Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 466
Filter
1.
Environ Sci Pollut Res Int ; 31(39): 51954-51970, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39136918

ABSTRACT

Phthalates, such as di-n-butyl phthalate (DBP) and di-isopentyl phthalate (DiPeP), are pollutants with a high potential for endocrine disruption. This study aimed to evaluate parameters of endocrine disruption in specimens of the Neotropical fish Rhamdia quelen exposed to DBP and DiPeP through their food. After 30 days of exposure, the fish were anesthetized and then euthanized, and blood, hypothalamus, liver, and gonads were collected. DBP caused statistically significant alterations in the serotoninergic system of males (5 and 25 ng/g) and females (5 ng/g) of R. quelen and it increased testosterone levels in females (25 ng/g). DiPeP significantly altered the dopaminergic system in females, reduced plasma estradiol levels (125 ng/g) and hepatic vitellogenin expression (25 ng/g), and changed the antioxidant system in gonads (125 ng/g). The results suggest that DBP and DiPeP may have different response patterns in females, with the former being androgenic and the latter being anti-estrogenic. These findings provide additional evidence regarding the molecular events involving DBP and DiPeP in the endocrine disruption potential in juvenile specimens of Rhamdia quelen.


Subject(s)
Antioxidants , Catfishes , Dibutyl Phthalate , Endocrine Disruptors , Neurotransmitter Agents , Vitellogenins , Animals , Vitellogenins/metabolism , Vitellogenins/blood , Dibutyl Phthalate/toxicity , Endocrine Disruptors/toxicity , Female , Antioxidants/metabolism , Male , Neurotransmitter Agents/metabolism , Water Pollutants, Chemical/toxicity , Phthalic Acids/toxicity , Gonads/drug effects
2.
Int. j. morphol ; 42(4): 977-983, ago. 2024. ilus
Article in English | LILACS | ID: biblio-1569274

ABSTRACT

SUMMARY: BPA is a multifunctional endocrine disruptor with ubiquitous presence in aquatic ecosystems. The Mexican Central Plateau is an area severely impacted by pollution, inhabited by endemic viviparous fish. However, efforts to understand the effects of BPA on native species such as Goodea atripinnis are non-existent. This study focused on providing in vivo evidence of alterations in the testes of G. atripinnis males due to acute exposure to BPA at test concentrations of 1 mg/L, 10 mg/L, and 50 mg/L for 96 h. BPA exposition 1 mg/L and 10 mg/L showed degeneration and disorganization in germinal tissue. Furthermore, there was a notable decrease in sperm within the seminiferous tubules of males exposed to 10 mg/L of BPA. In all treatments, somatic cells had alterations by connective tissue thickening and an increase in collagen fibers. Additionally, inflammation and bleeding occurred in the testes of males exposed to 1 and 10 mg/L BPA. The alterations in the testes of G. atripinnis are related to BPA toxicity, which can lead to apoptosis in germ cells increasing connective tissue. Finally, even though the changes produced by BPA became evident in acute exposure (96 h), its effects are probably irreversible, compromising the reproduction of G. atripinnis.


El BPA es un disruptor endocrino multifuncional con presencia ubicua en los ecosistemas acuáticos. La Meseta Central mexicana habitada por peces vivíparos endémicos, es una zona severamente impactada por la contaminación. Sin embargo, los esfuerzos por comprender los efectos del BPA en especies nativas como Goodea atripinnis son inexistentes. Este estudio se centró en proporcionar evidencia in vivo de alteraciones en los testículos de machos de G. atripinnis debido a la exposición aguda al BPA en concentraciones de prueba de 1 mg/L, 10 mg/L y 50 mg/L durante 96 h. La exposición a BPA 1 mg/L y 10 mg/L mostró degeneración y desorganización en el tejido germinal. Además, hubo una disminución notable de los espermatozoides dentro de los túbulos seminíferos de machos expuestos a 10 mg/L de BPA. En todos los tratamientos las células somáticas presentaron alteraciones por engrosamiento del tejido conectivo y aumento de las fibras de colágeno. Además, se produjo inflamación y sangrado en los testículos de machos expuestos a 1 y 10 mg/L de BPA. Las alteraciones en los testículos de G. atripinnis están relacionadas con la toxicidad del BPA, lo que puede provocar apoptosis en las células germinales aumentando el tejido conectivo. Finalmente, si bien los cambios producidos por el BPA se hicieron evidentes en la exposición aguda (96 h), sus efectos probablemente sean irreversibles, comprometiendo la reproducción de G. atripinnis.


