Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 267
Filter
3.
Bull Math Biol ; 86(8): 97, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38935181

ABSTRACT

We introduce a model that can be used for the description of the distribution of species when there is scarcity of data, based on our previous work (Ballesteros et al. J Math Biol 85(4):31, 2022). We address challenges in modeling species that are seldom observed in nature, for example species included in The International Union for Conservation of Nature's Red List of Threatened Species (IUCN 2023). We introduce a general method and test it using a case study of a near threatened species of amphibians called Plectrohyla Guatemalensis (see IUCN 2023) in a region of the UNESCO natural reserve "Tacaná Volcano", in the border between Mexico and Guatemala. Since threatened species are difficult to find in nature, collected data can be extremely reduced. This produces a mathematical problem in the sense that the usual modeling in terms of Markov random fields representing individuals associated to locations in a grid generates artificial clusters around the observations, which are unreasonable. We propose a different approach in which our random variables describe yearly averages of expectation values of the number of individuals instead of individuals (and they take values on a compact interval). Our approach takes advantage of intuitive insights from environmental properties: in nature individuals are attracted or repulsed by specific features (Ballesteros et al. J Math Biol 85(4):31, 2022). Drawing inspiration from quantum mechanics, we incorporate quantum Hamiltonians into classical statistical mechanics (i.e. Gibbs measures or Markov random fields). The equilibrium between spreading and attractive/repulsive forces governs the behavior of the species, expressed through a global control problem involving an energy operator.


Subject(s)
Conservation of Natural Resources , Endangered Species , Markov Chains , Mathematical Concepts , Models, Biological , Population Density , Animals , Endangered Species/statistics & numerical data , Mexico , Conservation of Natural Resources/statistics & numerical data , Guatemala , Anura/physiology , Ecosystem , Animal Distribution , Population Dynamics/statistics & numerical data
4.
Nature ; 630(8016): 387-391, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38839953

ABSTRACT

Threatened species are by definition species that are in need of assistance. In the absence of suitable conservation interventions, they are likely to disappear soon1. There is limited understanding of how and where conservation interventions are applied globally, or how well they work2,3. Here, using information from the International Union for Conservation of Nature Red List and other global databases, we find that for species at risk from three of the biggest drivers of biodiversity loss-habitat loss, overexploitation for international trade and invasive species4-many appear to lack the appropriate types of conservation interventions. Indeed, although there has been substantial recent expansion of the protected area network, we still find that 91% of threatened species have insufficient representation of their habitats within protected areas. Conservation interventions are not implemented uniformly across different taxa and regions and, even when present, have infrequently led to substantial improvements in the status of species. For 58% of the world's threatened terrestrial species, we find conservation interventions to be notably insufficient or absent. We cannot determine whether such species are truly neglected, or whether efforts to recover them are not included in major conservation databases. If they are indeed neglected, the outlook for many of the world's threatened species is grim without more and better targeted action.


Subject(s)
Biodiversity , Conservation of Natural Resources , Endangered Species , Internationality , Animals , Conservation of Natural Resources/methods , Conservation of Natural Resources/statistics & numerical data , Databases, Factual , Endangered Species/statistics & numerical data , Extinction, Biological , Introduced Species/statistics & numerical data
6.
BMC Ecol Evol ; 24(1): 64, 2024 May 19.
Article in English | MEDLINE | ID: mdl-38764016

ABSTRACT

Flying foxes of the genus Pteropus, especially those inhabiting islands, face increasing pressure from anthropogenic threats. A first step to implementing effective conservation actions is to establish monitoring projects to understand a species' population status and trend. Pteropus species are highly affected by seasonality which further requires regular, repeated, and long-term data to understand population trends, and reactions to severe weather events. In the present case study, a regular, bi-annual population census was implemented on Comoros between 2016 and 2023 for the highly threatened Livingstone's fruit bat, Pteropus livingstonii, and compared the results of standardized monitoring to historical population data. Seasonality had a large impact on the number of bats found at roost sites, with more bats present in the wet season, but the data over the past eight years revealed no significant in- or decrease in the number of bats counted on the island Anjouan. We estimated around 1,200-1,500 bats on Anjouan and 300-400 bats on Mohéli, and found that landcover type has no measurable effect on population distribution at roost sites. Our study highlights the need for long-term surveys to understand past population trends and that single counts are not sufficient to draw final conclusions of a species' status.


