Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.095
1.
Front Immunol ; 15: 1385762, 2024.
Article En | MEDLINE | ID: mdl-38707901

The transition from oviparity to viviparity and the establishment of feto-maternal communications introduced the placenta as the major anatomical site to provide nutrients, gases, and hormones to the developing fetus. The placenta has endocrine functions, orchestrates maternal adaptations to pregnancy at different periods of pregnancy, and acts as a selective barrier to minimize exposure of developing fetus to xenobiotics, pathogens, and parasites. Despite the fact that this ancient organ is central for establishment of a normal pregnancy in eutherians, the placenta remains one of the least studied organs. The first step of pregnancy, embryo implantation, is finely regulated by the trophoectoderm, the precursor of all trophoblast cells. There is a bidirectional communication between placenta and endometrium leading to decidualization, a critical step for maintenance of pregnancy. There are three-direction interactions between the placenta, maternal immune cells, and the endometrium for adaptation of endometrial immune system to the allogeneic fetus. While 65% of all systemically expressed human proteins have been found in the placenta tissues, it expresses numerous placenta-specific proteins, whose expression are dramatically changed in gestational diseases and could serve as biomarkers for early detection of gestational diseases. Surprisingly, placentation and carcinogenesis exhibit numerous shared features in metabolism and cell behavior, proteins and molecular signatures, signaling pathways, and tissue microenvironment, which proposes the concept of "cancer as ectopic trophoblastic cells". By extensive researches in this novel field, a handful of cancer biomarkers has been discovered. This review paper, which has been inspired in part by our extensive experiences during the past couple of years, highlights new aspects of placental functions with emphasis on its immunomodulatory role in establishment of a successful pregnancy and on a potential link between placentation and carcinogenesis.


Placenta , Humans , Pregnancy , Female , Placenta/immunology , Placenta/metabolism , Animals , Placentation , Endometrium/immunology , Endometrium/metabolism , Neoplasms/immunology , Neoplasms/etiology , Embryo Implantation/immunology
2.
J Reprod Immunol ; 163: 104251, 2024 Jun.
Article En | MEDLINE | ID: mdl-38718429

Recurrent pregnancy loss (RPL) is a troubling condition that affects couples worldwide. Despite extensive research efforts, many RPL cases remain unexplained, highlighting the need for novel approaches to unravel its underlying mechanisms. Recent advances in microbiome research have shed light on the potential role of the microbiome in reproductive health and outcomes. Based on a systematic literature research, this review aims to comprehensively explore the current understanding of the microbiome's involvement in RPL, focusing on the vaginal, endometrial, and gut microbiomes. Evidence from the available studies is examined to explain the relationship between the microbiome and RPL. Furthermore, we discuss the diagnostic potential of the microbiome, therapeutic interventions, and future directions in microbiome research for RPL. Understanding the complex interactions between the microbiome and reproductive health holds promise for developing targeted interventions to help patients today diagnosed as unexplained.


Abortion, Habitual , Microbiota , Humans , Abortion, Habitual/microbiology , Abortion, Habitual/immunology , Abortion, Habitual/diagnosis , Female , Pregnancy , Microbiota/immunology , Gastrointestinal Microbiome/immunology , Endometrium/microbiology , Endometrium/immunology , Endometrium/pathology , Vagina/microbiology , Vagina/immunology
3.
Am J Reprod Immunol ; 91(4): e13842, 2024 Apr.
Article En | MEDLINE | ID: mdl-38650366