Subject(s)
Animals , Phenols/toxicity , Testis/drug effects , Benzhydryl Compounds/toxicity , Cyprinodontiformes , Testis/pathology , Endocrine Disruptors , Fishes
3.
Environ Toxicol ; 39(11): 5019-5038, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39037111

ABSTRACT

Pyriproxyfen (PPF) is an insecticide used in agriculture, which is approved for use in drinking water tanks for human consumption. However, some studies indicate that it may act as an endocrine disruptor and affect nontarget organisms. This study aimed to evaluate the effects of PPF on reproduction and general health status in female mice exposed from pre-puberty to adulthood. In the first experiment, females were treated by gavage from postnatal day (PND) 23 to (PND) 75 and were distributed into three experimental groups: control (vehicle), PPF 0.1 mg/kg, and PPF 1 mg/kg. Female mice were assessed for the age of puberty onset, body mass, water and food consumption, and the estrous cycle. On PDN 75, a subgroup was euthanized, when vital and reproductive organs were collected and weighed. The thyroid, ovary, and uterus were evaluated for histomorphometry. The other subgroup was assessed in relation to reproductive performance and fetal parameters. In a second experiment, the uterotrophic assay was performed with juvenile females (PND 18) using doses of 0.01, 0.1, or 1 mg/kg of PPF. PPF treatment reduced thyroid mass and increased liver mass. Furthermore, there was an increase in ovarian interstitial tissue and, in the uterus, a decrease in the thickness of the endometrial stroma with reduced content of collagen fibers. There was also a reduction of 30% in pregnancy rate in the treated groups and an increase in the frequency of fetal death. This study suggests that, based on this experimental model, the insecticide may pose a reproductive risk for females chronically exposed to the substance from the pre-pubertal period until adulthood. These results raise concerns about prolonged exposure of women to the same compound.


Subject(s)
Insecticides , Pyridines , Reproduction , Sexual Maturation , Female , Animals , Mice , Pyridines/toxicity , Pregnancy , Sexual Maturation/drug effects , Insecticides/toxicity , Reproduction/drug effects , Fetal Death , Ovary/drug effects , Ovary/growth & development , Uterus/drug effects , Uterus/growth & development , Prenatal Exposure Delayed Effects/chemically induced , Endocrine Disruptors/toxicity , Thyroid Gland/drug effects
4.
Chemosphere ; 363: 142895, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39067823

ABSTRACT

Glyphosate-based herbicides (GBHs) are considered endocrine disruptors that affect the female reproductive tract of rats and ewe lambs. The present study aimed to investigate the impact of neonatal exposure to a low dose of a GBH on the ovarian follicular reserve of ewe lambs and the response to a gonadotropic stimulus with porcine FSH (pFSH). To this end, ewe lambs were orally exposed to an environmentally relevant GBH dose (1 mg/kg/day) or vehicle (Control) from postnatal day (PND) 1 to PND14, and then some received pFSH (50 mg/day) between PND41 and 43. The ovaries were dissected, and follicular types and gene expression were assessed via RT-PCR. The treatments did not affect the body weight of animals, but pFSH increased ovarian weight, not observed in GBH-exposed lambs. GBH-exposed lambs showed decreased Estrogen receptor-alpha (56%), Progesterone receptor (75%), Activin receptor II (ACVRII) (85%), and Bone morphogenetic protein 15 (BMP15) (88%) mRNA levels. Control lambs treated with pFSH exhibited downregulation of Follistatin (81%), ACVRII (77%), BMP15 (93%), and FSH receptor (FSHr) (72%). GBH-exposed lambs treated with pFSH displayed reduced ACVRII (68%), BMP15 (81%), and FSHr (50%). GBH-exposed lambs also exhibited decreased Anti-Müllerian hormone expression in primordial and antral follicles (27%) and (54%) respectively) and reduced Bone morphogenetic protein 4 (31%) expression in primordial follicles. Results suggest that GBH disrupts key follicular development molecules and interferes with pFSH action in ovarian receptors, decreasing the ovarian reserve. Future studies should explore whether this decreased ovarian reserve impairs adult ovarian function and its response to superovulation stimuli.


Subject(s)
Glycine , Glyphosate , Herbicides , Ovarian Reserve , Ovary , Animals , Female , Herbicides/toxicity , Sheep/physiology , Glycine/analogs & derivatives , Glycine/toxicity , Ovary/drug effects , Ovarian Reserve/drug effects , Endocrine Disruptors/toxicity , Ovarian Follicle/drug effects , Follicle Stimulating Hormone/blood
5.
Mar Pollut Bull ; 205: 116598, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38885576

ABSTRACT

The concerning of plastic pollution in different ecosystems has been worsened by the widespread presence. Phthalate esters (PAEs), plasticizers found in everyday products, can migrate into the environment, especially into the oceans. Researches on their effects on cetaceans are still rare. Metabolomics helps assess perturbations induced by exposure to PAEs, which act as persistent endocrine disruptors. Four PAEs (dimethyl phthalate - DMP, diethyl phthalate - DEP, dibutyl phthalate - DBP, and di(2-ethylhexyl phthalate - DEHP) were analyzed, along with cholesterol and fatty acid profiles of P. blainvillei's blubber samples collected in southern Brazil. The study reveals pervasive contamination by PAEs - especially DEHP, present in all samples - with positive correlations between DEP content and animal size and weight, as well as between the DEHP amount and the C17:1 fatty acid. These findings will be relevant to conservation efforts aimed at this threatened species and overall marine ecosystems.


