Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.431
Filter
1.
Int J Mol Sci ; 25(15)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39126088

ABSTRACT

The endogenous cannabinoid system (ECS) of the brain plays an important role in the molecular pathogenesis of Parkinson's disease (PD). It is involved in the formation of numerous clinical manifestations of the disease by regulating the level of endogenous cannabinoids and changing the activation of cannabinoid receptors (CBRs). Therefore, ECS modulation with new drugs specifically designed for this purpose may be a promising strategy in the treatment of PD. However, fine regulation of the ECS is quite a complex task due to the functional diversity of CBRs in the basal ganglia and other parts of the central nervous system. In this review, the effects of ECS modulators in various experimental models of PD in vivo and in vitro, as well as in patients with PD, are analyzed. Prospects for the development of new cannabinoid drugs for the treatment of motor and non-motor symptoms in PD are presented.


Subject(s)
Parkinson Disease , Receptors, Cannabinoid , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Humans , Animals , Receptors, Cannabinoid/metabolism , Endocannabinoids/metabolism , Cannabinoids/therapeutic use , Cannabinoids/pharmacology , Cannabinoids/metabolism
2.
BMC Psychiatry ; 24(1): 551, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39118031

ABSTRACT

BACKGROUND: Major Depressive Disorder (MDD) and Alcohol Use Disorder (AUD) are two high-prevalent conditions where the Endocannabinoid system (ECS) is believed to play an important role. The ECS regulates how different neurotransmitters interact in both disorders, which is crucial for controlling emotions and responses to stress and reward stimuli. Measuring peripheral endocannabinoids (eCBs) in human serum and plasma can help overcome the limitations of detecting endocannabinoid levels in the brain. This systematic review aims to identify levels of peripheral eCBs in patients with MDD and/or AUD and find eCBs to use as diagnostic, prognostic biomarkers, and potential therapeutic targets. METHODS: We conducted a systematic literature search according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines from the earliest manuscript until October 22, 2023, in three electronic databases. We included studies of human adults who had a current diagnosis of AUD and/or MDD and evaluated plasma or serum endocannabinoids. We carefully considered known variables that may affect endocannabinoid levels. RESULTS: We included 17 articles in this systematic review, which measured peripheral eCBs in 170 AUD and 359 MDD patients. Stressors increase peripheral 2-arachidonyl-glycerol (2-AG) concentrations, and 2-AG may be a particular feature of depression severity and chronicity. Anxiety symptoms are negatively correlated with anandamide (AEA) concentrations, and AEA significantly increases during early abstinence in AUD. Studies suggest a negative correlation between Oleoylethanolamide (OEA) and length of abstinence in AUD patients. They also show a significant negative correlation between peripheral levels of AEA and OEA and fatty acid amide hydrolase (FAAH) activity. Eicosapentaenoylethanolamide (EPEA) is correlated to clinical remission rates in depression. Included studies show known variables such as gender, chronicity, symptom severity, comorbid psychiatric symptoms, length of abstinence in the case of AUD, and stress-inducibility that can affect peripheral eCBs. CONCLUSIONS: This systematic review highlights the important role that the ECS plays in MDD and AUD. Peripheral eCBs appear to be useful biomarkers for these disorders, and further research may identify potential therapeutic targets. Using accessible biological samples such as blood in well-designed clinical studies is crucial to develop novel therapies for these disorders.


Subject(s)
Alcoholism , Depressive Disorder, Major , Endocannabinoids , Endocannabinoids/blood , Humans , Depressive Disorder, Major/blood , Alcoholism/blood , Biomarkers/blood , Arachidonic Acids/blood , Glycerides/blood , Polyunsaturated Alkamides/blood
3.
Elife ; 132024 Aug 09.
Article in English | MEDLINE | ID: mdl-39120997

ABSTRACT

Endometriosis (EM), characterized by the presence of endometrial-like tissue outside the uterus, is the leading cause of chronic pelvic pain and infertility in females of reproductive age. Despite its high prevalence, the molecular mechanisms underlying EM pathogenesis remain poorly understood. The endocannabinoid system (ECS) is known to influence several cardinal features of this complex disease including pain, vascularization, and overall lesion survival, but the exact mechanisms are not known. Utilizing CNR1 knockout (k/o), CNR2 k/o, and wild-type (WT) mouse models of EM, we reveal contributions of ECS and these receptors in disease initiation, progression, and immune modulation. Particularly, we identified EM-specific T cell dysfunction in the CNR2 k/o mouse model of EM. We also demonstrate the impact of decidualization-induced changes on ECS components, and the unique disease-associated transcriptional landscape of ECS components in EM. Imaging mass cytometry (IMC) analysis revealed distinct features of the microenvironment between CNR1, CNR2, and WT genotypes in the presence or absence of decidualization. This study, for the first time, provides an in-depth analysis of the involvement of the ECS in EM pathogenesis and lays the foundation for the development of novel therapeutic interventions to alleviate the burden of this debilitating condition.