Subject(s)
Chiroptera , Endangered Species , Seasons , Animals , Comoros/epidemiology , Endangered Species/trends , Endangered Species/statistics & numerical data , Population Dynamics/trends , Conservation of Natural Resources/trends , Population Density
7.
PLoS One ; 19(5): e0299783, 2024.
Article in English | MEDLINE | ID: mdl-38748670

ABSTRACT

Unsustainable trade in big cats affects all species in the genus, Panthera, and is one of the foremost threats to their conservation. To provide further insight into the impact of policy interventions intended to address this issue, we examine the case study of the Republic of Korea (South Korea), which in the early 1990s was one of the world's largest importers of tiger (Panthera tigris) bone and a major manufacturer of tiger-derived medicinal products. In 1993, South Korea became a Party to the Convention on International Trade in Endangered Species (CITES) and introduced a ban on commercial trade in CITES Appendix I-listed big cats a year later. We used an expert-based questionnaire survey and an exploration of the CITES trade database to investigate what has since happened to big cat trade in South Korea. Expert opinion suggested that big cat trade has likely substantially reduced since the early 1990s, as a result of the trade ban and broad socioeconomic changes. However, illegal trade has not been eradicated entirely and we were able to confirm that products reportedly derived from big cats were still publicly available for sale on a range of Korean online marketplaces, sometimes openly. The items most commonly reported by respondents from post-1994 trade and supported by expert-led evidence were tiger and leopard (Panthera pardus) skins and tiger bone wine. Although South Korea may provide a useful case study of a historically significant consumer country for tiger which has made strong progress in addressing unsustainable levels of big cat trade within a short period of time, there remains a need to address recalcitrant small-scale, illegal trade. We also recommend further investigation regarding reports of South Korean nationals being involved in illegal trade in tiger-derived products in Southeast Asia.


Subject(s)
Commerce , Conservation of Natural Resources , Endangered Species , Republic of Korea , Animals , Commerce/trends , Conservation of Natural Resources/legislation & jurisprudence , Conservation of Natural Resources/trends , Endangered Species/legislation & jurisprudence , Endangered Species/trends , Endangered Species/statistics & numerical data , Tigers , Panthera , Surveys and Questionnaires , Cats
8.
PLoS One ; 19(5): e0300371, 2024.
Article in English | MEDLINE | ID: mdl-38753613

ABSTRACT

Chameleons (family Chamaeleonidae) are a distinctive group of reptiles, mainly found in Africa, which have high local endemism and face significant threats from the international wildlife trade. We review the scale and structure of international chameleon trade, with a focus on collection in and exports from Tanzania; a hotspot of chameleon diversity. Analysis used data from the CITES Trade Database 2000-2019, combined with assessment of online trade, and on-the-ground surveys in Tanzania in 2019. Between 2000 and 2019, 1,128,776 live chameleons from 108 species were reported as exported globally, with 193,093 of these (from 32 species) exported by Tanzania. Both global and Tanzanian chameleon exports declined across the study period, driven by decreased trade in generalist genera. Whilst the proportion of captive-bred individuals increased across time for the generalist taxa, the majority of range-restricted taxa in trade remained largely wild-sourced. For Tanzanian exports, 41% of chameleons were from one of the 23 endemic species, and 10 of the 12 Tanzanian endemic species in trade are categorised as threatened with extinction by IUCN. In terms of online trade, of the 42 Tanzanian species assessed, there was evidence of online sale for 83.3% species, and 69% were actively for sale with prices listed. Prices were on average highest for Trioceros species, followed by Kinyongia, Rieppeleon, Rhampholeon, and Chameleo. Field work in Tanzania provided evidence that the historic harvest of endemic chameleon species has been higher than the quantities of these species reported as exported by Tanzania in their annual trade reports to CITES. However, we found no field evidence for trade in 2020 and 2021, in line with Tanzanian regulations that applied a blanket ban on all exports of live wild animals. Literature evidence, however, suggests that illegal trade continued to Europe from seizures of Tanzanian chameleon species in Austria in 2021.