Subject(s)
Dolphins , Environmental Monitoring , Esters , Metabolome , Phthalic Acids , Water Pollutants, Chemical , Animals , Brazil , Phthalic Acids/metabolism , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/analysis , Esters/analysis , Esters/metabolism , Dolphins/metabolism , Adipose Tissue/metabolism , Diethylhexyl Phthalate/metabolism , Plasticizers , Endocrine Disruptors/analysis , Male , Female , Dibutyl Phthalate
6.
Reproduction ; 168(1)2024 07 01.
Article in English | MEDLINE | ID: mdl-38758690

ABSTRACT

In brief: The endocrine disruptor, nonylphenol (NP) increases 20:4n-6 release in Sertoli cells via PKA/cPLA2 activation. Our data show that lipid metabolism could be a target of NP-induced abnormal reproductive outcomes. Abstract: Nonylphenol (NP), an endocrine-disrupting chemical, is an environmental contaminant, and many notorious effects on male fertility have been reported in animal models and wild-type species. Here, we evaluated the effects of NP in follicle-stimulating hormone (FSH) signal transduction pathways and lipid metabolism using an in vitro model of rat Sertoli cell (SC) primary culture. Results show that an acute (1 h) SC exposure to NP (10 µM) increased the intra- and extra-cellular concentrations of free fatty acids (FFAs), mainly arachidonic acid (20:4n-6). Phosphatidylinositol seemed to be the major phospholipid source of this 20:4n-6 release by activation of the protein kinase A (PKA)/cytoplasmic phospholipase A2 (cPLA2) pathway. NP also increased diacylglycerols (DAG) levels and the expression (mRNA) of cyclooxygenase 2 (Cox2) and prostaglandin E2 (PGE2) levels. It is noteworthy that accumulation of lipid droplets took place after 24 h NP exposition, which was prevented by both a PKA inhibitor and a PLA2 inhibitor. Like FSH, NP triggers the release of 20:4n-6, which is a substrate for PGE2 synthesis via PKA/PLA2 activation. In addition, NP induces the formation of DAG, which could be required as a cofactor of the PKC-mediated activation of the COX2 inflammatory pathway. Our findings suggest that NP alters lipid homeostasis in SCs by inducing the activation of pro-inflammatory pathways that may trigger adverse effects in testis physiology over time. Concomitantly, the SC enhances the acylation of surplus FFAs (including 20:4n-6) in neutral lipids as a protective mechanism to shield itself from lipotoxicity and pro-inflammatory signals.


Subject(s)
Arachidonic Acid , Cyclic AMP-Dependent Protein Kinases , Endocrine Disruptors , Phenols , Phospholipases A2 , Sertoli Cells , Animals , Male , Sertoli Cells/metabolism , Sertoli Cells/drug effects , Cyclic AMP-Dependent Protein Kinases/metabolism , Phenols/pharmacology , Rats , Arachidonic Acid/metabolism , Endocrine Disruptors/pharmacology , Phospholipases A2/metabolism , Cells, Cultured , Lipid Metabolism/drug effects , Signal Transduction/drug effects , Follicle Stimulating Hormone/metabolism
7.
Environ Toxicol ; 39(9): 4278-4297, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38712533

ABSTRACT

Cadmium (Cd) is a heavy metal that acts as endocrine disrupting chemical (EDC). Few studies have investigated the effects of Cd exposure on metabolic dysfunctions, such as type 1 and 2 diabetes mellitus (T1DM and T2DM). Thus, we assessed whether subacute Cd exposure at occupational levels causes abnormalities in white adipose tissue (WAT), liver, pancreas, and skeletal muscle. We administered cadmium chloride (CdCl2) (100 ppm in drinking water for 30 days) to female rats and evaluated Cd levels in serum and metabolic organs, morphophysiology, inflammation, oxidative stress, fibrosis, and gene expression. High Cd levels were found in serum, WAT, liver, pancreas, and skeletal muscle. Cd-exposed rats showed low adiposity, dyslipidemia, insulin resistance, systemic inflammation, and oxidative stress compared to controls. Cd exposure reduced adipocyte size, hyperleptinemia, increased cholesterol levels, inflammation, apoptosis and fibrosis in WAT. Cd-exposed rats had increased liver cholesterol levels, insulin receptor beta (IRß) and peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC1α) expression, karyomegaly, inflammation, and fibrosis. Cd exposure reduced insulin levels and pancreatic islet size and increased inflammation and fibrosis. Cd exposure reduced skeletal muscle fiber diameter and increased IR expression and inflammation. Finally, strong positive correlations were observed between serum, tissue Cd levels, abnormal morphology, tissue inflammation and fibrosis. Thus, these data suggest that subacute Cd exposure impairs WAT, liver, pancreas and skeletal muscle function, leading to T1DM and T2DM features and other complications in female rats.