Subject(s)
Endocannabinoids , Endometriosis , Mice, Knockout , Receptor, Cannabinoid, CB1 , Receptor, Cannabinoid, CB2 , Endometriosis/genetics , Endometriosis/metabolism , Endometriosis/pathology , Female , Animals , Endocannabinoids/metabolism , Mice , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB1/genetics , Receptor, Cannabinoid, CB2/genetics , Receptor, Cannabinoid, CB2/metabolism , Disease Models, Animal
4.
Molecules ; 29(15)2024 Aug 04.
Article in English | MEDLINE | ID: mdl-39125098

ABSTRACT

2-arachidonoylglycerol (2-AG) is the most abundant endocannabinoid (EC), acting as a full agonist at both CB1 and CB2 cannabinoid receptors. It is synthesized on demand in postsynaptic membranes through the sequential action of phosphoinositide-specific phospholipase Cß1 (PLCß1) and diacylglycerol lipase α (DAGLα), contributing to retrograde signaling upon interaction with presynaptic CB1. However, 2-AG production might also involve various combinations of PLC and DAGL isoforms, as well as additional intracellular pathways implying other enzymes and substrates. Three other alternative pathways of 2-AG synthesis rest on the extracellular cleavage of 2-arachidonoyl-lysophospholipids by three different hydrolases: glycerophosphodiesterase 3 (GDE3), lipid phosphate phosphatases (LPPs), and two members of ecto-nucleotide pyrophosphatase/phosphodiesterases (ENPP6-7). We propose the names of AlterAG-1, -2, and -3 for three pathways sharing an ectocellular localization, allowing them to convert extracellular lysophospholipid mediators into 2-AG, thus inducing typical signaling switches between various G-protein-coupled receptors (GPCRs). This implies the critical importance of the regioisomerism of both lysophospholipid (LPLs) and 2-AG, which is the object of deep analysis within this review. The precise functional roles of AlterAGs are still poorly understood and will require gene invalidation approaches, knowing that both 2-AG and its related lysophospholipids are involved in numerous aspects of physiology and pathology, including cancer, inflammation, immune defenses, obesity, bone development, neurodegeneration, or psychiatric disorders.


Subject(s)
Arachidonic Acids , Endocannabinoids , Glycerides , Lysophospholipids , Signal Transduction , Endocannabinoids/metabolism , Glycerides/metabolism , Lysophospholipids/metabolism , Humans , Arachidonic Acids/metabolism , Animals , Phosphoric Diester Hydrolases/metabolism
5.
Molecules ; 29(15)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39125106

ABSTRACT

The synthesis of some N-(3-acyloxyacyl)glycines, an interesting class of bioactive gut microbiota metabolites, is described. This procedure involves seven reaction steps using the commercially available Meldrum's acid to obtain highly pure products, in normal or deuterated form. The key point of the synthetic strategy was the use of commendamide t-butyl ester as a synthetic intermediate, a choice that allowed the removal of the protecting group at the end of the synthetic procedure without degrading of the other ester bond present in the molecule. The developed synthetic sequence is particularly simple, uses readily available reagents and involves a limited number of purifications by chromatographic column, with a reduction in the volume of solvent and energy used.


Subject(s)
Endocannabinoids , Gastrointestinal Microbiome , Endocannabinoids/metabolism , Endocannabinoids/chemistry , Humans , Molecular Structure
6.
Cell Biochem Funct ; 42(6): e4100, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39090824

ABSTRACT

Synaptic plasticity, including long-term potentiation (LTP) and long-term depression (LTD), is an essential phenomenon in memory formation as well as maintenance along with many other cognitive functions, such as those needed for coping with external stimuli. Synaptic plasticity consists of gradual changes in the biochemistry and morphology of pre- and postsynaptic neurons, particularly in the hippocampus. Consuming marijuana as a primary source of exocannabinoids immediately impairs attention and working memory-related tasks. Evidence regarding the effects of cannabinoids on LTP and memory is contradictory. While cannabinoids can affect a variety of specific cannabinoid receptors (CBRs) and nonspecific receptors throughout the body and brain, they exert miscellaneous systemic and local cerebral effects. Given the increasing use of cannabis, mainly among the young population, plus its potential adverse long-term effects on learning and memory processes, it could be a future global health challenge. Indeed, the impact of cannabinoids on memory is multifactorial and depends on the dosage, timing, formula, and route of consumption, plus the background complex interaction of the endocannabinoids system with other cerebral networks. Herein, we review how exogenously administrated organic cannabinoids, CBRs agonists or antagonists, and endocannabinoids can affect LTP and synaptic plasticity through various receptors in interaction with other cerebral pathways and primary neurotransmitters.