PROBLEM: Although endometrial receptivity is a key factor in influencing implantation in both naturally conceived and assisted reproductive technology (ART) cycles, very little is known about the endometrium milieu around the time of implantation. Previous studies have demonstrated the presence of several cytokines in the endometrium that affect implantation. However, there is lacking data about the presence of immune cell subtypes within the endometrium and in the uterine cavity at the time of implantation. METHOD OF STUDY: This study was approved by the Institutional Review Board (# 225589). The study was designed as a prospective observational cohort study between May 2021 and December 2022 at a single academic-based fertility center. All patients underwent at least one In Vitro Fertilization (IVF) cycle and have frozen embryos. Twenty-four participants were recruited for this study which was conducted during the frozen embryo transfer (FET) cycle regardless of the outcome of previous cycles. Two samples were acquired from each subject, denoted as lower and upper. A trial transfer catheter was introduced under ultrasound guidance into the lower uterine segment. Upon removal, the tip was rinsed in IMDM medium containing 10% FBS (lower uterus). A transfer catheter was then loaded with the embryo that was placed in the upper uterus under ultrasound guidance. The tip of the transfer catheter was rinsed in separate aliquot of the above media (upper uterus). After centrifugation, pelleted cells were stained for the following surface markers: CD45, CD3, CD19, CD4, CD8, gamma delta TCR, CD25, CD127, CD66b, CD14, CD16, CD56 and acquired on Sony SP6800 Spectral Analyzer. RESULTS: Upon staining the pelleted cells, we were able to identify viable leukocytes from samples obtained from both, upper and lower uterus (0.125 × 106 cells ± SD 0.32), (0.123 × 106 cells ± SD 0.12), respectively. Among total viable cells, there was no significant difference in both percent and number of CD45+ cells between the upper and lower uterus (9.88% ± 6.98 SD, 13.67% ± 9.79 SD, p = .198) respectively. However, there was significantly higher expression of CD3+ (p = .006), CD19+ (p = .032) and CD14+ (p = .019) cells in samples collected from upper compared to lower uterus. Within all CD3+ cells, we found that gamma delta T cells (GDT) were the major population of T cells in both upper and lower uterus. In contrast, CD8+ T cells were significantly higher in the lower uterus when compared to the upper uterus (p = .009). There was no statistically significant difference in the expression of CD4+ T cells, T regulatory cells (CD4+CD25+CD127-), NK cells (CD56+), neutrophils (CD66b+) and FcγRIII+ cells (CD16+) between upper and lower uterus. CONCLUSIONS: We believe the immune milieu at the time of embryo transfer will affect implantation. Understanding the composition of immune cells will guide further research in identifying optimal immune milieus that favor implantation. Comprehensive analysis of endometrium is expected to lead to new diagnostic and therapeutic approaches to improve IVF outcomes.


Embryo Transfer , Endometrium , Uterus , Humans , Female , Adult , Embryo Transfer/methods , Uterus/immunology , Endometrium/immunology , Endometrium/cytology , Prospective Studies , Embryo Implantation/immunology , Fertilization in Vitro , Pregnancy , Body Fluids/immunology
4.
Acta Cytol ; 68(2): 128-136, 2024.
Article En | MEDLINE | ID: mdl-38471464

INTRODUCTION: Patients with polymerase epsilon (POLE) mutation (POLEmut) subtype, MMR-deficient (MMR-d) subtype as classified by The Cancer Genome Atlas (TCGA), and a high tumor mutation burden (TMB-high) potentially benefit from immunotherapy. However, characteristics of the cytological morphology within these populations remain unknown. METHODS: DNA extracted from formalin-fixed paraffin-embedded tissues was subjected to next-generation sequencing analysis. Genomic mutations related to gynecological cancers, TMB, and microsatellite instability were analyzed and were placed in four TCGA classification types. The following morphological cytological investigations were conducted on endometrial cancer using a liquid-based preparation method, prior to the commencement of initial treatment: (i) cytological backgrounds; (ii) differences between each count of neutrophils and lymphocytes as described below. RESULTS: Insignificant differences in the cytological background patterns of TCGA groups and TMB status were found. Although there was no significant difference in neutrophil count (p = 0.955) in the TCGA groups, POLEmut and MMR-d had significantly higher lymphocyte counts than no specific molecular profile (NSMP) (p = 0.019 and 0.037, respectively); furthermore, p53mut also tended to be significant (p = 0.064). Lymphocyte counts in TMB-high were also significantly greater than TMB-low (p = 0.002). POLEmut showed a positive correlation between TMB levels and lymphocyte counts. For predicting patients with POLEmut plus MMR-d, lymphocyte counts demonstrated a superior diagnostic accuracy of area under the curve (AUC) (0.70, 95% CI: 0.57-0.84), with a cutoff value of 26 high-power field. CONCLUSION: Lymphocyte count using liquid-based cytology for patients with endometrial cancer may predict POLEmut plus MMR-d of TCGA groups and TMB-high in those who can benefit from immunotherapy.


Biomarkers, Tumor , DNA Polymerase II , Endometrial Neoplasms , Endometrium , Immunotherapy , Mutation , Humans , Female , Endometrial Neoplasms/pathology , Endometrial Neoplasms/genetics , Endometrial Neoplasms/therapy , Middle Aged , Immunotherapy/methods , Aged , Biomarkers, Tumor/genetics , Endometrium/pathology , Endometrium/immunology , DNA Polymerase II/genetics , Poly-ADP-Ribose Binding Proteins/genetics , Neutrophils/pathology , Adult , Lymphocyte Count/methods , Microsatellite Instability , Predictive Value of Tests , Aged, 80 and over , Patient Selection , DNA Mutational Analysis , Lymphocytes/pathology , Clinical Decision-Making , Cytology
5.
J Reprod Immunol ; 163: 104223, 2024 Jun.
Article En | MEDLINE | ID: mdl-38489930

