Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 647
Filter
1.
Redox Biol ; 73: 103203, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823208

ABSTRACT

Vascular smooth muscle cells (VSMCs), known for their remarkable lifelong phenotypic plasticity, play a pivotal role in vascular pathologies through their ability to transition between different phenotypes. Our group discovered that the deficiency of the mitochondrial protein Poldip2 induces VSMC differentiation both in vivo and in vitro. Further comprehensive biochemical investigations revealed Poldip2's specific interaction with the mitochondrial ATPase caseinolytic protease chaperone subunit X (CLPX), which is the regulatory subunit for the caseinolytic protease proteolytic subunit (ClpP) that forms part of the ClpXP complex - a proteasome-like protease evolutionarily conserved from bacteria to humans. This interaction limits the protease's activity, and reduced Poldip2 levels lead to ClpXP complex activation. This finding prompted the hypothesis that ClpXP complex activity within the mitochondria may regulate the VSMC phenotype. Employing gain-of-function and loss-of-function strategies, we demonstrated that ClpXP activity significantly influences the VSMC phenotype. Notably, both genetic and pharmacological activation of ClpXP inhibits VSMC plasticity and fosters a quiescent, differentiated, and anti-inflammatory VSMC phenotype. The pharmacological activation of ClpP using TIC10, currently in phase III clinical trials for cancer, successfully replicates this phenotype both in vitro and in vivo and markedly reduces aneurysm development in a mouse model of elastase-induced aortic aneurysms. Our mechanistic exploration indicates that ClpP activation regulates the VSMC phenotype by modifying the cellular NAD+/NADH ratio and activating Sirtuin 1. Our findings reveal the crucial role of mitochondrial proteostasis in the regulation of the VSMC phenotype and propose the ClpP protease as a novel, actionable target for manipulating the VSMC phenotype.


Subject(s)
Endopeptidase Clp , Mitochondria , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Phenotype , Sirtuin 1 , Animals , Humans , Mice , Cell Differentiation , Endopeptidase Clp/metabolism , Endopeptidase Clp/genetics , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/cytology , Myocytes, Smooth Muscle/metabolism , Sirtuin 1/metabolism , Sirtuin 1/genetics
2.
mBio ; 15(7): e0138924, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38920392

ABSTRACT

The host protein calprotectin inhibits the growth of a variety of bacterial pathogens through metal sequestration in a process known as "nutritional immunity." Staphylococcus aureus growth is inhibited by calprotectin in vitro, and calprotectin is localized in vivo to staphylococcal abscesses during infection. However, the staphylococcal adaptations that provide defense against nutritional immunity and the role of metal-responsive regulators are not fully characterized. In this work, we define the transcriptional response of S. aureus and the role of the metal-responsive regulators, Zur, Fur, and MntR, in response to metal limitation by calprotectin exposure. Additionally, we identified genes affecting the fitness of S. aureus during metal limitation through a Transposon sequencing (Tn-seq) approach. Loss of function mutations in clpP, which encodes a proteolytic subunit of the ATP-dependent Clp protease, demonstrate reduced fitness of S. aureus to the presence of calprotectin. ClpP contributes to pathogenesis in vivo in a calprotectin-dependent manner. These studies establish a critical role for ClpP to combat metal limitation by calprotectin and reveal the genes required for S. aureus to outcompete the host for metals. IMPORTANCE: Staphylococcus aureus is a leading cause of skin and soft tissue infections, bloodstream infections, and endocarditis. Antibiotic treatment failures during S. aureus infections are increasingly prevalent, highlighting the need for novel antimicrobial agents. Metal chelator-based therapeutics have tremendous potential as antimicrobials due to the strict requirement for nutrient metals exhibited by bacterial pathogens. The high-affinity transition metal-binding properties of calprotectin represents a potential therapeutic strategy that functions through metal chelation. Our studies provide a foundation to define mechanisms by which S. aureus combats nutritional immunity and may be useful for the development of novel therapeutics to counter the ability of S. aureus to survive in a metal-limited environment.