Subject(s)
Cadmium , Diabetes Mellitus, Type 2 , Liver , Animals , Female , Diabetes Mellitus, Type 2/chemically induced , Rats , Cadmium/toxicity , Liver/drug effects , Liver/metabolism , Liver/pathology , Oxidative Stress/drug effects , Diabetes Mellitus, Type 1/chemically induced , Rats, Wistar , Pancreas/drug effects , Pancreas/pathology , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Adipose Tissue, White/drug effects , Adipose Tissue, White/metabolism , Endocrine Disruptors/toxicity
8.
Toxicol In Vitro ; 98: 105849, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38772494

ABSTRACT

Concerns over Bisphenol A (BPA) and its substitute, Bisphenol S (BPS), have led to innovative exploration due to potential adverse health effects. BPS, replacing BPA in some regions to avoid toxic impacts, remains insufficiently studied. Besides this, the organ-on-a-chip technology emerges as a transformative solution in drug discovery and chemiclas toxicity testing, minimizing costs and aligning with ethical standards by reducing reliance on animal models, by integrating diverse tissues and dynamic cell environments enhances precision in predicting organ function. Here, we employ a 3-organ-on-a-chip microfluidic device with skin, intestine, and liver cultures to assess the effects of BPA and BPS via topical and oral administration. Our evaluation focused on gene markers associated with carcinogenicity, systemic toxicity, and endocrine disruption. BPA exhibited expected absorption profiles, causing liver injury and genetic modulation in related pathways. BPS, a safer alternative, induced adverse effects on gene expression, particularly in topical absorption, with distinct absorption patterns. Our findings underscore the urgency of addressing BPA and BPS toxicity concerns, highlighting the crucial role of organ-on-a-chip technology in understanding associated health risks. The study promotes the organ-on-a-chip methodology as a valuable tool for safe drug development and disease treatments, offering a novel liver toxicity screening alternative to traditional animal tests. This contributes to advancing comprehension of the biological effects of these compounds, fostering improved safety assessments in human health.


Subject(s)
Benzhydryl Compounds , Lab-On-A-Chip Devices , Liver , Phenols , Skin , Sulfones , Phenols/toxicity , Benzhydryl Compounds/toxicity , Liver/drug effects , Liver/metabolism , Sulfones/toxicity , Animals , Skin/drug effects , Skin/metabolism , Humans , Intestines/drug effects , Endocrine Disruptors/toxicity , Toxicity Tests/methods , Microphysiological Systems
9.
Chemosphere ; 360: 142463, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38821126

ABSTRACT

Estrogenic compounds are the endocrine disruptors that receive major attention because of their ability to imitate the natural female hormone, 17ß-estradiol and cause adverse effects on the reproductive system of animals. The presence of estrogenic compounds in drinking water is a warning to assess the risks to which human beings are exposed. The present work has the objectives of carrying out a systematic review of studies that investigated estrogenic compounds in drinking water around the world and estimate the human health and estrogenic activity risks, based on the concentrations of each compound reported. The systematic review returned 505 scientific papers from the Web of Science®, SCOPUS® and PubMED® databases and after careful analysis, 45 papers were accepted. Sixteen estrogenic compounds were identified in drinking water, from the classes of hormones, pharmaceutical drugs and personal care products, plasticizers, corrosion inhibitors, pesticides and surfactants. Di-(2-ethylhexyl) phthalate (DEHP) was the compound found at the highest concentration, reaching a value of 1.43 mg/L. Non-carcinogenic human health risk was classified as high for 17α-ethynilestradiol and DEHP, medium for dibutyl phthalate, and low for bisphenol A. The estrogenic activity risks were negligible for all the compounds, except DEHP, with a low risk. None of the estrogenic compounds presented an unacceptable carcinogenic risk, due to estrogenic activity. However, the risk assessment did not evaluate the interactions between compounds, that occurs in drinking water and can increase the risks and adverse effects to human health. Nonetheless, this study demonstrates the need for improvement of drinking water treatment plants, with more efficient technologies for micropollutant removal.


