Faraday shielding to mitigate BCT signal variations is evaluated.Main Results.Monte Carlo simulations indicated that the fraction of electrons backscattered in water and on the collimator plastic at 6 and 9 MeV is lower than 1%, suggesting that backscattered electrons alone cannot account for the observed BCT signal variations. However, our experimental measurements confirmed previous findings of BCT response variation up to 15% for different field diameters. A significant impact of phantom type on BCT response was also observed, with variations in BCT signal as high as 14.1% when comparing measurements in water and solid water. The introduction of a Faraday shield to our applicators effectively mitigated the dependencies of BCT signal on SSD, field size, and phantom material.Significance.Our results indicate that variations in BCT signal as a function of SSD, field size, and phantom material are likely driven by an electric field originating in dielectric materials exposed to the UHDR electron beam. Strategies such as Faraday shielding were shown to effectively prevent these electric fields from affecting BCT signal, enabling reliable BCT-based electron UHDR beam monitoring.


Subject(s)
Electrons , Monte Carlo Method , Phantoms, Imaging , Scattering, Radiation , Electrons/therapeutic use , Particle Accelerators , Radiation Dosage
8.
Med Phys ; 51(6): 4536-4545, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38639653

ABSTRACT

BACKGROUND: Plane-parallel ionization chambers are the recommended secondary standard systems for clinical reference dosimetry of electrons. Dosimetry in high dose rate and dose-per-pulse (DPP) is challenging as ionization chambers are subject to ion recombination, especially when dose rate and/or DPP is increased beyond the range of conventional radiotherapy. The lack of universally accepted models for correction of ion recombination in UDHR is still an issue as it is, especially in FLASH-RT research, which is crucial in order to be able to accurately measure the dose for a wide range of dose rates and DPPs. PURPOSE: The objective of this study was to show the feasibility of developing an Artificial Intelligence model to predict the ion-recombination factor-ksat for a plane-parallel Advanced Markus ionization chamber for conventional and ultra-high dose rate electron beams based on machine parameters. In addition, the predicted ksat of the AI model was compared with the current applied analytical models for this correction factor. METHODS: A total number of 425 measurements was collected with a balanced variety in machine parameter settings. The specific ksat values were determined by dividing the output of the reference dosimeter (optically stimulated luminescence [OSL]) by the output of the AM chamber. Subsequently, a XGBoost regression model was trained, which used the different machine parameters as input features and the corresponding ksat value as output. The prediction accuracy of this regression model was characterized by R2-coefficient of determination, mean absolute error and root mean squared error. In addition, the model was compared with the Two-Voltage (TVA) method and empirical Petersson model for 19 different dose-per-pulse values ranging from conventional to UDHR regimes. The Akiake Information criterion (AIC) was calculated for the three different models. RESULTS: The XGBoost regression model reached a R2-score of 0.94 on the independent test set with a MAE of 0.067 and RMSE of 0.106. For the additional 19 random data points, the ksat values predicted by the XGBoost model showed to be in agreement, within the uncertainties, with the ones determined by the Petersson model and better than the TVA method for doses per pulse >3.5 Gy with a maximum deviation from the ground truth of 14.2%, 16.7%, and -36.0%, respectively, for DPP >4 Gy. CONCLUSION: The proposed method of using AI for ksat determination displays efficiency. For the investigated DPPs, the ksat values obtained with the XGBoost model were in concurrence with the ones obtained with the current available analytical models within the boundaries of uncertainty, certainly for the DPP characterizing UDHR. But the overall performance of the AI model, taking the number of free parameters into account, lacked efficiency. Future research should optimize the determination of the experimental ksat, and investigate the determination the ksat for DPPs higher than the ones investigated in this study, while also evaluating the prediction of the proposed XGBoost model for UDHR machines of different centers.