Subject(s)
Leukocyte L1 Antigen Complex , Staphylococcal Infections , Staphylococcus aureus , Leukocyte L1 Antigen Complex/metabolism , Staphylococcus aureus/genetics , Staphylococcus aureus/drug effects , Staphylococcus aureus/metabolism , Staphylococcal Infections/microbiology , Metals/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Animals , Gene Expression Regulation, Bacterial , Endopeptidase Clp/metabolism , Endopeptidase Clp/genetics , Mice , Adaptation, Physiological
3.
Genes (Basel) ; 15(6)2024 May 27.
Article in English | MEDLINE | ID: mdl-38927630

ABSTRACT

LONP1 is the principal AAA+ unfoldase and bulk protease in the mitochondrial matrix, so its deletion causes embryonic lethality. The AAA+ unfoldase CLPX and the peptidase CLPP also act in the matrix, especially during stress periods, but their substrates are poorly defined. Mammalian CLPP deletion triggers infertility, deafness, growth retardation, and cGAS-STING-activated cytosolic innate immunity. CLPX mutations impair heme biosynthesis and heavy metal homeostasis. CLPP and CLPX are conserved from bacteria to humans, despite their secondary role in proteolysis. Based on recent proteomic-metabolomic evidence from knockout mice and patient cells, we propose that CLPP acts on phase-separated ribonucleoprotein granules and CLPX on multi-enzyme condensates as first-aid systems near the inner mitochondrial membrane. Trimming within assemblies, CLPP rescues stalled processes in mitoribosomes, mitochondrial RNA granules and nucleoids, and the D-foci-mediated degradation of toxic double-stranded mtRNA/mtDNA. Unfolding multi-enzyme condensates, CLPX maximizes PLP-dependent delta-transamination and rescues malformed nascent peptides. Overall, their actions occur in granules with multivalent or hydrophobic interactions, separated from the aqueous phase. Thus, the role of CLPXP in the matrix is compartment-selective, as other mitochondrial peptidases: MPPs at precursor import pores, m-AAA and i-AAA at either IMM face, PARL within the IMM, and OMA1/HTRA2 in the intermembrane space.


Subject(s)
Endopeptidase Clp , Heme , Mice, Knockout , Mitochondria , Mitochondrial Proteins , Endopeptidase Clp/metabolism , Endopeptidase Clp/genetics , Animals , Mice , Mitochondria/metabolism , Mitochondria/genetics , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Heme/metabolism , Protein Biosynthesis , Humans , Mitochondrial Membranes/metabolism , Stress, Physiological
4.
Neoplasia ; 55: 101015, 2024 09.
Article in English | MEDLINE | ID: mdl-38944913

ABSTRACT

Hepatocellular carcinoma (HCC) is the most common form of liver cancer, accounting for approximately 90 % of all cases. ONC201, a member of the imipridone drug family, has shown promising therapeutic potential and a good safety profile in both malignant pediatric central nervous system tumors (diffuse midline glioma [DMG]) and hematologic malignancies. ONC206 is a more potent analog of ONC201. However, the ONC206 potential and mechanism of action in HCC remain to be elucidated. We found that ONC206 hindered HCC growth by suppressing cell proliferation and inducing apoptosis. Moreover, ONC206 induced cytoprotective autophagy, and blocking autophagy enhanced the proapoptotic effect of ONC206. Additionally, ONC206 induced mitochondrial swelling, reduced the mitochondrial membrane potential (MMP), and led to the accumulation of mitochondrial ROS in HCC cells, ultimately resulting in mitochondrial dysfunction. The HCC patient samples exhibited notably elevated levels of caseinolytic protease proteolytic subunit (ClpP), which serves as a mediator of ONC206-induced mitochondrial dysfunction and the activation of protective autophagy. knockdown of ClpP reversed the cytotoxic effects of ONC206 on HCC cells. In summary, our results provide the first insight into the mechanism by which ONC206 exerts its anti-HCC effects and induces protective autophagy in HCC cells through ClpP.


Subject(s)
Apoptosis , Autophagy , Carcinoma, Hepatocellular , Endopeptidase Clp , Liver Neoplasms , Mitochondria , Humans , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Autophagy/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Cell Line, Tumor , Endopeptidase Clp/metabolism , Endopeptidase Clp/genetics , Apoptosis/drug effects , Cell Proliferation/drug effects , Animals , Mice , Membrane Potential, Mitochondrial/drug effects , Reactive Oxygen Species/metabolism , Antineoplastic Agents/pharmacology , Xenograft Model Antitumor Assays , Imidazoles/pharmacology , Benzyl Compounds , Heterocyclic Compounds, 3-Ring
5.
Nucleic Acids Res ; 52(9): 5195-5208, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38567730