Autophagy is a process that occurs in almost all eukaryotic cells and this process is controlled by several molecular processes. Its biological roles include the provision of energy, the maintenance of cell homeostasis, and the promotion of aberrant cell death. The importance of autophagy in pregnancy is gradually becoming recognized. In literature, it has been indicated that autophagy has three different effects on the onset and maintenance of pregnancy: embryo (embryonic development), feto-maternal immune crosstalk, and maternal (decidualization). In humans, proper decidualization is a major predictor of pregnancy accomplishment and it can be influenced by different factors. This review highlights the genes, pathways, regulation, and function of autophagy in endometrial decidualization and other involved factors in this process.


Autophagy , Decidua , Endometrium , Pregnancy Complications , Signal Transduction , Humans , Female , Pregnancy , Autophagy/immunology , Signal Transduction/immunology , Pregnancy Complications/immunology , Decidua/immunology , Decidua/metabolism , Endometrium/immunology , Endometrium/metabolism , Animals , Embryonic Development/immunology , Embryonic Development/genetics , Embryo Implantation/immunology
6.
J Reprod Immunol ; 163: 104212, 2024 Jun.
Article En | MEDLINE | ID: mdl-38432052

Interferon-τ (IFN-τ) participates in the establishment of endometrial receptivity in ruminants. However, the precise mechanisms by which IFN-τ establishes bovine endometrial receptivity remain largely unknown. Interferon regulatory factor 1 (IRF1) is a classical interferon-stimulated gene (ISG) induced by type I interferon, including IFN-τ. Leukemia inhibitory factor receptor (LIFR) is a transmembrane receptor for leukemia inhibitory factor (LIF), which is a key factor in regulating embryo implantation in mammals. This study aimed to investigate the roles of IRF1 and LIFR in the regulation of bovine endometrial receptivity by IFN-τ. In vivo, we found IRF1 and LIFR were upregulated in the bovine endometrial luminal epithelium on Day 18 of pregnancy compared to Day 18 of the estrous cycle. In vitro, IFN-τ could upregulate IRF1, LIFR, and endometrial receptivity markers (LIF, HOXA10, ITGAV, and ITGB3) expression, downregulate E-cadherin expression and reduce the quantity of microvilli of bovine endometrial epithelial cells (bEECs). Overexpression of IRF1 had similar effects to IFN-τ on endometrial receptivity, and interference of LIFR could block these effects, suggesting the positive effects of IRF1 on endometrial receptivity were mediated by LIFR. Dual luciferase reporter assay verified that IRF1 could transactivate LIFR transcription by binding to its promoter. In conclusion, IFN-τ can induce IRF1 expression in bovine endometrial epithelial cells, and IRF1 upregulates LIFR expression by binding to LIFR promoter, contributing to the enhancement of bovine endometrial receptivity.


Embryo Implantation , Endometrium , Interferon Regulatory Factor-1 , Interferon Type I , Animals , Female , Cattle , Endometrium/metabolism , Endometrium/immunology , Interferon Regulatory Factor-1/metabolism , Interferon Regulatory Factor-1/genetics , Embryo Implantation/immunology , Interferon Type I/metabolism , Pregnancy , Receptors, OSM-LIF/metabolism , Pregnancy Proteins/metabolism , Pregnancy Proteins/genetics , Transcriptional Activation , Cells, Cultured , Epithelial Cells/metabolism , Epithelial Cells/immunology
7.
Immunology ; 172(3): 469-485, 2024 Jul.
Article En | MEDLINE | ID: mdl-38544333

Endometriosis is defined as an oestrogen-dependent and inflammatory gynaecological disease of which the pathogenesis remains unclear. This study aimed to investigate the cellular heterogeneity and reveal the effect of CD8+ T cells on the progress of endometriosis. Three ovarian endometriosis patients were collected, and single-cell RNA sequencing (scRNA-seq) progressed and delineated the cellular landscape of endometriosis containing five cell clusters. The endometrial cells (EMCs) were the major component, of which the mesenchymal cells were preponderant and characterized with increased inflammation and oestrogen synthesis in endometriosis. The proportion of T cells, mainly CD8+ T cells rather than CD4+, was reduced in endometriotic lesions, and the cytokines and cytotoxicity of ectopic T cells were depressed. CD8+ T cells depressed the proliferation of ESCs through inhibiting CDK1/CCNB1 pathway to arrest the cell cycle and triggered inflammation through activating STAT1 pathway. Correspondingly, the coculture with ESCs resulted in the dysfunction of CD8+ T cells through upregulating STAT1/PDCD1 pathway and glycolysis-promoted metabolism reprogramming. The endometriotic lesions were larger in nude mouse models with T-cell deficiency than the normal mouse models. The inhibition of T cells via CD90.2 or CD8A antibody increased the endometriotic lesions in mouse models, and the supplement of T cells to nude mouse models diminished the lesion sizes. In conclusion, this study revealed the global cellular variation of endometriosis among which the cellular count and physiology of EMCs and T cells were significantly changed. The depressed cytotoxicity and aberrant metabolism of CD8+ T cells were induced by ESCs with the activation of STAT1/PDCD1 pathway resulting in immune survival to promote endometriosis.