Subject(s)
Cannabinoids , Long-Term Potentiation , Memory , Neuronal Plasticity , Cannabinoids/pharmacology , Cannabinoids/metabolism , Humans , Neuronal Plasticity/drug effects , Animals , Long-Term Potentiation/drug effects , Memory/drug effects , Endocannabinoids/metabolism , Endocannabinoids/pharmacology , Receptors, Cannabinoid/metabolism , Long-Term Synaptic Depression/drug effects , Hippocampus/metabolism , Hippocampus/drug effects
7.
Front Immunol ; 15: 1423776, 2024.
Article in English | MEDLINE | ID: mdl-38979427

ABSTRACT

Introduction: The endocannabinoid system (ECS), named after the chemical compounds found in the cannabis plant, is a regulatory network of neurotransmitters, receptors, and enzymes that plays crucial roles in skin health and disease. Endogenous ligands of the ECS, called endocannabinoids, have proven to be important regulators of immune responses. One of the most prevalent endocannabinoids, arachidonoylethanolamide (also known as anandamide), is known for its anti-inflammatory effects. Langerhans cells (LCs) are the sole antigen-presenting cells present in the human epidermis. They serve as the first line of defense against pathogens and are essential for the skin's specific immune responses and play a critical role in maintaining tissue homeostasis; however, little is known about the effect of endocannabinoids on these cells. Our research aimed to provide the connection between monocyte-derived Langerhans cells (moLCs) and the ECS, shedding light on their collaborative roles in immune homeostasis and inflammation. Methods: Human monocytes were differentiated into moLCs using established protocols. Anandamide was applied during the differentiation process to test its effect on the viability, marker expression, and cytokine production of the cells, as well as in short term treatments for intracellular calcium measurement. TLR ligands applied after the differentiation protocol were used to activate moLCs. The impact of anandamide on the functionality of moLCs was further assessed using differential gene expression analysis of bulk RNA-Seq data, moLC-T cell cocultures, while ELISpot was employed to determine polarization of T cells activated in the aforementioned cocultures. Results: Anandamide did not significantly affect the viability of moLCs up to 10 µM. When applied during the differentiation process it had only a negligible effect on CD207 expression, the prototypic marker of LCs; however, there was an observed reduction in CD1a expression by moLCs. Anandamide had no significant effects on the maturation status of moLCs, nor did it affect the maturation induced by TLR3 and TLR7/8 agonists. MoLCs differentiated in the presence of anandamide did however show decreased production of CXCL8, IL-6, IL-10 and IL-12 cytokines induced by TLR3 and TLR7/8 activation. Anandamide-treated moLCs showed an increased capability to activate naïve T cells; however, not to the level seen with combined TLR agonism. RNA sequencing analysis of moLCs differentiated with anandamide showed modest changes compared to control cells but did reveal an inhibitory effect on oxidative phosphorylation specifically in activated moLCs. Anandamide also promoted the polarization of naïve T cells towards a Th1 phenotype. Discussion: Our results show that anandamide has nuanced effects on the differentiation, maturation, cytokine secretion, metabolism and function of activated moLCs. Among these changes the decrease in CD1a expression on moLCs holds promise to selectively dampen inflammation induced by CD1a restricted T cells, which have been implicated as drivers of inflammation in common inflammatory skin conditions such as psoriasis, atopic dermatitis and contact dermatitis.


Subject(s)
Arachidonic Acids , Endocannabinoids , Homeostasis , Langerhans Cells , Monocytes , Polyunsaturated Alkamides , Endocannabinoids/pharmacology , Endocannabinoids/metabolism , Humans , Polyunsaturated Alkamides/pharmacology , Langerhans Cells/immunology , Langerhans Cells/metabolism , Langerhans Cells/drug effects , Arachidonic Acids/pharmacology , Monocytes/immunology , Monocytes/metabolism , Monocytes/drug effects , Cytokines/metabolism , Cell Differentiation/drug effects , Cell Differentiation/immunology , Cells, Cultured , Skin/immunology , Skin/metabolism , Inflammation/immunology , Inflammation/metabolism
8.
Acta Neuropathol Commun ; 12(1): 113, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38992700

ABSTRACT

BACKGROUND: Despite extensive studies on the neurobiological correlates of traumatic brain injury (TBI), little is known about its molecular determinants on long-term consequences, such as dementia and Alzheimer's disease (AD). METHODS: Here, we carried out behavioural studies and an extensive biomolecular analysis, including inflammatory cytokines, gene expression and the combination of LC-HRMS and MALDI-MS Imaging to elucidate the targeted metabolomics and lipidomics spatiotemporal alterations of brains from wild-type and APP-SWE mice, a genetic model of AD, at the presymptomatic stage, subjected to mild TBI. RESULTS: We found that brain injury does not affect cognitive performance in APP-SWE mice. However, we detected an increase of key hallmarks of AD, including Aß1-42 levels and BACE1 expression, in the cortices of traumatized transgenic mice. Moreover, significant changes in the expanded endocannabinoid (eCB) system, or endocannabinoidome (eCBome), occurred, including increased levels of the endocannabinoid 2-AG in APP-SWE mice in both the cortex and hippocampus, and N-acylserotonins, detected for the first time in the brain. The gene expression of enzymes for the biosynthesis and inactivation of eCBs and eCB-like mediators, and some of their main molecular targets, also underwent significant changes. We also identified the formation of heteromers between cannabinoid 1 (CB1) and serotonergic 2A (5HT2A) receptors, whose levels increased in the cortex of APP-SWE mTBI mice, possibly contributing to the exacerbated pathophysiology of AD induced by the trauma. CONCLUSIONS: Mild TBI induces biochemical changes in AD genetically predisposed mice and the eCBome may play a role in the pathogenetic link between brain injury and neurodegenerative disorders also by interacting with the serotonergic system.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Endocannabinoids , Mice, Transgenic , Animals , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Mice , Endocannabinoids/metabolism , Cognitive Dysfunction/metabolism , Serotonin/metabolism , Biomarkers/metabolism , Male , Brain Concussion/metabolism , Disease Models, Animal , Mice, Inbred C57BL , Brain/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Prodromal Symptoms , Amyloid beta-Peptides/metabolism
9.
Molecules ; 29(14)2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39064959