Subject(s)
Electrons , Radiometry , Radiotherapy Dosage , Electrons/therapeutic use , Radiometry/instrumentation , Radiometry/methods , Automation , Radiation Dosage , Artificial Intelligence
9.
J Appl Clin Med Phys ; 25(7): e14347, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38576174

ABSTRACT

PURPOSE: This work investigated the dosimetric accuracy of the intensity-modulated bolus electron conformal therapy (IM-BECT) planning and delivery process using the decimal ElectronRT (eRT) treatment planning system. METHODS: An IM-BECT treatment plan was designed using eRT for a cylindrical, anthropomorphic retromolar trigone phantom. Treatment planning involved specification of beam parameters and design of a variable thickness wax bolus and Passive Radiotherapy Intensity Modulator for Electrons (PRIME) device, which was comprised of 33 tungsten island blocks of discrete diameters from 0.158 to 0.223 cm (Intensity Reduction Factors from 0.937 to 0.875, respectively) inside a 10.1 × 6.7 cm2 copper cutout. For comparison of calculation accuracy, a BECT plan was generated by copying the IM-BECT plan and removing the intensity modulation. For both plans, a 16 MeV electron beam was used with 104.7 cm source-to-surface distance to bolus. In-phantom TLD-100 measurements (N = 47) were compared with both eRT planned dose distributions, which used the pencil beam redefinition algorithm with modifications for passive electron intensity modulation (IM-PBRA). Dose difference and distance to agreement (DTA) metrics were computed for each measurement point. RESULTS: Comparison of measured dose distributions with planned dose distributions yielded dose differences (calculated minus measured) characterized by a mean and standard deviation of -0.36% ± 1.64% for the IM-BECT plan, which was similar to -0.36% ± 1.90% for the BECT plan. All dose measurements were within 5% of the planned dose distribution, with both the BECT and IM-BECT measurement sets having 46/47 (97.8%) points within 3% or within 3 mm of the respective treatment plans. CONCLUSIONS: It was found that the IM-BECT treatment plan generated using eRT was sufficiently accurate for clinical use when compared to TLD measurements in a cylindrical, anthropomorphic phantom, and was similarly accurate to the BECT treatment plan in the same phantom.


Subject(s)
Electrons , Phantoms, Imaging , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated , Humans , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Electrons/therapeutic use , Algorithms , Organs at Risk/radiation effects , Radiometry/methods , Head/radiation effects
10.
Radiother Oncol ; 194: 110197, 2024 May.
Article in English | MEDLINE | ID: mdl-38447870

ABSTRACT

PURPOSE: A better characterization of the dependence of the tissue sparing effect at ultra-high dose rate (UHDR) on physical beam parameters (dose, dose rate, radiation quality) would be helpful towards a mechanistic understanding of the FLASH effect and for its broader clinical translation. To address this, a comprehensive study on the normal tissue sparing at UHDR using the zebrafish embryo (ZFE) model was conducted. METHODS: One-day-old ZFE were irradiated over a wide dose range (15-95 Gy) in three different beams (proton entrance channel, proton spread out Bragg peak and 30 MeV electrons) at UHDR and reference dose rate. After irradiation the ZFE were incubated for 4 days and then analyzed for four different biological endpoints (pericardial edema, curved spine, embryo length and eye diameter). RESULTS: Dose-effect curves were obtained and a sparing effect at UHDR was observed for all three beams. It was demonstrated that proton relative biological effectiveness and UHDR sparing are both relevant to predict the resulting dose response. Dose dependent FLASH modifying factors (FMF) for ZFE were found to be compatible with rodent data from the literature. It was found that the UHDR sparing effect saturates at doses above âˆ¼ 50 Gy with an FMF of âˆ¼ 0.7-0.8. A strong dose rate dependence of the tissue sparing effect in ZFE was observed. The magnitude of the maximum sparing effect was comparable for all studied biological endpoints. CONCLUSION: The ZFE model was shown to be a suitable pre-clinical high-throughput model for radiobiological studies on FLASH radiotherapy, providing results comparable to rodent models. This underlines the relevance of ZFE studies for FLASH radiotherapy research.