CD8-Positive T-Lymphocytes , Endometriosis , STAT1 Transcription Factor , Stromal Cells , Endometriosis/immunology , Endometriosis/pathology , Endometriosis/metabolism , Female , CD8-Positive T-Lymphocytes/immunology , Humans , Animals , Mice , Stromal Cells/immunology , Stromal Cells/metabolism , STAT1 Transcription Factor/metabolism , Programmed Cell Death 1 Receptor/metabolism , Endometrium/immunology , Endometrium/pathology , Disease Models, Animal , Signal Transduction , Mice, Nude , Adult , CDC2 Protein Kinase/metabolism , Coculture Techniques , Cytokines/metabolism
8.
J Reprod Immunol ; 163: 104218, 2024 Jun.
Article En | MEDLINE | ID: mdl-38422808

This study aimed to evaluate the effectiveness of the endometrial receptivity array (ERA), endometrial immune profiling, and a combination of both in improving the pregnancy outcomes for multiple implantation failure patients. According to patients' willingness, 1429 women who incurred at least two or more consecutive implantation failures in IVF/ICSI treatment opted for frozen embryo transfer and were divided into four groups: 'No test', 'Immune Profiling', 'ERA' and 'ERA+ Immune Profiling'. Women in three test groups underwent timed endometrial biopsy for ERA, immune profiling, a combination of both. We observed the overall incidence rates of the displaced window of implantation (WOI) and endometrial immune dysregulation were 75.14% and 79.29%, respectively. After 1:1 propensity score matching (PSM), our data revealed that the 'ERA' and 'ERA + Immune Profiling' groups demonstrated significantly higher rates of biochemical, clinical, ongoing pregnancy, and implantation compared to the 'No test' group (p < 0.01). The 'Immune Profiling' group showed a higher implantation rate compared to 'No test' group (p < 0.05). Furthermore, when comparing three test groups, the 'ERA + Immune Profiling' group exhibited notably higher rates of clinical and ongoing pregnancy compared to the 'Immune Profiling' group (p < 0.017). However, there was no association between endometrial immune profiling and ERA phases, and their results did not differ between embryo implantation and non-implantation in these patients. Our findings underline the increased implantation rates by use of ERA and endometrial immune profiling in patients with multiple implantation failure, either individually or corporately. Moreover, a combination of both could improve their pregnancy outcomes significantly.


Embryo Implantation , Embryo Transfer , Endometrium , Fertilization in Vitro , Propensity Score , Humans , Female , Endometrium/immunology , Endometrium/pathology , Pregnancy , Embryo Implantation/immunology , Adult , Retrospective Studies , Embryo Transfer/methods , Fertilization in Vitro/methods , Pregnancy Outcome , Pregnancy Rate
9.
J Assist Reprod Genet ; 40(2): 381-387, 2023 Feb.
Article En | MEDLINE | ID: mdl-36574140

PURPOSE: Using a comprehensive flow cytometric panel, simultaneously obtained mid-luteal immunophenotypes from peripheral blood and endometrium were compared and values correlated. Is a peripheral blood evaluation of reproductive immunophenotype status meritorious relative to local endometrial evaluation to directly assess the peri-implantation environment? METHODS: Fifty-five patients had a mid-luteal biopsy to assess the local endometrial immunophenotype, while simultaneously providing a peripheral blood sample for analysis. Both samples were immediately assessed using a comprehensive multi-parameter panel, and lymphocyte subpopulations were described and compared. RESULTS: Distinct lymphocyte proportions and percentage differences were noted across the two compartments, confirming the hypothesis that they are distinct environments. The ratio of CD4 + to CD8 + T cells were reversed between the two compartments, as were Th1 and Th2-type CD4 + T cell ratios. Despite these differences, some direct relationships were noted. Positive Pearson correlations were found between the levels of CD57 + expressing natural killer cells, CD3 + NK-T cells and CD4 + Th1 cells in both compartments. CONCLUSIONS: Flow cytometric evaluation provides a rapid and objective analysis of lymphocyte subpopulations. Endometrial biopsies have become the gold standard technique to assess the uterine immunophenotype in adverse reproductive outcome, but there may still a place for peripheral blood evaluation in this context. The findings demonstrate significant variations in cellular proportions across the two regions, but some positive correlations are present. Immunological assessment of these specific peripheral blood lymphocyte subtypes may provide insight into patients with potential alterations of the uterine immune environment, without the risks and inconveniences associated with an invasive procedure.