ABSTRACT

The emergence of inflammatory diseases is a heavy burden on modern societies. Cannabis has been used for several millennia to treat inflammatory disorders such as rheumatism or gout. Since the characterization of cannabinoid receptors, CB1 and CB2, the potential of cannabinoid pharmacotherapy in inflammatory conditions has received great interest. Several studies have identified the importance of these receptors in immune cell migration and in the production of inflammatory mediators. As the presence of the CB2 receptor was documented to be more predominant in immune cells, several pharmacological agonists and antagonists have been designed to treat inflammation. To better define the potential of the CB2 receptor, three online databases, PubMed, Google Scholar and clinicaltrial.gov, were searched without language restriction. The full texts of articles presenting data on the endocannabinoid system, the CB2 receptor and its role in modulating inflammation in vitro, in animal models and in the context of clinical trials were reviewed. Finally, we discuss the clinical potential of the latest cannabinoid-based therapies in inflammatory diseases.


Subject(s)
Inflammation , Receptor, Cannabinoid, CB2 , Humans , Receptor, Cannabinoid, CB2/metabolism , Receptor, Cannabinoid, CB2/agonists , Inflammation/metabolism , Inflammation/drug therapy , Animals , Cannabinoids/therapeutic use , Cannabinoids/pharmacology , Endocannabinoids/metabolism , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Cannabinoid Receptor Agonists/pharmacology , Cannabinoid Receptor Agonists/therapeutic use
10.
Int J Mol Sci ; 25(14)2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39062935

ABSTRACT

The endocannabinoid system, known for its regulatory role in various physiological processes, relies on the activities of several hydrolytic enzymes, such as fatty acid amide hydrolase (FAAH), N-acylethanolamine-hydrolyzing acid amidase (NAAA), monoacylglycerol lipase (MAGL), and α/ß-hydrolase domains 6 (ABHD6) and 12 (ABHD12), to maintain homeostasis. Accurate measurement of these enzymes' activities is crucial for understanding their function and for the development of potential therapeutic agents. Fluorometric assays, which offer high sensitivity, specificity, and real-time monitoring capabilities, have become essential tools in enzymatic studies. This review provides a comprehensive overview of the principles behind these assays, the various substrates and fluorophores used, and advances in assay techniques used not only for the determination of the kinetic mechanisms of enzyme reactions but also for setting up kinetic assays for the high-throughput screening of each critical enzyme involved in endocannabinoid degradation. Through this comprehensive review, we aim to highlight the strengths and limitations of current fluorometric assays and suggest future directions for improving the measurement of enzyme activity in the endocannabinoid system.


Subject(s)
Amidohydrolases , Endocannabinoids , Enzyme Assays , Endocannabinoids/metabolism , Humans , Enzyme Assays/methods , Amidohydrolases/metabolism , Amidohydrolases/antagonists & inhibitors , Hydrolysis , Monoacylglycerol Lipases/metabolism , Monoacylglycerol Lipases/antagonists & inhibitors , Animals , Fluorometry/methods , Fluorescence , Kinetics , Fluorescent Dyes/chemistry , Enzyme Inhibitors/pharmacology
11.
Int J Mol Sci ; 25(14)2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39063152