Subject(s)
Animals, Wild , Commerce , Conservation of Natural Resources , Lizards , Animals , Tanzania , Endangered Species/statistics & numerical data , Endangered Species/trends , Biodiversity , Wildlife Trade
9.
Nature ; 622(7982): 308-314, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37794184

ABSTRACT

Systematic assessments of species extinction risk at regular intervals are necessary for informing conservation action1,2. Ongoing developments in taxonomy, threatening processes and research further underscore the need for reassessment3,4. Here we report the findings of the second Global Amphibian Assessment, evaluating 8,011 species for the International Union for Conservation of Nature Red List of Threatened Species. We find that amphibians are the most threatened vertebrate class (40.7% of species are globally threatened). The updated Red List Index shows that the status of amphibians is deteriorating globally, particularly for salamanders and in the Neotropics. Disease and habitat loss drove 91% of status deteriorations between 1980 and 2004. Ongoing and projected climate change effects are now of increasing concern, driving 39% of status deteriorations since 2004, followed by habitat loss (37%). Although signs of species recoveries incentivize immediate conservation action, scaled-up investment is urgently needed to reverse the current trends.


Subject(s)
Amphibians , Climate Change , Ecosystem , Endangered Species , Animals , Amphibians/classification , Biodiversity , Climate Change/statistics & numerical data , Conservation of Natural Resources/economics , Conservation of Natural Resources/trends , Endangered Species/statistics & numerical data , Endangered Species/trends , Extinction, Biological , Risk , Urodela/classification
11.
Nature ; 623(7985): 100-105, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37880359

ABSTRACT

Illegal harvesting and trading of wildlife have become major threats to global biodiversity and public health1-3. Although China is widely recognized as an important destination for wildlife illegally obtained abroad4, little attention has been given to illegal hunting within its borders. Here we extracted 9,256 convictions for illegal hunting from a nationwide database of trial verdicts in China spanning January 2014 to March 2020. These convictions involved illegal hunting of 21% (n = 673) of China's amphibian, reptile, bird and mammal species, including 25% of imperilled species in these groups. Sample-based extrapolation indicates that many more species were taken illegally during this period. Larger body mass and range size (for all groups), and proximity to urban markets (for amphibians and birds) increase the probability of a species appearing in the convictions database. Convictions pertained overwhelmingly to illegal hunting for commercial purposes and involved all major habitats across China. A small number of convictions represented most of the animals taken, indicating the existence of large commercial poaching operations. Prefectures closer to urban markets show higher densities of convictions and more individual animals taken. Our results suggest that illegal hunting is a major, overlooked threat to biodiversity throughout China.


Subject(s)
Animals, Wild , Biodiversity , Hunting , Animals , Amphibians , Birds , China , Databases, Factual , Endangered Species/economics , Endangered Species/legislation & jurisprudence , Endangered Species/statistics & numerical data , Hunting/economics , Hunting/legislation & jurisprudence , Hunting/statistics & numerical data , Mammals , Reptiles
12.
Nature ; 622(7981): 101-106, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37758956

ABSTRACT

Protected areas (PAs) are the primary strategy for slowing terrestrial biodiversity loss. Although expansion of PA coverage is prioritized under the Convention on Biological Diversity, it remains unknown whether PAs mitigate declines across the tetrapod tree of life and to what extent land cover and climate change modify PA effectiveness1,2. Here we analysed rates of change in abundance of 2,239 terrestrial vertebrate populations across the globe. On average, vertebrate populations declined five times more slowly within PAs (-0.4% per year) than at similar sites lacking protection (-1.8% per year). The mitigating effects of PAs varied both within and across vertebrate classes, with amphibians and birds experiencing the greatest benefits. The benefits of PAs were lower for amphibians in areas with converted land cover and lower for reptiles in areas with rapid climate warming. By contrast, the mitigating impacts of PAs were consistently augmented by effective national governance. This study provides evidence for the effectiveness of PAs as a strategy for slowing tetrapod declines. However, optimizing the growing PA network requires targeted protection of sensitive clades and mitigation of threats beyond PA boundaries. Provided the conditions of targeted protection, adequate governance and well-managed landscapes are met, PAs can serve a critical role in safeguarding tetrapod biodiversity.