Endometrium , Flow Cytometry , Immunophenotyping , Female , Humans , Endometrium/immunology , Flow Cytometry/methods , Immunophenotyping/methods , Killer Cells, Natural , Reproduction , Uterus , Embryo Implantation/immunology , Reproductive Techniques, Assisted
11.
Front Immunol ; 13: 955576, 2022.
Article En | MEDLINE | ID: mdl-36091010

The uterine endometrium uniquely regenerates after menses, postpartum, or after breaks in the uterine layer integrity throughout women's lives. Direct cell-cell contacts ensured by tight and adherens junctions play an important role in endometrial integrity. Any changes in these junctions can alter the endometrial permeability of the uterus and have an impact on the regeneration of uterine layers. Interleukin 22 (IL-22) is a cytokine that is recognized for its role in epithelial regeneration. Moreover, it is crucial in controlling the inflammatory response in mucosal tissues. Here, we studied the role of IL-22 in endometrial recovery after inflammation-triggered abortion. Fecundity of mice was studied in consecutive matings of the same animals after lipopolysaccharide (LPS) (10 µg per mouse)-triggered abortion. The fecundity rate after the second mating was substantially different between IL-22 knockout (IL-22-/-) (9.1%) and wild-type (WT) (71.4%) mice (p < 0.05), while there was no difference between the groups in the initial mating, suggesting that IL-22 deficiency might be associated with secondary infertility. A considerable difference was observed between IL-22-/- and WT mice in the uterine clearance following LPS-triggered abortion. Gross examination of the uteri of IL-22-/- mice revealed non-viable fetuses retained inside the horns (delayed clearance). In contrast, all WT mice had completed abortion with total clearance after LPS exposure. We also discovered that IL-22 deficiency is associated with a decreased expression of tight junctions (claudin-2 and claudin-10) and cell surface pathogen protectors (mucin-1). Moreover, IL-22 has a role in the remodeling of the uterine tissue in the inflammatory environment by regulating epithelial-mesenchymal transition markers called E- and N-cadherin. Therefore, IL-22 contributes to the proper regeneration of endometrial layers after inflammation-triggered abortion. Thus, it might have a practical significance to be utilized as a treatment option postpartum (enhanced regeneration function) and in secondary infertility caused by inflammation (enhanced barrier/protector function).


Endometrium , Extracellular Matrix , Inflammation , Interleukins , Regeneration , Tight Junctions , Abortion, Spontaneous/immunology , Animals , Endometrium/immunology , Extracellular Matrix/genetics , Extracellular Matrix/immunology , Female , Humans , Infertility/genetics , Infertility/immunology , Inflammation/genetics , Inflammation/immunology , Interleukins/genetics , Interleukins/immunology , Lipopolysaccharides/immunology , Mice , Pregnancy , Regeneration/immunology , Tight Junctions/immunology , Interleukin-22
12.
JCI Insight ; 7(18)2022 09 22.
Article En | MEDLINE | ID: mdl-35862222

Although published studies have demonstrated that IFN-ε has a crucial role in regulating protective immunity in the mouse female reproductive tract, expression and regulation of IFN-ε in the human female reproductive tract (hFRT) have not been characterized to our knowledge. We obtained hFRT samples from a well-characterized cohort of women to enable us to comprehensively assess ex vivo IFN-ε expression in the hFRT at various stages of the menstrual cycle. We found that among the various types of IFNs, IFN-ε was uniquely, selectively, and constitutively expressed in the hFRT epithelium. It had distinct expression patterns in the surface and glandular epithelia of the upper hFRT compared with basal layers of the stratified squamous epithelia of the lower hFRT. There was cyclical variation of IFN-ε expression in the endometrial epithelium of the upper hFRT and not in the distal FRT, consistent with selective endometrial expression of the progesterone receptor and regulation of the IFNE promoter by progesterone. Because we showed IFN-ε stimulated important protective IFN-regulated genes in FRT epithelium, this characterization is a key element in understanding the mechanisms of hormonal control of mucosal immunity.