ABSTRACT

Linoleic acid (LA) is required for neuronal development. We have previously demonstrated sex-specific changes in cardiovascular and hepatic function in rat offspring from mothers consuming a high-LA diet, with some effects associated with reduced LA concentration in the postnatal diet. At this time, the impact of a high-maternal-LA diet on offspring brain development and the potential for the postnatal diet to alter any adverse changes are unknown. Rat offspring from mothers fed low- (LLA) or high-LA (HLA) diets during pregnancy and lactation were weaned at postnatal day 25 (PN25) and fed LLA or HLA diets until sacrifice in adulthood (PN180). In the offspring's brains, the postnatal HLA diet increased docosapentaenoate in males. The maternal HLA diet increased LA, arachidonate, docosapentaenoate, C18:0 dimethylacetal (DMA), C16:0 DMA, C16:0 DMA/C16:0, and C18:0 DMA/C18:0, but decreased eoicosenoate, nervoniate, lignocerate, and oleate in males. Maternal and postnatal HLA diets reduced oleate and vaccenate and had an interaction effect on myristate, palmitoleate, and eicosapentaenoate in males. In females, maternal HLA diet increased eicosadienoate. Postnatal HLA diet increased stearate and docosapentaenoate. Maternal and postnatal HLA diets had an interaction effect on oleate, arachidate, and docosahexaenoic acid (DHA)/omega (n)-6 docosapentaenoic acid (DPA) in females. Postnatal HLA diet decreased DHA/n-6 DPA in males and females. Postnatal HLA diet increased plasma endocannabinoids (arachidonoyl ethanolamide and 2-arachidonoyl glycerol), as well as other N-acyl ethanolamides and testosterone. HLA diet alters brain fatty acids, plasma endocannabinoids, and plasmalogen concentrations in a development-specific and sex-specific manner.


Subject(s)
Brain , Endocannabinoids , Fatty Acids , Linoleic Acid , Plasmalogens , Female , Animals , Male , Pregnancy , Rats , Brain/metabolism , Fatty Acids/blood , Fatty Acids/metabolism , Endocannabinoids/blood , Endocannabinoids/metabolism , Linoleic Acid/blood , Plasmalogens/blood , Plasmalogens/metabolism , Prenatal Exposure Delayed Effects/blood , Sex Characteristics , Sex Factors
12.
Addict Biol ; 29(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38963015

ABSTRACT

The addictive use of nicotine contained in tobacco is associated with stressor-like emotional and cognitive effects such as anxiety and working memory impairment, and the involvement of epigenetic mechanisms such as histone acetylation has recently been reported. Although the precise nature of behavioural plasticity remains unclear, both anxiogenic- and working memory impairment-like effects were observed in the present experimental model of mice treated with repeated subcutaneous nicotine and/or immobilization stress, and these effects were commonly attenuated by the histone deacetylase (HDAC) inhibitors that induce histone acetylation. Such HDAC inhibitor-induced resilience was mimicked by ligands for the endocannabinoid (ECB) system, a neurotransmitter system that is closely associated with nicotine-induced addiction-related behaviours: the anxiogenic-like effects were mitigated by the cannabinoid type 1 (CB1) agonist arachidonylcyclopropylamide (ACPA), whereas the working memory impairment-like effects were mitigated by the CB1 antagonist SR 141716A. Moreover, the effects of the HDAC inhibitors were also mimicked by ligands for the endovanilloid (transient receptor potential vanilloid 1 [TRPV1]) system, a system that shares common characteristics with the ECB system: the anxiogenic-like effects were mitigated by the TRPV1 antagonist capsazepine, whereas the working memory impairment-like effects were mitigated by the TRPV1 agonist olvanil. Notably, the HDAC inhibitor-induced anxiolytic-like effects were attenuated by SR 141716A, which were further counteracted by capsazepine, whereas the working memory improvement-like effects were attenuated by capsazepine, which were further counteracted by SR 141716A. These results suggest the contribution of interrelated control of the ECB/TRPV1 systems and epigenetic processes such as histone acetylation to novel therapeutic approaches.


Subject(s)
Anxiety , Endocannabinoids , Epigenesis, Genetic , Memory, Short-Term , Nicotine , Stress, Psychological , TRPV Cation Channels , Animals , TRPV Cation Channels/drug effects , Nicotine/pharmacology , Mice , Memory, Short-Term/drug effects , Endocannabinoids/metabolism , Male , Epigenesis, Genetic/drug effects , Histone Deacetylase Inhibitors/pharmacology , Receptor, Cannabinoid, CB1/drug effects , Memory Disorders/chemically induced , Capsaicin/pharmacology , Capsaicin/analogs & derivatives , Disease Models, Animal , Rimonabant/pharmacology , Nicotinic Agonists/pharmacology , Piperidines/pharmacology
13.
J Headache Pain ; 25(1): 115, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014318