Subject(s)
Biodiversity , Conservation of Natural Resources , Endangered Species , Phylogeny , Vertebrates , Animals , Birds/classification , Conservation of Natural Resources/methods , Conservation of Natural Resources/statistics & numerical data , Vertebrates/classification , Endangered Species/statistics & numerical data , Endangered Species/trends , Amphibians/classification , Reptiles/classification , Global Warming/statistics & numerical data
13.
Primates ; 64(4): 407-413, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37140752

ABSTRACT

Monitoring the population size of threatened primate species with minimal disturbance is becoming an outstanding requirement for conservation and wildlife management. Drones with thermal infrared (TIR) and visible spectrum (RGB) imaging are increasingly used to survey arboreal primates, but ground-truthing is still required to assess the effectiveness of drone-based count estimates. Our pilot study aims to assess the ability of a drone with both TIR and RGB sensors to detect, count, and identify semi-wild population of four endangered species of langurs and gibbon in the Endangered Primate Rescue Center (EPRC) in northern Vietnam. We found that TIR imagery enabled higher detection rates compared to RGB imagery and obtained an accurate count with the TIR only after four drone flights. We could identify langurs species based on thermal signature at a flight height of 50 m from the ground level (max tree height = 15 m), via size and shape of the body. With TIR imagery, we were able to record inconspicuous behaviors such as foraging and play. While some individuals initially showed flight or avoidance behaviors when the drone was sighted, these behaviors decreased or were absent on following drone surveys. Our study suggests that monitoring and precisely counting langur and gibbon species populations could be successful with the use of thermal drones only.


Subject(s)
Endangered Species , Presbytini , Unmanned Aerial Devices , Animals , Endangered Species/statistics & numerical data , Hylobates , Pilot Projects , Primates , Unmanned Aerial Devices/instrumentation , Vietnam , Population , Infrared Rays
14.
PLoS Genet ; 18(2): e1009974, 2022 02.
Article in English | MEDLINE | ID: mdl-35143486

ABSTRACT

Wide-ranging animals, including migratory species, are significantly threatened by the effects of habitat fragmentation and habitat loss. In the case of terrestrial mammals, this results in nearly a quarter of species being at risk of extinction. Caribou are one such example of a wide-ranging, migratory, terrestrial, and endangered mammal. In populations of caribou, the proportion of individuals considered as "migrants" can vary dramatically. There is therefore a possibility that, under the condition that migratory behavior is genetically determined, those individuals or populations that are migratory will be further impacted by humans, and this impact could result in the permanent loss of the migratory trait in some populations. However, genetic determination of migration has not previously been studied in an endangered terrestrial mammal. We examined migratory behavior of 139 GPS-collared endangered caribou in western North America and carried out genomic scans for the same individuals. Here we determine a genetic subdivision of caribou into a Northern and a Southern genetic cluster. We also detect >50 SNPs associated with migratory behavior, which are in genes with hypothesized roles in determining migration in other organisms. Furthermore, we determine that propensity to migrate depends upon the proportion of ancestry in individual caribou, and thus on the evolutionary history of its migratory and sedentary subspecies. If, as we report, migratory behavior is influenced by genes, caribou could be further impacted by the loss of the migratory trait in some isolated populations already at low numbers. Our results indicating an ancestral genetic component also suggest that the migratory trait and their associated genetic mutations could not be easily re-established when lost in a population.


Subject(s)
Animal Migration/physiology , Genome/genetics , Reindeer/genetics , Animals , Behavior, Animal/physiology , Biological Evolution , Conservation of Natural Resources/methods , Ecology/methods , Ecosystem , Endangered Species/statistics & numerical data , Female , Genomics/methods , Haplotypes , North America , Phenotype , Polymorphism, Single Nucleotide/genetics , Sequence Analysis, DNA/methods
16.
Sci Rep ; 11(1): 19397, 2021 09 29.
Article in English | MEDLINE | ID: mdl-34588514