Subject(s)
Dose-Response Relationship, Radiation , Electrons , Embryo, Nonmammalian , Zebrafish , Animals , Zebrafish/embryology , Electrons/therapeutic use , Embryo, Nonmammalian/radiation effects , Proton Therapy/methods , Radiotherapy Dosage , Protons , Relative Biological Effectiveness
11.
Int J Radiat Oncol Biol Phys ; 119(4): 1317-1325, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38552990

ABSTRACT

PURPOSE: In this study, a C-series linear accelerator was configured to enable rapid and reliable conversion between the production of conventional electron beams and an ultrahigh-dose-rate (UHDR) electron beamline to the treatment room isocenter for FLASH radiation therapy. Efforts to tune the beam resulted in a consistent, stable UHDR beamline. METHODS AND MATERIALS: The linear accelerator was configured to allow for efficient switching between conventional and modified electron output modes within 2 minutes. Additions to the air system allow for retraction of the x-ray target from the beamline when the 10 MV photon mode is selected. With the carousel set to an empty port, this grants access to the higher current pristine electron beam normally used to produce clinical photon fields. Monitoring signals related to the automatic frequency control system allows for tuning of the waveguide while the machine is in a hold state so a stable beam is produced from the initial pulse. A pulse counting system implemented on an field-programmable gate array-based controller platform controls the delivery to a desired number of pulses. Beam profiles were measured with Gafchromic film. Pulse-by-pulse dosimetry was measured using a custom electrometer designed around the EDGE diode. RESULTS: This method reliably produces a stable UHDR electron beam. Open-field measurements of the 16-cm full-width, half-maximum gaussian beam saw average dose rates of 432 Gy/s at treatment isocenter. Pulse overshoots were limited and ramp up was eliminated. Over the last year, there have been no recorded incidents that resulted in machine downtime due to the UHDR conversions. CONCLUSIONS: Stable 10 MeV UHDR beams were generated to produce an average dose rate of 432 Gy/s at the treatment room isocenter. With a reliable pulse-counting beam control system, consistent doses can be delivered for FLASH experiments with the ability to accommodate a wide range of field sizes, source-to-surface distances, and other experimental apparatus that may be relevant for future clinical translation.


Subject(s)
Electrons , Particle Accelerators , Photons , Particle Accelerators/instrumentation , Electrons/therapeutic use , Photons/therapeutic use , Equipment Design , Radiotherapy Dosage , Time Factors , Radiotherapy, High-Energy/instrumentation , Radiotherapy, High-Energy/methods
12.
Med Phys ; 51(7): 5109-5118, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38493501

ABSTRACT

BACKGROUND: FLASH radiotherapy based on ultra-high dose rate (UHDR) is actively being studied by the radiotherapy community. Dedicated UHDR electron devices are currently a mainstay for FLASH studies. PURPOSE: To present the first Monte Carlo (MC) electron beam model for the UHDR capable Mobetron (FLASH-IQ) as a dose calculation and treatment planning platform for preclinical research and FLASH-radiotherapy (RT) clinical trials. METHODS: The initial beamline geometry of the Mobetron was provided by the manufacturer, with the first-principal implementation realized in the Geant4-based GAMOS MC toolkit. The geometry and electron source characteristics, such as energy spectrum and beamline parameters, were tuned to match the central-axis percentage depth dose (PDD) and lateral profiles for the pristine beam measured during machine commissioning. The thickness of the small foil in secondary scatter affected the beam model dominantly and was fine tuned to achieve the best agreement with commissioning data. Validation of the MC beam modeling was performed by comparing the calculated PDDs and profiles with EBT-XD radiochromic film measurements for various combinations of applicators and inserts. RESULTS: The nominal 9 MeV electron FLASH beams were best represented by a Gaussian energy spectrum with mean energy of 9.9 MeV and variance (σ) of 0.2 MeV. Good agreement between the MC beam model and commissioning data were demonstrated with maximal discrepancy < 3% for PDDs and profiles. Hundred percent gamma pass rate was achieved for all PDDs and profiles with the criteria of 2 mm/3%. With the criteria of 2 mm/2%, maximum, minimum and mean gamma pass rates were (100.0%, 93.8%, 98.7%) for PDDs and (100.0%, 96.7%, 99.4%) for profiles, respectively. CONCLUSIONS: A validated MC beam model for the UHDR capable Mobetron is presented for the first time. The MC model can be utilized for direct dose calculation or to generate beam modeling input required for treatment planning systems for FLASH-RT planning. The beam model presented in this work should facilitate translational and clinical FLASH-RT for trials conducted on the Mobetron FLASH-IQ platform.