ABSTRACT

BACKGROUND: Posttraumatic headache (PTH) is a common and debilitating symptom following repetitive mild traumatic brain injury (rmTBI), and it mainly resembles a migraine-like phenotype. While modulation of the endocannabinoid system (ECS) is effective in treating TBI and various types of pain including migraine, the role of augmentation of endocannabinoids in treating PTH has not been investigated. METHODS: Repetitive mild TBI was induced in male C57BL/6J mice using the non-invasive close-head impact model of engineered rotational acceleration (CHIMERA). Periorbital allodynia was assessed using von Frey filaments and determined by the "Up-Down" method. Immunofluorescence staining was employed to investigate glial cell activation and calcitonin gene-related peptide (CGRP) expression in the trigeminal ganglion (TG) and trigeminal nucleus caudalis (TNC) of the rmTBI mice. Levels of 2-arachidonoyl glycerol (2-AG), anandamide (AEA), and arachidonic acid (AA) in the TG, medulla (including TNC), and periaqueductal gray (PAG) were measured by mass spectrometry. The therapeutic effect of endocannabinoid modulation on PTH was also assessed. RESULTS: The rmTBI mice exhibited significantly increased cephalic pain hypersensitivity compared to the sham controls. MJN110, a potent and selective inhibitor of the 2-AG hydrolytic enzyme monoacylglycerol lipase (MAGL), dose-dependently attenuated periorbital allodynia in the rmTBI animals. Administration of CGRP at 0.01 mg/kg reinstated periorbital allodynia in the rmTBI animals on days 33 and 45 post-injury but had no effect in the sham and MJN110 treatment groups. Activation of glial cells along with increased production of CGRP in the TG and TNC at 7 and 14 days post-rmTBI were attenuated by MJN110 treatment. The anti-inflammatory and anti-nociceptive effects of MJN110 were partially mediated by cannabinoid receptor activation, and the pain-suppressive effect of MJN110 was completely blocked by co-administration of DO34, an inhibitor of 2-AG synthase. The levels of 2-AG in TG, TNC and PAG were decreased in TBI animals, significantly elevated and further reduced by the selective inhibitors of 2-AG hydrolytic and synthetic enzymes, respectively. CONCLUSION: Enhancing endogenous levels of 2-AG appears to be an effective strategy for the treatment of PTH by attenuating pain initiation and transmission in the trigeminal pathway and facilitating descending pain inhibitory modulation.


Subject(s)
Arachidonic Acids , Brain Concussion , Endocannabinoids , Glycerides , Mice, Inbred C57BL , Post-Traumatic Headache , Animals , Endocannabinoids/metabolism , Male , Brain Concussion/complications , Brain Concussion/drug therapy , Arachidonic Acids/pharmacology , Mice , Post-Traumatic Headache/etiology , Post-Traumatic Headache/drug therapy , Glycerides/metabolism , Disease Models, Animal , Hyperalgesia/drug therapy , Hyperalgesia/etiology , Hydrolysis , Calcitonin Gene-Related Peptide/metabolism , Trigeminal Ganglion/metabolism , Trigeminal Ganglion/drug effects , Piperidines/pharmacology , Piperidines/therapeutic use , Polyunsaturated Alkamides/pharmacology
14.
Ageing Res Rev ; 99: 102401, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38964508

ABSTRACT

Circadian rhythms are biological rhythms that originate from the "master circadian clock," called the suprachiasmatic nucleus (SCN). SCN orchestrates the circadian rhythms using light as a chief zeitgeber, enabling humans to synchronize their daily physio-behavioral activities with the Earth's light-dark cycle. However, chronic/ irregular photic disturbances from the retina via the retinohypothalamic tract (RHT) can disrupt the amplitude and the expression of clock genes, such as the period circadian clock 2, causing circadian rhythm disruption (CRd) and associated neuropathologies. The present review discusses neuromodulation across the RHT originating from retinal photic inputs and modulation offered by endocannabinoids as a function of mitigation of the CRd and associated neuro-dysfunction. Literature indicates that cannabinoid agonists alleviate the SCN's ability to get entrained to light by modulating the activity of its chief neurotransmitter, i.e., γ-aminobutyric acid, thus preventing light-induced disruption of activity rhythms in laboratory animals. In the retina, endocannabinoid signaling modulates the overall gain of the retinal ganglion cells by regulating the membrane currents (Ca2+, K+, and Cl- channels) and glutamatergic neurotransmission of photoreceptors and bipolar cells. Additionally, endocannabinoids signalling also regulate the high-voltage-activated Ca2+ channels to mitigate the retinal ganglion cells and intrinsically photosensitive retinal ganglion cells-mediated glutamate release in the SCN, thus regulating the RHT-mediated light stimulation of SCN neurons to prevent excitotoxicity. As per the literature, cannabinoid receptors 1 and 2 are becoming newer targets in drug discovery paradigms, and the involvement of endocannabinoids in light-induced CRd through the RHT may possibly mitigate severe neuropathologies.


Subject(s)
Circadian Rhythm , Endocannabinoids , Retina , Endocannabinoids/metabolism , Endocannabinoids/physiology , Humans , Animals , Circadian Rhythm/physiology , Retina/physiology , Retina/metabolism , Suprachiasmatic Nucleus/physiology , Suprachiasmatic Nucleus/drug effects
15.
Methods Mol Biol ; 2816: 193-204, 2024.
Article in English | MEDLINE | ID: mdl-38977600

ABSTRACT

With impaired retinal ganglion cell (RGC) function and eventual RGC death, there is a heightened risk of experiencing glaucoma-induced blindness or other optic neuropathies. Poor RGC efficiency leads to limited transmission of visual signals between the retina and the brain by RGC axons. Increased focus on studying lipid messengers found in neurons such as endocannabinoids (eCBs) has importance due to their potential axonal pathway regenerative properties. 2-Arachidonoylglycerol (2-AG), a common eCB, is synthesized from an sn-1 hydrolysis reaction between diacylglycerol (DAG) and diacylglycerol lipase (DAGL). Examination of DAG production allows for future downstream analysis in relation to DAGL functionality. Here, we describe protocol guidelines for extracting RGCs from mouse retinas and subsequent mass spectrometry analysis of the DAG content present within the RGCs.