ABSTRACT

The effective conservation of mammals on the brink of extinction requires an integrated socio-ecological approach, yet the updated ecological knowledge of species remains fundamental. This study brings spatiotemporal behaviour, population structure, age-specific survival rates, and population size estimate of the Western Derby eland (WDE) in the Niokolo Koba National Park (NKNP), Senegal, investigated during dry seasons 2017 and 2018. WDE was strongly localised in the core area of NKNP (< 5%), active throughout the day with the highest peak in the hottest daytime, with a mean group size 7.6 ± SE 8.9. The adult sex ratio was female-biased and showed low annual adult male survival rates. The population consisted of high proportion of juveniles, whilst adults did not exceed 40%. The estimated population density was 0.138 WDE/km2 (± 0.0102) and estimated size 195 WDE in NKNP (CI95 from 54 to 708 individuals). Findings highlighted that the WDE population has potential to expand in the NKNP, due to an underutilized capacity. The age-specific vital rates indicate adult males as the most vulnerable; suggesting either an increase in the large predators' population, livestock encroachment pressure, and/or poaching. Findings imply that targeted monitoring with science-based interpretation may bring forward strong conservation solutions to the protected area management decision-makers.


Subject(s)
Antelopes , Conservation of Natural Resources/methods , Endangered Species/statistics & numerical data , Parks, Recreational/statistics & numerical data , Animals , Population Density , Senegal
17.
PLoS One ; 16(9): e0256146, 2021.
Article in English | MEDLINE | ID: mdl-34499686

ABSTRACT

Sharks and rays are at risk of extinction globally. This reflects low resilience to increasing fishing pressure, exacerbated by habitat loss, climate change, increasing value in a trade and inadequate information leading to limited conservation actions. Artisanal fisheries in the Bay of Bengal of Bangladesh contribute to the high levels of global fishing pressure on elasmobranchs. However, it is one of the most data-poor regions of the world, and the diversity, occurrence and conservation needs of elasmobranchs in this region have not been adequately assessed. This study evaluated elasmobranch diversity, species composition, catch and trade within the artisanal fisheries to address this critical knowledge gap. Findings show that elasmobranch diversity in Bangladesh has previously been underestimated. In this study, over 160000 individual elasmobranchs were recorded through landing site monitoring, comprising 88 species (30 sharks and 58 rays) within 20 families and 35 genera. Of these, 54 are globally threatened according to the IUCN Red List of Threatened Species, with ten species listed as Critically Endangered and 22 species listed as Endangered. Almost 98% juvenile catch (69-99% for different species) for large species sand a decline in numbers of large individuals were documented, indicating unsustainable fisheries. Several previously common species were rarely landed, indicating potential population declines. The catch pattern showed seasonality and, in some cases, gear specificity. Overall, Bangladesh was found to be a significant contributor to shark and ray catches and trade in the Bay of Bengal region. Effective monitoring was not observed at the landing sites or processing centres, despite 29 species of elasmobranchs being protected by law, many of which were frequently landed. On this basis, a series of recommendations were provided for improving the conservation status of the elasmobranchs in this region. These include the need for improved taxonomic research, enhanced monitoring of elasmobranch stocks, and the highest protection level for threatened taxa. Alongside political will, enhancing national capacity to manage and rebuild elasmobranch stocks, coordinated regional management measures are essential.


Subject(s)
Conservation of Natural Resources , Ecosystem , Endangered Species/statistics & numerical data , Fisheries/statistics & numerical data , Sharks/physiology , Skates, Fish/physiology , Animals , Bangladesh , Climate Change , Oceans and Seas , Population Dynamics , Sharks/classification , Skates, Fish/classification
18.
Sci Rep ; 11(1): 18987, 2021 09 23.
Article in English | MEDLINE | ID: mdl-34556696

ABSTRACT

Detection of environmental DNA (eDNA) has become a commonly used surveillance method for threatened or invasive vertebrates in both aquatic and terrestrial environments. However, most studies in this field favor vertebrate target species. Environmental DNA protocols can be especially useful for endangered invertebrates such as the Hine's emerald dragonfly (Somatochlora hineana) where conservation efforts have been greatly hindered by training, time, overall costs, and environmental impacts associated with conducting surveys in the calcareous fens occupied by this species. An essential step in developing such a protocol is to evaluate the dynamics of eDNA concentration under controlled conditions. We used the quantitative polymerase chain reaction (qPCR) to examine seasonal shifts in the persistence and net-accumulation of eDNA from captive S. hineana larvae in experimental mesocosms at temperatures corresponding with their overwintering (5.0 °C) and active (16.0 °C) seasons. Environmental DNA persisted longer at 5.0 °C but accumulated more readily at 16.0 °C. Differences in the accumulation and persistence of eDNA reflect differences in the longevity of eDNA at different temperatures and seasonal differences in larval S. hineana behavior. This study highlights the importance of considering how seasonal changes in temperature influence not only the speed of eDNA degradation but also the target species' eDNA shedding rates.