Subject(s)
Drinking Water , Endocrine Disruptors , Estrogens , Water Pollutants, Chemical , Drinking Water/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity , Estrogens/analysis , Endocrine Disruptors/analysis , Endocrine Disruptors/toxicity , Humans , Risk Assessment , Animals
10.
Environ Pollut ; 349: 123963, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38621455

ABSTRACT

Tributyltin (TBT) is the chemical substance commonly used worldwide to prevent biofouling of vessels. Due to its ability to bioaccumulate and biomagnify, even after being banned, significant concentrations of TBT can be detected in sediment, affecting marine and human life. Although studies have shown that direct exposure to TBT alters physiological parameters in mammals, the relationship between exposure to TBT during pregnancy and lactation, considered critical windows for metabolic programming, has not been fully elucidated. Our hypothesis is that offspring whose mothers were exposed to TBT during critical stages of development may exhibit dysfunctions in endocrine-metabolic parameters. We used pregnant Wistar rats that were divided into groups and received the following treatments from gestational day 7 until the end of lactation by intragastric gavage: vehicle (ethanol 0.01%; Control), low TBT dose (100 ng/kg of body weight (bw)/day; TBT100ng) and high TBT dose (1000 ng/kg bw/day; TBT1000ng). Dams and offspring at birth and weaning (21 days old) were studied. Maternal exposure to TBT promoted dose-dependent changes in dams. The findings for adiposity, milk composition and lipid profile were more pronounced in TBT100 ng dam; however, thyroid morphology was altered in TBT1000 ng dam. Female offspring were differentially affected by the dose of exposure. At birth, females in the TBT100ng group had low body weight, lower naso-anal length (NAL), and higher plasma T4, and at weaning, females in the TBT100ng group had lower insulin and leptin levels. Females in the TBT1000ng group had lower NAL at birth and lower leptinemia and weight of white adipose tissue at weaning. Male offspring from TBT groups showed high T3 at birth, without biometric alterations at birth or weaning. Despite these findings, both sexes exhibited dose-dependent morphological changes in the thyroid gland. Thus, maternal exposure to TBT constitutes an important route of contamination for both dams and offspring.


Subject(s)
Lactation , Maternal Exposure , Prenatal Exposure Delayed Effects , Rats, Wistar , Thyroid Gland , Trialkyltin Compounds , Animals , Female , Trialkyltin Compounds/toxicity , Rats , Pregnancy , Male , Thyroid Gland/drug effects , Lactation/drug effects , Animals, Newborn , Endocrine Disruptors/toxicity , Milk/chemistry , Milk/metabolism
11.
Mol Cell Endocrinol ; 586: 112191, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38382589

ABSTRACT

In this review we seek to systematically bring what has been published in the literature about the nervous system, endocrine system, neuroendocrine relationships, neuroendocrine modulations and endocrine disruptors in the alternative model Caenorhabditis elegans. The serotonergic, dopaminergic, GABAergic and glutamatergic neurotransmitters are related to the modulation of the neuroendocrine axis, leading to the activation or inhibition of several processes that occur in the worm through distinct and interconnected pathways. Furthermore, this review addresses the gut-neuronal axis as it has been revealed in recent years that gut microbiota impacts on neuronal functions. This review also approaches xenobiotics that can positively or negatively impact the neuroendocrine system in C. elegans as in mammals, which allows the application of this nematode to screen new drugs and to identify toxicants that are endocrine disruptors.


Subject(s)
Caenorhabditis elegans , Endocrine Disruptors , Animals , Caenorhabditis elegans/metabolism , Endocrine Disruptors/pharmacology , Neurosecretory Systems , Nervous System , Neurons , Mammals
12.
Chemosphere ; 352: 141423, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38340991

ABSTRACT

Chlorothalonil is a broad-spectrum organochlorine fungicide widely employed in agriculture to control fungal foliar diseases. This fungicide enters aquatic environments through the leaching process, leading to toxicity in non-target organisms. Organic contaminants can impact organism reproduction as they have the potential to interact with the neuroendocrine system. Although there are reports of toxic effects of chlorothalonil, information regarding its impact on reproduction is limited. The aim of the present study was to evaluate the influence of chlorothalonil on male reproductive physiology using the zebrafish (Danio rerio) as ecotoxicological model. Zebrafish were exposed for 7 days to two concentrations of chlorothalonil (0.1 and 10 µg/L) along with a control group (with DMSO - 0.001%). Gene expression of hypothalamus-pituitary-gonad axis components (gnrh2, gnrh3, lhr, fshr, star, hsd17b1, hsd17b3, and cyp19a1), as well as hepatic vitellogenin concentration were assessed. In sperm cells, reactive oxygen species (ROS) content, lipid peroxidation (LPO), mitochondrial functionality, and membrane integrity and fluidity were evaluated. Results indicate that exposure to the higher concentration of chlorothalonil led to a reduction in brain gnr2 expression. In gonads, mRNA levels of lhr, star, and hsd17b1 were decreased at both chlorothalonil concentrations tested. Similarly, hepatic vitellogenin concentration was reduced. Regarding sperm cells, a decreased ROS level was observed, without significant difference in LPO level. Additionally, a higher mitochondrial potential and lower membrane fluidity were observed in zebrafish exposed to chlorothalonil. These findings demonstrate that chlorothalonil acts as an endocrine disruptor, influencing reproductive control mechanisms, as evidenced by changes in expression of genes HPG axis, as well as hepatic vitellogenin concentration. Furthermore, our findings reveal that exposure to this contaminant may compromise the reproductive success of the species, as it affected sperm quality parameters.