Subject(s)
Diglycerides , Retinal Ganglion Cells , Signal Transduction , Retinal Ganglion Cells/metabolism , Animals , Mice , Diglycerides/metabolism , Endocannabinoids/metabolism , Glycerides/metabolism , Lipoprotein Lipase/metabolism , Arachidonic Acids/metabolism , Mass Spectrometry/methods , Retina/metabolism
16.
Exp Dermatol ; 33(7): e15144, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39039940

ABSTRACT

The endocannabinoid system is composed by a complex and ubiquitous network of endogenous lipid ligands, enzymes for their synthesis and degradation, and receptors, which can also be stimulated by exogenous compounds, such as those derived from the Cannabis sativa. Cannabis and its bioactive compounds, including cannabinoids and non-cannabinoids, have been extensively studied in different conditions. Recent data have shown that the endocannabinoid system is responsible for maintaining the homeostasis of various skin functions such as proliferation, differentiation and release of inflammatory mediators. Because of their role in regulating these key processes, cannabinoids have been studied for the treatment of skin cancers and melanoma; their anti-tumour effects regulate skin cancer progression and are mainly related to the inhibition of tumour growth, proliferation, invasion and angiogenesis, through apoptosis and autophagy induction. This review aims at summarising the current field of research on the potential uses of cannabinoids in the melanoma field.


Subject(s)
Cannabinoids , Melanoma , Skin Neoplasms , Humans , Cannabinoids/therapeutic use , Cannabinoids/pharmacology , Melanoma/drug therapy , Skin Neoplasms/drug therapy , Endocannabinoids/metabolism , Endocannabinoids/therapeutic use , Animals , Apoptosis/drug effects
17.
Exp Brain Res ; 242(9): 2041-2058, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39043897

ABSTRACT

Brain edema is a critical complication arising from stroke and traumatic brain injury (TBI) with an important impact on patient recovery and can lead to long-term consequences. Therapeutic options to reduce edema progression are limited with variable patient outcomes. Aquaporin 4 (AQP4) is a water channel that allows bidirectional water diffusion across the astrocyte membrane and participates in the distinct phases of cerebral edema. The absence or inhibition of this channel has been demonstrated to ameliorate edema and brain damage. The endocannabinoid system (ECS) is a neuromodulator system with a wide expression in the brain and its activation has shown neuroprotective properties in diverse models of neuronal damage. This review describes and discusses the major features of ECS and AQP4 and their role during brain damage, observing that ECS stimulation reduces edema and injury size in diverse models of brain damage, however, the relationship between AQP4 expression and dynamics and ECS activation remains unclear. The research on these topics holds promising therapeutic implications for the treatment of brain edema following stroke and TBI.


Subject(s)
Aquaporin 4 , Brain Edema , Brain Injuries , Endocannabinoids , Endocannabinoids/metabolism , Aquaporin 4/metabolism , Humans , Animals , Brain Edema/metabolism , Brain Edema/etiology , Brain Injuries/metabolism , Brain Injuries, Traumatic/metabolism
18.
Exp Brain Res ; 242(9): 2137-2157, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38980339

ABSTRACT

The reticular thalamic nucleus (RTN) is a thin shell that covers the dorsal thalamus and controls the overall information flow from the thalamus to the cerebral cortex through GABAergic projections that contact thalamo-cortical neurons (TC). RTN neurons receive glutamatergic afferents fibers from neurons of the sixth layer of the cerebral cortex and from TC collaterals. The firing mode of RTN neurons facilitates the generation of sleep-wake cycles; a tonic mode or desynchronized mode occurs during wake and REM sleep and a burst-firing mode or synchronized mode is associated with deep sleep. Despite the presence of cannabinoid receptors CB1 (CB1Rs) and mRNA that encodes these receptors in RTN neurons, there are few works that have analyzed the participation of endocannabinoid-mediated transmission on the electrical activity of RTN. Here, we locally blocked or activated CB1Rs in ketamine anesthetized rats to analyze the spontaneous extracellular spiking activity of RTN neurons. Our results show the presence of a tonic endocannabinoid input, since local infusion of AM 251, an antagonist/inverse agonist, modifies RTN neurons electrical activity; furthermore, local activation of CB1Rs by anandamide or WIN 55212-2 produces heterogeneous effects in the basal spontaneous spiking activity, where the main effect is an increase in the spiking rate accompanied by a decrease in bursting activity in a dose-dependent manner; this effect is inhibited by AM 251. In addition, previous activation of GABA-A receptors suppresses the effects of CB1Rs on reticular neurons. Our results show that local activation of CB1Rs primarily diminishes the burst firing mode of RTn neurons.