Endometrium , Immunity, Innate , Interferons , Animals , Endometrium/immunology , Epithelium/immunology , Female , Gene Expression Regulation , Humans , Immunity, Innate/genetics , Interferons/genetics , Interferons/metabolism , Mice , Progesterone/metabolism , Promoter Regions, Genetic , Receptors, Progesterone/metabolism
14.
Molecules ; 27(3)2022 Jan 25.
Article En | MEDLINE | ID: mdl-35164046

Endometriosis presents high prevalence and its physiopathology involves hyperactivation of endometrial and vaginal cells, especially by bacteria. The disease has no cure and therapies aiming to inhibit its development are highly desirable. Therefore, this study investigated whether MiodesinTM (10 µg/mL = IC80; 200 µg/mL = IC50), a natural compound constituted by Uncaria tomentosa, Endopleura uchi, and astaxanthin, could exert anti-inflammatory and anti-proliferative effects against Lipopolysaccharides (LPS) stimulation in endometrial and Candida albicans vaginal cell lines. VK2 E6/E7 (vaginal) and KLE (epithelial) cell lines were stimulated with Candida albicans (1 × 107 to 5 × 107/mL) and LPS (1 µg/mL), respectively. MiodesinTM inhibited mRNA expression for Nuclear factor kappa B (NF-κB), ciclo-oxigenase 1 (COX-1), and phospholipase A2 (PLA2), beyond the C-C motif chemokine ligand 2 (CCL2), CCL3, and CCL5 in VK2 E6/E7 cells (p < 0.05). In addition, the inhibitory effects of both doses of MiodesinTM (10 µg/mL and 200 µg/mL) resulted in reduced secretion of interleukin-1ß (IL-1ß), IL-6, IL-8, tumor necrosis factor α (TNF-α) (24 h, 48 h, and 72 h) and CCL2, CCL3, and CLL5 (p < 0.05) by VK2 E6/E7 cells. In the same way, COX-1 MiodesinTM inhibited LPS-induced hyperactivation of KLE cells, as demonstrated by reduced secretion of IL-1ß, IL-6, IL-8, TNF-α (24 h, 48 h, and 72 h) and CCL2, CCL3, and CLL5 (p < 0.05). Furthermore, MiodesinTM also inhibited mRNA expression and secretion of matrix metalloproteinase-2 (MMP-2), MMP-9, and vascular endothelial growth factor (VEGF), which are key regulators of invasion of endometrial cells. Thus, the study concludes that MiodesinTM presents beneficial effects in the context of endometriosis, positively affecting the inflammatory and proliferative response.


Biological Products/pharmacology , Endometrium/immunology , Vagina/immunology , Candida albicans/physiology , Chemokines/metabolism , Cytokines/metabolism , Endometrium/cytology , Female , Humans , Lipopolysaccharides/pharmacology , Phospholipases A2/metabolism , RNA, Messenger/antagonists & inhibitors , RNA, Messenger/genetics , Vagina/cytology , Vagina/microbiology
15.
Int J Obes (Lond) ; 46(3): 605-612, 2022 03.
Article En | MEDLINE | ID: mdl-34857870

BACKGROUND: The incidence of endometrial cancer is rising in parallel with the obesity epidemic. Obesity increases endometrial cancer risk and weight loss is protective, but the underlying mechanisms are incompletely understood. We hypothesise that the immune microenvironment may influence susceptibility to malignant transformation in the endometrium. The aim of this study was to measure the impact of obesity and weight loss on the immunological landscape of the endometrium. METHODS: We conducted a prospective cohort study of women with class III obesity (body mass index, BMI ≥ 40 kg/m2) undergoing bariatric surgery or medically-supervised low-calorie diet. We collected blood and endometrial samples at baseline, and two and 12 months after weight loss intervention. Serum was analysed for inflammatory markers CRP, IL-6 and TNF-α. Multiplex immunofluorescence was used to simultaneously identify cells positive for immune markers CD68, CD56, CD3, CD8, FOXP3 and PD-1 in formalin-fixed paraffin-embedded endometrial tissue sections. Kruskal-Wallis tests were used to determine whether changes in inflammatory and immune biomarkers were associated with weight loss. RESULTS: Forty-three women with matched serum and tissue samples at all three time points were included in the analysis. Their median age and BMI were 44 years and 52 kg/m2, respectively. Weight loss at 12 months was greater in women who received bariatric surgery (n = 37, median 63.3 kg) than low-calorie diet (n = 6, median 12.8 kg). There were significant reductions in serum CRP (p = 3.62 × 10-6, r = 0.570) and IL-6 (p = 0.0003, r = 0.459), but not TNF-α levels, with weight loss. Tissue immune cell densities were unchanged except for CD8+ cells, which increased significantly with weight loss (p = 0.0097, r = -0.323). Tissue CD3+ cell density correlated negatively with systemic IL-6 levels (p = 0.0376; r = -0.318). CONCLUSION: Weight loss is associated with reduced systemic inflammation and a recruitment of protective immune cell types to the endometrium, supporting the concept that immune surveillance may play a role in endometrial cancer prevention.