Subject(s)
Endocrine Disruptors , Fungicides, Industrial , Nitriles , Water Pollutants, Chemical , Animals , Male , Zebrafish/metabolism , Endocrine Disruptors/metabolism , Hypothalamic-Pituitary-Gonadal Axis , Reactive Oxygen Species/metabolism , Fungicides, Industrial/metabolism , Vitellogenins/metabolism , Semen , Gonads , Spermatozoa/metabolism , Reproduction , Water Pollutants, Chemical/metabolism
13.
J Phys Chem B ; 128(8): 2045-2052, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38359361

ABSTRACT

Nanoplastics (NPs) can come into contact with humans through different means such as ingesting contaminated food or exposure to contaminated air. Recent research indicates that these NPs can act as vectors for other contaminants. Further research is still needed to determine the effects of these interactions and whether they are significant under environmental conditions. Bisphenol A (BPA) and benzophenone (BZP) are possible contaminants that could be cotransported with NPs. Even in low concentrations, BPA and BZP can act as endocrine disruptors and have been linked to several diseases. In this study, we used molecular dynamics simulations to obtain the potential of mean force (PMF) profile between a polyethylene NP and a BPA/BZP molecule. The PMF shows a minimum of -8.0 kJ mol-1 for the BPA, whereas it is -23.5 kJ mol-1 for the BZP, meaning BZP has a much greater attractive potential to polyethylene than BPA. We can infer that the higher quantity of BPA's hydrogen bonds with the water contributes to the difference between BZP and BPA. The results indicate the need to address the possibility of NPs playing a role in the cotransport and bioaccumulation of contaminants in aquatic ecosystems.


Subject(s)
Benzophenones , Endocrine Disruptors , Phenols , Humans , Polyethylene , Microplastics , Molecular Dynamics Simulation , Ecosystem , Benzhydryl Compounds/analysis
14.
Endocr Pract ; 30(4): 384-397, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38185329

ABSTRACT

OBJECTIVE: This study aims to explore the significant impact of environmental chemicals on disease development, focusing on their role in developing metabolic and endocrine diseases. The objective is to understand how these chemicals contribute to the increasing prevalence of precocious puberty, considering various factors, including epigenetic changes, lifestyle, and emotional disturbances. METHODS: The study employs a comprehensive review of descriptive observational studies in both human and animal models to identify a degree of causality between exposure to environmental chemicals and disease development, specifically focusing on endocrine disruption. Due to ethical constraints, direct causation studies in human subjects are not feasible; therefore, the research relies on accumulated observational data. RESULTS: Puberty is a crucial life period with marked physiological and psychological changes. The age at which sexual characteristics develop is changing in many regions. The findings indicate a correlation between exposure to endocrine-disrupting chemicals and the early onset of puberty. These chemicals have been shown to interfere with normal hormonal processes, particularly during critical developmental stages such as adolescence. The research also highlights the interaction of these chemical exposures with other factors, including nutritional history, social and lifestyle changes, and emotional stress, which together contribute to the prevalence of precocious puberty. CONCLUSION: Environmental chemicals significantly contribute to the development of certain metabolic and endocrine diseases, particularly in the rising incidence of precocious puberty. Although the evidence is mainly observational, it adequately justifies regulatory actions to reduce exposure risks. Furthermore, these findings highlight the urgent need for more research on the epigenetic effects of these chemicals and their wider impact on human health, especially during vital developmental periods.