Subject(s)
DNA, Environmental/isolation & purification , Ecological Parameter Monitoring/methods , Endangered Species/statistics & numerical data , Odonata/genetics , Animals , DNA, Environmental/chemistry , Ecological Parameter Monitoring/statistics & numerical data , Feasibility Studies , Real-Time Polymerase Chain Reaction , Seasons , Temperature
19.
Nat Commun ; 12(1): 5162, 2021 08 27.
Article in English | MEDLINE | ID: mdl-34453040

ABSTRACT

Although species with larger body size and slow pace of life have a higher risk of extinction at a global scale, it is unclear whether this global trend will be consistent across biogeographic realms. Here we measure the functional diversity of terrestrial and freshwater vertebrates in the six terrestrial biogeographic realms and predict their future changes through scenarios mimicking a gradient of extinction risk of threatened species. We show vastly different effects of extinctions on functional diversity between taxonomic groups and realms, ranging from almost no decline to deep functional losses. The Indo-Malay and Palearctic realms are particularly inclined to experience a drastic loss of functional diversity reaching 29 and 31%, respectively. Birds, mammals, and reptiles regionally display a consistent functional diversity loss, while the projected losses of amphibians and freshwater fishes differ across realms. More efficient global conservation policies should consider marked regional losses of functional diversity across the world.


Subject(s)
Biodiversity , Endangered Species/statistics & numerical data , Vertebrates/classification , Animals , Conservation of Natural Resources , Ecosystem , Extinction, Biological , Vertebrates/growth & development
20.
PLoS One ; 16(8): e0255784, 2021.
Article in English | MEDLINE | ID: mdl-34352882

ABSTRACT

As human pressures on the environment continue to spread and intensify, effective conservation interventions are direly needed to prevent threats, reduce conflicts, and recover populations and landscapes in a liaison between science and conservation. It is practically important to discriminate between true and false (or misperceived) effectiveness of interventions as false perceptions may shape a wrong conservation agenda and lead to inappropriate decisions and management actions. This study used the false positive risk (FPR) to estimate the rates of misperceived effectiveness of electric fences (overstated if reported as effective but actually ineffective based on FPR; understated otherwise), explain their causes and propose recommendations on how to improve the representation of true effectiveness. Electric fences are widely applied to reduce damage to fenced assets, such as livestock and beehives, or increase survival of fenced populations. The analysis of 109 cases from 50 publications has shown that the effectiveness of electric fences was overstated in at least one-third of cases, from 31.8% at FPR = 0.2 (20% risk) to 51.1% at FPR = 0.05 (5% risk, true effectiveness). In contrast, understatement reduced from 23.8% to 9.5% at these thresholds of FPR. This means that truly effective applications of electric fences were only 48.9% of all cases reported as effective, but truly ineffective cases were 90.5%, implying that the effectiveness of electric fences was heavily overstated. The main reasons of this bias were the lack of statistical testing or improper reporting of test results (63.3% of cases) and interpretation of marginally significant results (p < 0.05, p < 0.1 and p around 0.05) as indicators of effectiveness (10.1%). In conclusion, FPR is an important tool for estimating true effectiveness of conservation interventions and its application is highly recommended to disentangle true and false effectiveness for planning appropriate conservation actions. Researchers are encouraged to calculate FPR, publish its constituent statistics (especially treatment and control sample sizes) and explicitly provide test results with p values. It is suggested to call the effectiveness "true" if FPR < 0.05, "suggestive" if 0.05 ≤ FPR < 0.2 and "false" if FPR ≥ 0.2.


Subject(s)
Endangered Species/statistics & numerical data , Predatory Behavior , Animals , Biota , Data Interpretation, Statistical , Electric Stimulation , Wolves/physiology
SELECTION OF CITATIONS
SEARCH DETAIL