Subject(s)
Electrons , Monte Carlo Method , Particle Accelerators , Radiotherapy Dosage , Electrons/therapeutic use , Radiotherapy Planning, Computer-Assisted/methods , Radiation Dosage
13.
Radiother Oncol ; 194: 110177, 2024 May.
Article in English | MEDLINE | ID: mdl-38378075

ABSTRACT

PURPOSE: Clinical translation of FLASH-radiotherapy (RT) to deep-seated tumours is still a technological challenge. One proposed solution consists of using ultra-high dose rate transmission proton (TP) beams of about 200-250 MeV to irradiate the tumour with the flat entrance of the proton depth-dose profile. This work evaluates the dosimetric performance of very high-energy electron (VHEE)-based RT (50-250 MeV) as a potential alternative to TP-based RT for the clinical transfer of the FLASH effect. METHODS: Basic physics characteristics of VHEE and TP beams were compared utilizing Monte Carlo simulations in water. A VHEE-enabled research treatment planning system was used to evaluate the plan quality achievable with VHEE beams of different energies, compared to 250 MeV TP beams for a glioblastoma, an oesophagus, and a prostate cancer case. RESULTS: Like TP, VHEE above 100 MeV can treat targets with roughly flat (within ± 20 %) depth-dose distributions. The achievable dosimetric target conformity and adjacent organs-at-risk (OAR) sparing is consequently driven for both modalities by their lateral beam penumbrae. Electron beams of 400[500] MeV match the penumbra of 200[250] MeV TP beams and penumbra is increased for lower electron energies. For the investigated patient cases, VHEE plans with energies of 150 MeV and above achieved a dosimetric plan quality comparable to that of 250 MeV TP plans. For the glioblastoma and the oesophagus case, although having a decreased conformity, even 100 MeV VHEE plans provided a similar target coverage and OAR sparing compared to TP. CONCLUSIONS: VHEE-based FLASH-RT using sufficiently high beam energies may provide a lighter-particle alternative to TP-based FLASH-RT with comparable dosimetric plan quality.


Subject(s)
Electrons , Monte Carlo Method , Prostatic Neoplasms , Proton Therapy , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Humans , Electrons/therapeutic use , Proton Therapy/methods , Radiotherapy Planning, Computer-Assisted/methods , Prostatic Neoplasms/radiotherapy , Male , Esophageal Neoplasms/radiotherapy , Glioblastoma/radiotherapy , Radiotherapy, High-Energy/methods , Organs at Risk/radiation effects , Radiometry/methods
14.
J Appl Clin Med Phys ; 25(6): e14265, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38335230

ABSTRACT

BACKGROUND: Electron out-of-field scatter is generally not given importance mainly in electron fields. However, this is important when applicator down and boost treatments are given usually at an angle from the central axis. The electron scatter dose is found to be far away from the central axis which could be easily ignored. PURPOSE: This study aims to investigate the out-of-field radiation doses from electron applicators and their effects on clinical treatment. By identifying the parameters that contribute to out-of-field doses and to explore potential strategies for reducing these doses in order to improve patient outcomes from modern machines. METHODS: Measurements were performed in water phantom using electron diode for modern Elekta and Varian machines. Dose profiles were acquired at surface and dmax with 0° and 90° collimation angle. Various gantry angles were also studied for some data with IC Profiler. The profiles were normalized with respect to the central axis dose. RESULTS: The scatter dose peaks were found at a distance between 11 and 28 cm from the central axis on all machines. However, the peak shifts to 15 cm at 90° collimator when beam is tilted. The position and intensity of the dose varies with depth, collimator, and gantry angles for both Elekta and Varian machines. Due to clearance issues more gantry angles were studied for Elekta applicator compared to Varian. In general, Varian TrueBeam has a lower scatter that Elekta Infinity. The 90° collimator angle has a higher scatter compared to zero degree for both machines. CONCLUSIONS: There are clinically significant peripheral doses around 3% of the central axis dose from the electron applicator. Elekta has a slightly higher scatter (3%) than Varian (2%) that peaks at 25 cm which is clinically important but often overlooked.