Subject(s)
Endocrine Disruptors , Endocrine System Diseases , Puberty, Precocious , Adolescent , Animals , Humans , Endocrine Disruptors/toxicity , Endocrine System , Puberty/physiology , Puberty, Precocious/chemically induced , Puberty, Precocious/epidemiology , Observational Studies as Topic
15.
Int J Gynaecol Obstet ; 166(1): 190-203, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38197560

ABSTRACT

BACKGROUND: Polycystic ovary syndrome (PCOS) is an endocrine disorder characterized by anovulation, hyperandrogenism, and polycystic ovarian morphology. Its etiology is uncertain and one of the hypotheses is that environmental factors, such as the bisphenol A (BPA) endocrine disruptor, may be involved. OBJECTIVE: To investigate the association between exposure to BPA and PCOS. SEARCH STRATEGY: Research was conducted focusing on studies published in English, Portuguese, and Spanish from January 2001 to March 2023 and available in Embase, Medline/PubMed, Rima, Lilacs, Scielo, Google academic, and SCI databases. SELECTION CRITERIA: Studies in humans that evaluated the association between exposure to BPA and a diagnosis of PCOS. DATA COLLECTION AND ANALYSIS: Following PRISMA guidelines, study characteristics and relevant data were extracted. MAIN RESULTS: Selection of 15 case-control and 7 cross-sectional studies with a total of 1682 PCOS patients. The studies were carried out in China, Poland, Turkey, Japan, Greece, Italy, the USA, Iran, Iraq, Egypt, India, Czechia, and Slovakia. A positive relationship between exposure to BPA and PCOS was described in19 studies (1391 [82.70%] of the PCOS patients). The fluids used in the studies were serum, urine, plasma, and follicular fluid. BPA was measured by ELISA and by chromatography (HPLC, HPLC-MS/MS, GC-MS, and GC-MS/MS). Diagnosis of PCOS used Rotterdam criteria in 15, NIH 1999 in 3, AE&PCOS Society in 2, similar to the Rotterdam criteria in 1, and criteria not informed in 1. Androgens were measured in 16 studies; in 12, hyperandrogenism was positively associated with BPA. BPA level was related to body mass index (BMI) in studies. In 15 studies independently of BMI, women with PCOS had higher BPA levels. Carbohydrate metabolism disorders were evaluated in 12 studies and in 6 a positive correlation was found with BPA levels. Lipid profile was evaluated in seven studies and in only one the correlation between lipid profile and BPA levels was present. CONCLUSIONS: Exposure to BPA is positively associated with PCOS, mainly with the hyperandrogenism.


Subject(s)
Benzhydryl Compounds , Endocrine Disruptors , Phenols , Polycystic Ovary Syndrome , Humans , Female , Phenols/adverse effects , Phenols/urine , Benzhydryl Compounds/adverse effects , Benzhydryl Compounds/urine , Endocrine Disruptors/adverse effects , Environmental Exposure/adverse effects
16.
J Pediatr (Rio J) ; 100 Suppl 1: S40-S47, 2024.
Article in English | MEDLINE | ID: mdl-37913820

ABSTRACT

OBJECTIVES: Narrative review evaluating food contamination by endocrine disruptors present in food packaging. DATA SOURCE: The terms "endocrine disruptors" and "food packaging" were used in combination in the PubMed, MEDLINE and SciELO databases, evaluating studies, in humans, published in Portuguese, English, French and Spanish between 1990 and 2023. DATA SYNTHESIS: Packaging, especially those made from plastic or recycled material, is an important source of food contamination by endocrine disruptors. Bisphenols and phthalates are the endocrine disruptors most frequently associated with food contamination from packaging. However, many unknown substances and even those legally authorized can cause harm to health when exposure is prolonged or when substances with additive effects are mixed. Furthermore, the discarding of packaging can cause contamination to continue into the environment. CONCLUSION: Although packaging materials are essential for the transport and storage of food, many of them are associated with chemical contamination. As it is not possible to exclude them from our routine, it is important to develop research aimed at identifying the endocrine disruptors present in them, including the effects of chronic exposure; and that regulatory agencies and industry come together to reduce or prevent this risk. Additionally, consumers must be instructed on how to purchase products, handle them and prepare them to reduce the migration of chemical substances into food.


Subject(s)
Endocrine Disruptors , Phthalic Acids , Humans , Food Packaging , Endocrine Disruptors/adverse effects , Endocrine Disruptors/analysis , Endocrine Disruptors/chemistry , Food , Food Contamination/analysis , Food Contamination/prevention & control , Phthalic Acids/adverse effects
17.
Int J Environ Health Res ; 34(9): 3073-3083, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38099522

ABSTRACT

The female prostate, also known as Skene's gland, is present in both humans and rodents. Prenatal exposure to ethinylestradiol (EE2), a synthetic estrogen found in oral contraceptives, induces pormotes neoplasic prostate lesions in gerbils (Meriones unguiculatus). Conversely, pequi oil (Pe), extracted from the Brazilian Cerrado fruit, has antioxidant, anti-inflammatory, and anticancer properties, mitigates risks associated with chronic diseases related to lifestyle and aging. This study evaluates the impact of prenatal exposure to Pe (300 mg/kg) on senile gerbil offspring's male and female prostates under normal conditions and EE2 exposure (15 µg/kg/day). Histological and morphometric analyses revealed that Pe reduced male body weight and prostate epithelial height, along with a thinner muscle layer. In females, EE2 exposure reduced prostatic weight, while Pe exposure lowered epithelial height and the relative stromal compartment volume, increasing the muscle layer. Pequi oil holds potential in mitigating alterations induced by exposure to the endocrine disruptor EE2.