Bariatric Surgery , Endometrial Neoplasms , Endometrium , Biomarkers , Endometrial Neoplasms/epidemiology , Endometrium/immunology , Female , Humans , Immunologic Surveillance , Interleukin-6/metabolism , Obesity/complications , Obesity/surgery , Prospective Studies , Tumor Microenvironment , Weight Loss
16.
Mucosal Immunol ; 15(1): 120-129, 2022 01.
Article En | MEDLINE | ID: mdl-34552206

Recurrent Pregnancy Loss (RPL) affects 2-4% of couples, and with increasing numbers of pregnancy losses the risk of miscarrying a euploid pregnancy is increased, suggesting RPL is a pathology distinct from sporadic miscarriage that is due largely to lethal embryonic aneuploidy. There are a number of conditions associated with RPL including unspecified "immune" pathologies; one of the strongest candidates for dysregulation remains T regulatory cells as depletion in the very early stages of pregnancy in mice leads to pregnancy loss. Human endometrial Treg and conventional CD4T cells were isolated during the peri-implantation period of the menstrual cycle in normal women. We identified an endometrial Treg transcriptomic signature and validated an enhanced regulatory phenotype compared to peripheral blood Treg. Parous women had an altered endometrial Treg transcriptome compared to nulliparity, indicating acquired immune memory of pregnancy within the Treg population, by comparison endometrial conventional CD4T cells were not altered. We compared primary and secondary RPL to nulliparous or parous controls respectively. Both RPL subgroups displayed differentially expressed Treg gene transcriptomes compared to controls. We found increased cell surface S1PR1 and decreased TIGIT protein expression by Treg in primary RPL, confirming the presence of altered Treg in the peri-implantation RPL endometrium.


Abortion, Habitual/immunology , Embryo Implantation/physiology , Endometrium/immunology , T-Lymphocytes, Regulatory/immunology , Adolescent , Adult , Cell Movement , Cells, Cultured , Female , Gene Expression Regulation , Humans , Immune Tolerance , Parity , Phenotype , Receptors, Immunologic/genetics , Sphingosine-1-Phosphate Receptors/genetics , Transcriptome , Young Adult
17.
Am J Reprod Immunol ; 87(1): e13502, 2022 01.
Article En | MEDLINE | ID: mdl-34592011

PROBLEM: Innate lymphoid cells (ILCs), a recently discovered family of innate immune cells, are responsible for the early immune response, and control both innate and adapted immune system via cytokine secretion. The role of ILCs in endometriosis has not been investigated; therefore, here, we aimed to investigate how the proportion of ILCs changes in endometriosis. METHOD OF STUDY: The percentage of each ILC group in CD45+ cells was examined in the peripheral blood, peritoneal fluid, endometrium, and ovarian endometrioma obtained from women with and without endometriosis (ERB-C-1216) using flow cytometry. RESULTS: Specimens were obtained from 19 women with endometriosis and 15 without endometriosis. In the endometrium, patients with endometriosis had lower proportion of ILC2 and 3 compared to control specimens (ILC2: .02±.01% vs .07±.03%; P < .05, ILC3: .31±.14% vs 1.10±.93%; P < .05). There was no significant change in the peripheral blood or the peritoneal fluid between the two groups. Additionally, ovarian endometrioma increased the proportion of ILCs (ILC1: .92±1.12%, ILC2: .08±.08%, ILC3: .70±.39%) compared to the endometrium samples of patients with endometriosis each with P < .05. Immunohistochemistry of IL-1ß and IL-23, which are ILC3-inducing factors, showed no significant change in the H-score of the epithelium of the two groups, but a significant increase was found in ovarian endometrioma. CONCLUSION: The proportion of ILC2 and 3 was reduced in the endometrium of patients with endometriosis, and ILCs were increased in ovarian endometrioma. Our findings may indicate a new immunological approach to understand the pathophysiology of endometriosis.