Subject(s)
Electrons , Particle Accelerators , Phantoms, Imaging , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Scattering, Radiation , Particle Accelerators/instrumentation , Electrons/therapeutic use , Humans , Radiotherapy Planning, Computer-Assisted/methods , Neoplasms/radiotherapy , Radiotherapy, Intensity-Modulated/methods , Radiometry/methods
15.
Pract Radiat Oncol ; 14(4): e291-e300, 2024.
Article in English | MEDLINE | ID: mdl-38325547

ABSTRACT

PURPOSE: A 3-dimensinal (3D) stereoscopic camera system developed by .decimal was commissioned and implemented into the clinic to improve the efficiency of clinical electron simulations. Capabilities of the camera allowed simulations to be moved from the treatment vault into any room with a flat surface that could accommodate patient positioning devices, eliminating the need for clinical patient setup timeslots on the treatment machine. This work describes the process used for these simulations and compares the treatment parameters determined by the system to those used in delivery. METHODS AND MATERIALS: The Decimal3D scanner workflow consisted of: scanning the patient surface; contouring the treatment area; determining gantry, couch, collimator, and source-to-surface distance (SSD) parameters for en face entry of the beam with sufficient clearance at the machine; and ordering custom electron cutouts when needed. Transparencies showing the projection of in-house library cutouts at various clinical SSDs were created to assist in choosing an appropriate library cutout. Data from 73 treatment sites were analyzed to evaluate the accuracy of the scanner-determined beam parameters for each treatment delivery. RESULTS: Clinical electron simulations for 73 treatment sites, predominately keloids, were transitioned out of the linear accelerator (LINAC) vault using the new workflow. For all patients, gantry, collimator, and couch parameters, along with SSD and cone size, were determined using the Decimal3D scanner with 57% of simulations using library cutouts. Tolerance tables for patient setup were updated to allow differences of 10, 20, and 5° for gantry, collimator, and couch, respectively. Approximately 7% of fractions (N = 181 total fractions) were set up outside of the tolerance table based on physician direction during treatment. This reflects physician preference to adjust the LINAC rather than patient position during treatment setup. No scanner-derived plan was untreatable because of cutout shape inaccuracy or clearance issues. CONCLUSIONS: Clinical electron simulations were successfully transitioned out of the LINAC vault using the Decimal3D scanner without loss of setup accuracy, as measured through machine parameter determination and electron cutout shape.


Subject(s)
Electrons , Radiotherapy Planning, Computer-Assisted , Humans , Radiotherapy Planning, Computer-Assisted/methods , Electrons/therapeutic use , Radiotherapy Dosage , Imaging, Three-Dimensional/methods
16.
Clin Transl Oncol ; 26(7): 1623-1629, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38267659

ABSTRACT

INTRODUCTION: Intraoperative electron radiotherapy (IOERT) is a technique aiming to deliver radiotherapy during oncological surgery. In breast IOERT, the applicator and shielding disc placement are correlated with organs at risk (OAR) irradiation, in vivo verification of these parameters is scarcely reported. The aim of our study is to report and analyze possible causes of the misalignment using radiochromic films and compare our results to others reported in the bibliography. METHODS: From November 2019 to April 2023, in vivo verifications were performed for 33 patients. IOERT was performed using a LIAC 10 MeV (Sordina, Italy) electron accelerator. We attached a radiochromic film to the upper side of the polytetrafluoroethylene cover of the shielding disc. The percentage of the irradiation area outside the disc was recorded and various parameters (applicator angulations, prescription depth, tumor location and breast size) were analyzed to find possible correlations. RESULTS: For 29 patients, 20 Gy were prescribed while 10 Gy were prescribed to 4 patients. The average irradiated area outside the disc was 19% (0-56%) corresponding to a surface of 4.5 cm2 (0-17.4 cm2). The applicator of 5 cm was used for most of the patients. The mean prescription depth was 1.4 cm (0.5-2.5 cm). We found no correlation between the analyzed parameters and misalignment. CONCLUSION: This study confirms the presence and magnitude of the misalignments. We strongly recommend in vivo verifications as a quality check during IOERT procedures. The misalignment has no correlation with tumor localization parameters, so the solution could be based on technical improvements of the applicator.