Subject(s)
Arachidonic Acids , Ketamine , Morpholines , Neurons , Receptor, Cannabinoid, CB1 , Animals , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Male , Rats , Neurons/drug effects , Neurons/physiology , Ketamine/pharmacology , Arachidonic Acids/pharmacology , Morpholines/pharmacology , Pyrazoles/pharmacology , Endocannabinoids/pharmacology , Endocannabinoids/metabolism , Rats, Wistar , Piperidines/pharmacology , Benzoxazines/pharmacology , Action Potentials/drug effects , Action Potentials/physiology , Polyunsaturated Alkamides/pharmacology , Naphthalenes/pharmacology , Cannabinoid Receptor Agonists/pharmacology , Anesthetics, Dissociative/pharmacology
19.
Sci Rep ; 14(1): 17238, 2024 07 26.
Article in English | MEDLINE | ID: mdl-39060336

ABSTRACT

Our laboratory previously developed a method for assessing experimentally induced pain perception through a 2-min constant heat pain stimulation. However, the traditional analysis relying on group means struggles to interpret the considerable inter-individual variability due to the dynamic nature of the response. Recently, trajectory analysis techniques based on extended mixed models have emerged, providing insights into distinct response profiles. Notably, these methods have never been applied to pain paradigms before. Furthermore, various socio-demographic and neurobiological factors, including endocannabinoids, may account for these inter-individual differences. This study aims to apply the novel analysis to dynamic pain responses and investigate variations in response profiles concerning socio-demographic, psychological, and blood endocannabinoid concentrations. 346 pain-free participants were enrolled in a psychophysical test involving a continuous painful heat stimulation lasting for 2 min at a moderate intensity. Pain perception was continuously recorded using a computerized visual scale. Dynamic pain response analyses were conducted using the innovative extended mixed model approach. In contrast to the traditional group-mean analysis, the extended mixed model revealed three pain response trajectories. Trajectory 1 is characterized by a delay peak pain. Trajectory 2 is equivalent to the classic approach (peak pain follow by a constant and moderate increase of pain perception). Trajectory 3 is characterized by extreme responses (steep peak pain, decrease, and increase of pain perception), Furthermore, age and blood anandamide levels exhibited significant variations among these three trajectories. Using an innovative statistical approach, we found that a large proportion of our sample had a response significantly different from the average expected response. Endocannabinoid system seems to play a role in pain response profile.


Subject(s)
Arachidonic Acids , Endocannabinoids , Hot Temperature , Pain Perception , Polyunsaturated Alkamides , Humans , Endocannabinoids/blood , Polyunsaturated Alkamides/blood , Arachidonic Acids/blood , Male , Female , Adult , Pain Perception/physiology , Young Adult , Pain Measurement , Middle Aged , Pain/blood , Pain/physiopathology , Adolescent
20.
Talanta ; 278: 126518, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39018759

ABSTRACT

Endocannabinoids (ECs), such as anandamide and 2-arachidonyl glycerol (2-AG), contribute to the pathology of inflammatory, malignant, cardiovascular, metabolic and mental diseases. The reliability of quantitative analyses in biological fluids of ECs and endocannabinoid-like (EC-like) substances depends on pre-analytical conditions such as temperature and "time-to-centrifugation". Standardization of these parameters is critical for valid quantification and implementation in clinical research. In this study, we compared concentrations obtained with GlucoEXACT blood collection tubes versus K3EDTA tubes and employed the optimized procedure to assess ECs profiles in patients with inflammatory skin disease and healthy controls. A UHPLC-MS/MS method was validated for human plasma from GlucoEXACT blood collection tubes according to EMA and FDA guidelines, and pre-analytical conditions were systematically modified to assess analyte stability and optimize the procedures. The results showed significantly lower concentrations of ECs and EC-like substance concentrations with GlucoEXACT tubes compared with K3EDTA tubes, and GlucoEXACT extended the time window of stable concentrations. The strongest method-disagreement occurred for 1/2-AG suggesting that GlucoEXACT delayed ex vivo isomer rearrangement. Hence, GlucoExact tubes were superior in terms of stability and reliability. However, although absolute concentrations obtained with GlucoExact and K3EDTA differed, linear regression studies showed high agreement (except for 1/2-AG), and both methods showed similar EC profiles and similar disease-dependent pro-inflammatory patterns in dermatology patients. Hence, despite the obstacles in EC analyses, implementation of optimized pre-analytical blood collection and sample processing procedures provide reliable insight into peripheral ECs.


Subject(s)
Endocannabinoids , Tandem Mass Spectrometry , Humans , Endocannabinoids/blood , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid , Blood Specimen Collection/methods , Edetic Acid/chemistry , Reproducibility of Results , Male
SELECTION OF CITATIONS
SEARCH DETAIL