Endometriosis/immunology , Endometrium/immunology , Immunity, Innate/physiology , Lymphocytes/pathology , Adult , Cytokines/immunology , Endometriosis/pathology , Endometrium/pathology , Female , Humans , Middle Aged , Young Adult
18.
Front Immunol ; 12: 750808, 2021.
Article En | MEDLINE | ID: mdl-34917075

Endometrial immune response is highly associated with the homeostatic balance of the uterus and embryo development; however, the underlying molecular regulatory mechanisms are not fully elucidated. Herein, the porcine endometrium showed significant variation in mucosal immunity in proliferative and secretory phases by single-cell RNA sequencing. The loose arrangement and high motility of the uterine epithelium in the proliferative phase gave opportunities for epithelial cells and dendritic cells to cross talk with colonizing microbial community, guiding lymphocyte migration into the mucosal and glandular epithelium. The migrating lymphocytes were primarily NK and CD8+ T cells, which were robustly modulated by the chemokine signaling. In the secretory phase, the significantly strengthened mechanical mucosal barrier and increased immunoglobulin A alleviated the migration of lymphocytes into the epithelium when the neuro-modulation, mineral uptake, and amino acid metabolism were strongly upregulated. The noticeably increased intraepithelial lymphocytes were positively modulated by the bacteria in the uterine cavity. Our findings illustrated that significant mucosal immunity variation in the endometrium in the proliferative and secretory phases was closely related to intraepithelial lymphocyte migration, which could be modulated by the colonizing bacteria after cross talk with epithelial cells with higher expressions of chemokine.


Endometrium/immunology , Endometrium/microbiology , Estrous Cycle/immunology , Immunity, Mucosal/physiology , Microbiota/immunology , Animals , Female , Mucous Membrane/immunology , Mucous Membrane/microbiology , Swine
19.
PLoS One ; 16(12): e0261873, 2021.
Article En | MEDLINE | ID: mdl-34941965

Obesity and being overweight are growing worldwide health problems that also affect women of reproductive age. They impair women's fertility and are associated with lower IVF success rates. The mechanism by which increased body weight disrupts fertility has not yet been established. One possibility is that it affects the process of embryo implantation on the endometrial level. The purpose of our study was to determine the differences in enriched biological pathways in the endometrium of overweight and obese women undergoing IVF procedures. For this purpose, 14 patients (5 pregnant, 9 non-pregnant) were included in the study. Endometrial samples were obtained during the window of implantation and RNA sequencing was performed. There were no differences in general patient's and IVF cycle characteristics between pregnant and non-pregnant women. In the endometrial samples of women who did not conceive, pathways related to the immune response, inflammation, and reactive oxygen species production were over-expressed. Our findings show that the reason for implantation failure in overweight and obese women could lie in the excessive immune and inflammatory response at the endometrial level.


Embryo Implantation/immunology , Endometrium/immunology , Fertilization in Vitro , Infertility, Female/immunology , Obesity/immunology , RNA-Seq , Transcriptome/immunology , Female , Humans , Inflammation/immunology , Young Adult
20.
Front Immunol ; 12: 738962, 2021.
Article En | MEDLINE | ID: mdl-34745108

Recurrent pregnancy loss (RPL) is a common and severe pathological pregnancy, whose pathogenesis is not fully understood. With the development of epigenetics, the study of DNA methylation, provides a new perspective on the pathogenesis and therapy of RPL. The abnormal DNA methylation of imprinted genes, placenta-specific genes, immune-related genes and sperm DNA may, directly or indirectly, affect embryo implantation, growth and development, leading to the occurrence of RPL. In addition, the unique immune tolerogenic microenvironment formed at the maternal-fetal interface has an irreplaceable effect on the maintenance of pregnancy. In view of these, changes in the cellular components of the maternal-fetal immune microenvironment and the regulation of DNA methylation have attracted a lot of research interest. This review summarizes the research progress of DNA methylation involved in the occurrence of RPL and the regulation of the maternal-fetal immune microenvironment. The review provides insights into the personalized diagnosis and treatment of RPL.


Abortion, Habitual/genetics , DNA Methylation , Epigenesis, Genetic , Abortion, Habitual/immunology , Abortion, Habitual/metabolism , Abortion, Habitual/physiopathology , Animals , Cytokines/metabolism , DNA Modification Methylases/genetics , DNA Modification Methylases/metabolism , Embryo Implantation , Embryonic Development , Endometrium/immunology , Endometrium/metabolism , Endometrium/physiopathology , Female , Gene Expression Regulation, Developmental , Genomic Imprinting , Histocompatibility, Maternal-Fetal , Humans , Lymphocytes/immunology , Lymphocytes/metabolism , Macrophages/immunology , Macrophages/metabolism , Placenta/immunology , Placenta/metabolism , Placenta/physiopathology , Pregnancy , Signal Transduction
...