Subject(s)
Breast Neoplasms , Electrons , Humans , Female , Breast Neoplasms/radiotherapy , Breast Neoplasms/surgery , Breast Neoplasms/pathology , Electrons/therapeutic use , Quality Control , Organs at Risk/radiation effects , Radiotherapy Dosage , Intraoperative Care/methods , Middle Aged , Particle Accelerators , Aged , Radiotherapy Planning, Computer-Assisted/methods , Adult
17.
Clin Breast Cancer ; 22(2): e167-e172, 2022 02.
Article in English | MEDLINE | ID: mdl-34257000

ABSTRACT

METHODS AND MATERIALS: From July 2006 to December 2015, 295 patients suitable for breast-conserving therapy entered a single-arm phase II study and were treated with IOERT as radical treatment. Inclusion criteria were age >50, postmenopausal status, cT1N0M0 stage, grade G1-G2, positive estrogen receptor status; unicentric and unifocal disease, histologically proven invasive ductal carcinoma no previous breast irradiation, good performance status. RESULTS: With a median follow-up of 7.1 years (95% CI, 6.5;7.4) 6 women (2.0%) experienced a true local recurrence (reappearance of the tumour in the same quadrant). Five-year overall survival and local recurrence-free survival were 96% (95% CI, 92.9;97.8) and 94.9% (95% CI, 91.6;97.0) respectively. CONCLUSION: Our trial suggests that, in highly selected early stage breast cancers, a single-dose IOERT can be safely delivered with excellent results and very low long-term recurrence rates.


Subject(s)
Breast Neoplasms/therapy , Electrons/therapeutic use , Mastectomy, Segmental/methods , Adult , Breast Neoplasms/pathology , Breast Neoplasms/surgery , Female , Humans , Italy , Middle Aged , Neoplasm Staging , Radiotherapy Dosage , Radiotherapy, Adjuvant , Treatment Outcome
18.
Clin. transl. oncol. (Print) ; 23(9): 1934-1941, sept. 2021. ilus
Article in English | IBECS | ID: ibc-222192

ABSTRACT

Background Pelvic recurrences from previously irradiated gynecological cancer lack solid evidence for recommendation on salvage. Methods A total of 58 patients were included in this clinical analysis. Salvage surgery was performed for locoregional relapse within previously irradiated pelvic area after initial surgery and adjuvant radiotherapy or radical external beam radiotherapy. The primary tumor diagnosis included cervical cancer (n = 47, 81%), uterine cancer (n = 4, 7%), and other types (n = 7, 12%). Thirty-three patients received adjuvant IOERT (1984–2000) at a median dose of 15 Gy (range 10–20 Gy) and 25 patients received adjuvant PHDRB (2001–2016) at a median dose of 32 Gy (range 24–40 Gy) in 6, 8, or 10 b.i.d. fractions. Results The median follow-up was 5.6 years (range 0.5–14.2 years). Twenty-nine (50.0%) patients had positive surgical margins. Grade ≥ 3 toxic events were recorded in 34 (58.6%) patients. The local control rate at 2 years was 51% and remained stable up to 14 years. Disease-free survival rates at 2, 5, and 10 years were 17.2, 15.5, and 15.5%, respectively. Overall survival rates at 2, 5, and 10 years were 58.1, 17.8, and 17.8%, respectively. Conclusions IOERT and PHDRB account for an effective salvage in oligorecurrent gynecological tumors. Patients with previous pelvic radiation suitable for salvage surgery and at risk of inadequate margins could benefit from adjuvant reirradiation in form of IOERT or PHDRB. However, the rate of severe grade ≥ 3 toxicity associated with the entire treatment program is relevant and needs to be closely counterbalanced against the expected therapeutic gain (AU)


Subject(s)
Humans , Female , Adult , Middle Aged , Aged , Brachytherapy/adverse effects , Electrons/therapeutic use , Genital Neoplasms, Female/radiotherapy , Neoplasm Recurrence, Local/radiotherapy , Re-Irradiation/methods , Salvage Therapy/methods , Electrons/adverse effects , Genital Neoplasms, Female/mortality , Genital Neoplasms, Female/surgery , Neoplasm Recurrence, Local/mortality , Neoplasm Recurrence, Local/surgery , Radiotherapy, Adjuvant , Re-Irradiation/adverse effects , Salvage Therapy/adverse effects , Survival Rate , Treatment Outcome
19.
Sci Rep ; 11(1): 17104, 2021 08 24.
Article in English | MEDLINE | ID: mdl-34429440