ABSTRACT

Bacterial defence systems are tightly regulated to avoid autoimmunity. In Type I restriction-modification (R-M) systems, a specific mechanism called restriction alleviation (RA) controls the activity of the restriction module. In the case of the Escherichia coli Type I R-M system EcoKI, RA proceeds through ClpXP-mediated proteolysis of restriction complexes bound to non-methylated sites that appear after replication or reparation of host DNA. Here, we show that RA is also induced in the presence of plasmids carrying EcoKI recognition sites, a phenomenon we refer to as plasmid-induced RA. Further, we show that the anti-restriction behavior of plasmid-borne non-conjugative transposons such as Tn5053, previously attributed to their ardD loci, is due to plasmid-induced RA. Plasmids carrying both EcoKI and Chi sites induce RA in RecA- and RecBCD-dependent manner. However, inactivation of both RecA and RecBCD restores RA, indicating that there exists an alternative, RecA-independent, homologous recombination pathway that is blocked in the presence of RecBCD. Indeed, plasmid-induced RA in a RecBCD-deficient background does not depend on the presence of Chi sites. We propose that processing of random dsDNA breaks in plasmid DNA via homologous recombination generates non-methylated EcoKI sites, which attract EcoKI restriction complexes channeling them for ClpXP-mediated proteolysis.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Plasmids , Rec A Recombinases , Plasmids/genetics , Escherichia coli/genetics , Rec A Recombinases/metabolism , Rec A Recombinases/genetics , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Recombination, Genetic , Deoxyribonucleases, Type I Site-Specific/metabolism , Deoxyribonucleases, Type I Site-Specific/genetics , Endopeptidase Clp/metabolism , Endopeptidase Clp/genetics , Exodeoxyribonuclease V/metabolism , Exodeoxyribonuclease V/genetics , DNA, Bacterial/metabolism , DNA Transposable Elements/genetics , DNA Restriction Enzymes , DNA-Binding Proteins
6.
J Med Chem ; 67(8): 6769-6792, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38620134

ABSTRACT

The activation of Homo sapiens Casein lysing protease P (HsClpP) by a chemical or genetic strategy has been proved to be a new potential therapy in acute myeloid leukemia (AML). However, limited efficacy has been achieved with classic agonist imipridone ONC201. Here, a novel class of HsClpP agonists is designed and synthesized using a ring-opening strategy based on the lead compound 1 reported in our previous study. Among these novel scaffold agonists, compound 7k exhibited remarkably enhanced proteolytic activity of HsClpP (EC50 = 0.79 ± 0.03 µM) and antitumor activity in vitro (IC50 = 0.038 ± 0.003 µM). Moreover, the intraperitoneal administration of compound 7k markedly suppressed tumor growth in Mv4-11 xenograft models, achieving a tumor growth inhibition rate of 88%. Concurrently, 7k displayed advantageous pharmacokinetic properties in vivo. This study underscores the promise of compound 7k as a significant HsClpP agonist and an antileukemia drug candidate, warranting further exploration for AML treatment.


Subject(s)
Antineoplastic Agents , Drug Design , Endopeptidase Clp , Leukemia, Myeloid, Acute , Humans , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/therapeutic use , Mice , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology , Endopeptidase Clp/metabolism , Structure-Activity Relationship , Cell Line, Tumor , Xenograft Model Antitumor Assays , Cell Proliferation/drug effects , Mice, Nude , Mice, Inbred BALB C
7.
Int J Biol Macromol ; 266(Pt 2): 131371, 2024 May.
Article in English | MEDLINE | ID: mdl-38580013

ABSTRACT

Bacterial caseinolytic protease-chaperone complexes participate in the elimination of misfolded and aggregated protein substrates. The spirochete Leptospira interrogans possess a set of Clp-chaperones (ClpX, ClpA, and ClpC), which may associate functionally with two different isoforms of LinClpP (ClpP1 and ClpP2). The L. interrogans ClpC (LinClpC) belongs to class-I chaperone with two active ATPase domains separated by a middle domain. Using the size exclusion chromatography, ANS dye binding, and dynamic light scattering analysis, the LinClpC is suggested to undergo nucleotide-induced oligomerization. LinClpC associates with either pure LinClpP1 or LinClpP2 isoforms non-preferentially and with equal affinity. Regardless, pure LinClpP isoforms cannot constitute an active protease complex with LinClpC. Interestingly, the heterocomplex LinClpP1P2 in association with LinClpC forms a functional proteolytic machinery and degrade ß-casein or FITC-casein in an energy-independent manner. Adding either ATP or ATPγS further fosters the LinClpCP1P2 complex protease activity by nurturing the functional oligomerization of LinClpC. The antibiotic, acyldepsipeptides (ADEP1) display a higher activatory role on LinClpP1P2 protease activity than LinClpC. Altogether, this work illustrates an in-depth study of hetero-tetradecamer LinClpP1P2 association with its cognate ATPase and unveils a new insight into the structural reorganization of LinClpP1P2 in the presence of chaperone, LinClpC to gain protease activity.