Subject(s)
Ethinyl Estradiol , Gerbillinae , Prenatal Exposure Delayed Effects , Prostate , Animals , Male , Female , Prostate/drug effects , Prostate/pathology , Prenatal Exposure Delayed Effects/chemically induced , Ethinyl Estradiol/toxicity , Pregnancy , Plant Oils , Aging/drug effects , Endocrine Disruptors/toxicity , Ericales
18.
Bull Environ Contam Toxicol ; 112(1): 11, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38092994

ABSTRACT

The present study evaluates the endocrine effect in flatfish through vitellogenin (vtg) gene expression and its association with pollutants data obtained from fish muscle and sediment from two regions in the Gulf of Mexico (GoM): Perdido Fold Belt (northwestern) and the Yucatan Peninsula (southeast). The results revealed induction of vtg in male flatfish in both geographical regions with different levels and patterns of distribution per oceanographic campaign (OC). In the Perdido Fold Belt, vtg was observed in male fish during four OC (carried out in 2016 and 2017), positively associated with Pb, V, Cd and bile metabolites (hydroxynaphthalene and hydroxyphenanthrene). In the Yucatan Peninsula, the induction of vtg in males was also detected in three OC (carried out in 2016 and 2018) mainly associated with Ni, Pb, Al, Cd, V and polycyclic aromatic hydrocarbons. Ultimately, estrogenic alterations could affect reproductive capacity of male flatfish in the GoM.


Subject(s)
Endocrine Disruptors , Environmental Pollutants , Flatfishes , Water Pollutants, Chemical , Animals , Male , Vitellogenins/genetics , Vitellogenins/metabolism , Gulf of Mexico , Cadmium , Lead , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/metabolism , Environmental Monitoring/methods
19.
Mar Pollut Bull ; 197: 115727, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37918146

ABSTRACT

Endocrine Disrupting Chemicals (EDCs) encompass a wide variety of substances capable of interfering with the endocrine system, including but not limited to bisphenol A, organochlorines, polybrominated flame retardants, alkylphenols and phthalates. These compounds are widely produced and used in everyday modern life and have increasingly been detected in aquatic matrices worldwide. In this context, this study aimed to carry out a literature review to assess the evolution of EDCs detected in different matrices in the last thirty years. A bibliometric analysis was conducted at the Scopus, Web of Science, and Google Scholar databases. Data were evaluated using the Vosviewer 1.6.17 software. A total of 3951 articles in English were retrieved following filtering. The results demonstrate a gradual and significant growth in the number of published documents, strongly associated with the increasing knowledge on the real environmental impacts of these compounds. Studied were mostly conducted by developed countries in the first two decades, 1993 to 2012, but in the last decade (2013 to 2022), an exponential leap in the number of publications by countries such as China and an advance in research by developing countries, such as Brazil, was verified.


Subject(s)
Endocrine Disruptors , Flame Retardants , Endocrine Disruptors/analysis , Endocrine System , Databases, Factual , Brazil
20.
Environ Monit Assess ; 195(12): 1539, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38012428

ABSTRACT

The aim of this study was to evaluate the effect of possible endocrine disruptors in surface and wastewater using a cell proliferation assay in an estrogen-responsive cell line (MCF-7). This study was conducted in the Sinos River (Brazil). The residual water was collected from a Pilot Treatment Plant (using Typha domingensis) and surface waters of the Luis Rau stream, the Sinos River, and the Water Treatment Station (WTS). After exposures (24-120 h), a Sulforhodamine B assay was performed to determine the proliferation rate. The higher increase in proliferation rate was observed with the Luiz Rau stream and the sewage treated by macrophytes in a flotation filter. The results from WTS water remained with a proliferation rate similar to the negative control at all times, suggesting that the conventional treatment is partially effective for the withdrawal of endocrine-disrupting agents. The study demonstrated the efficiency of the MCF-7 line in assessing endocrine disruption caused by wastewater and surface water samples. Our results indicate that conventional water treatment can partially remove the polluting load of endocrine disruptors, minimizing their environmental and public health impacts. Besides, it demonstrates the need to expand sanitary services to improve the population's quality of life.


Subject(s)
Endocrine Disruptors , Water Pollutants, Chemical , Humans , Endocrine Disruptors/toxicity , Endocrine Disruptors/analysis , Wastewater , Environmental Monitoring/methods , Brazil , MCF-7 Cells , Quality of Life , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Waste Disposal, Fluid/methods
SELECTION OF CITATIONS
SEARCH DETAIL