ABSTRACT

Recent studies indicate better efficacy and healthy tissue sparing with high dose-rate FLASH radiotherapy (FLASH-RT) cancer treatment. This technique delivers a prompt high radiation dose rather than fractional doses over time. While some suggest thresholds of > 40 Gy s-1 with a maximal effect at > 100 Gy s-1, accumulated evidence shows that instantaneous dose-rate and irradiation time are critical. Mechanisms are still debated, but toxicity is minimized while inducing apoptosis in malignant tissue. Delivery technologies to date show that a capability gap exists with clinic scale, broad area, deep penetrating, high dose rate systems. Based on these trends, if FLASH-RT is adopted, it may become a dominant approach except in the least technologically advanced countries. The linear induction accelerator (LIA) developed for high instantaneous and high average dose-rate, species independent charged particle acceleration, has yet to be considered for this application. We review the status of LIA technology, explore the physics of bremsstrahlung-converter-target interactions and our work on stabilizing the electron beam. While the gradient of the LIA is low, we present our preliminary work to improve the gradient by an order of magnitude, presenting a point design for a multibeam FLASH-RT system using a single accelerator for application to conformal FLASH-RT.


Subject(s)
Particle Accelerators/standards , Radiotherapy/methods , Electrons/therapeutic use , Humans , Radiotherapy/adverse effects , Radiotherapy/instrumentation , Radiotherapy Dosage
20.
Clin. transl. oncol. (Print) ; 23(8): 1593-1600, ago. 2021. ilus
Article in English | IBECS | ID: ibc-222158

ABSTRACT

Purpose The administration of a dose boost to the tumor bed after breast-conserving surgery has proven to reduce local recurrence. Intra-operative electron radiotherapy (IOERT) offers an alternative method to deliver a boost with several advantages, such as direct visualization of the tumor bed, less inter- and intrafraction motion and a reduction in the number of medical appointments. The objective of our study is to assess chronic toxicity and long-term outcome for our patients after IOERT boost. Material and methods Forty-six patients treated at our institution between July 2013 and June 2020 with IOERT boost during Breast-Conserving Surgery and consecutive whole breast irradiation were prospectively analyzed. A 10–12 Gy boost was prescribed to 42 patients and 4 patients received a 20 Gy boost. An analysis for overall survival, local relapse and distant progression was performed. Acute and chronic toxicity was assessed by CTCAE 4.0. Results The median age was 64.5 years (40–90). The median follow-up was 62 months (4–86). We had no local recurrences but 2 patients (4.3%) presented a distant recurrence. Mean pathological tumor size was 16 mm (6–52). 84.8% (39) of the patients had invasive ductal carcinoma. 52.2% (24) presented histological grade II. 52.2% (24) were Luminal A like, 21.7% (10) Luminal B like, 13% (6) HER2 positive, 13% (6) triple negative. No Grade 3–4 chronic toxicity was observed. Grade 1–2 fibrosis was evidenced in 13% (6) of the patients, 4.3% (2) patients presented fat necrosis, 6.5% (3) presented seroma, 4.3% (2) had localized pain, 2.2% (1) presented localized hematoma and 2.2% (1) presented localized edema. Conclusions IOERT boost in breast cancer treatment during BCS is a safe option with low chronic toxicity. The recurrence rates are comparable to published data and emphasize that IOERT as boost is an effective treatment (AU)


Subject(s)
Humans , Female , Adult , Middle Aged , Aged , Aged, 80 and over , Carcinoma, Ductal, Breast/radiotherapy , Carcinoma, Ductal, Breast/surgery , Breast Neoplasms/radiotherapy , Breast Neoplasms/surgery , Electrons/therapeutic use , Carcinoma, Ductal, Breast/mortality , Breast Neoplasms/mortality , Intraoperative Period , Mastectomy, Segmental , Prospective Studies , Radiation Injuries , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...