Subject(s)
Bacterial Proteins , Heat-Shock Proteins , Leptospira , Protein Multimerization , Adenosine Triphosphate/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Endopeptidase Clp/metabolism , Endopeptidase Clp/chemistry , Heat-Shock Proteins/chemistry , Heat-Shock Proteins/metabolism , Leptospira/metabolism , Leptospira/enzymology , Leptospira interrogans/enzymology , Leptospira interrogans/metabolism , Molecular Chaperones/metabolism , Molecular Chaperones/chemistry , Protein Binding , Protein Isoforms/metabolism , Protein Isoforms/chemistry , Proteolysis
8.
mBio ; 15(4): e0003124, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38501868

ABSTRACT

The Clp protease system is important for maintaining proteostasis in bacteria. It consists of ClpP serine proteases and an AAA+ Clp-ATPase such as ClpC1. The hexameric ATPase ClpC1 utilizes the energy of ATP binding and hydrolysis to engage, unfold, and translocate substrates into the proteolytic chamber of homo- or hetero-tetradecameric ClpP for degradation. The assembly between the hetero-tetradecameric ClpP1P2 chamber and the Clp-ATPases containing tandem ATPase domains from the same species has not been studied in depth. Here, we present cryo-EM structures of the substrate-bound ClpC1:shClpP1P2 from Streptomyces hawaiiensis, and shClpP1P2 in complex with ADEP1, a natural compound produced by S. hawaiiensis and known to cause over-activation and dysregulation of the ClpP proteolytic core chamber. Our structures provide detailed information on the shClpP1-shClpP2, shClpP2-ClpC1, and ADEP1-shClpP1/P2 interactions, reveal conformational transition of ClpC1 during the substrate translocation, and capture a rotational ATP hydrolysis mechanism likely dominated by the D1 ATPase activity of chaperones.IMPORTANCEThe Clp-dependent proteolysis plays an important role in bacterial homeostasis and pathogenesis. The ClpP protease system is an effective drug target for antibacterial therapy. Streptomyces hawaiiensis can produce a class of potent acyldepsipeptide antibiotics such as ADEP1, which could affect the ClpP protease activity. Although S. hawaiiensis hosts one of the most intricate ClpP systems in nature, very little was known about its Clp protease mechanism and the impact of ADEP molecules on ClpP. The significance of our research is in dissecting the functional mechanism of the assembled Clp degradation machinery, as well as the interaction between ADEP1 and the ClpP proteolytic chamber, by solving high-resolution structures of the substrate-bound Clp system in S. hawaiiensis. The findings shed light on our understanding of the Clp-dependent proteolysis in bacteria, which will enhance the development of antimicrobial drugs targeting the Clp protease system, and help fighting against bacterial multidrug resistance.


Subject(s)
Adenosine Triphosphatases , Endopeptidase Clp , Streptomyces , Endopeptidase Clp/genetics , Endopeptidase Clp/metabolism , Proteolysis , Adenosine Triphosphatases/metabolism , ATPases Associated with Diverse Cellular Activities/metabolism , Peptide Hydrolases/metabolism , Adenosine Triphosphate/metabolism
9.
J Biol Chem ; 300(4): 107165, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38484801

ABSTRACT

ClpG is a novel autonomous disaggregase found in Pseudomonas aeruginosa that confers resistance to lethal heat stress. The mechanism by which ClpG specifically targets protein aggregates for disaggregation is unknown. In their recent work published in JBC, Katikaridis et al. (2023) identify an avidity-based mechanism by which four or more ClpG subunits, through specific N-terminal hydrophobic residues located on an exposed ß-sheet loop, interact with multiple hydrophobic patches on an aggregated protein substrate. This study establishes a model for substrate binding to a prokaryotic disaggregase that should inform further investigations into other autonomous disaggregases.


Subject(s)
Bacterial Proteins , Protein Binding , Pseudomonas aeruginosa , Pseudomonas aeruginosa/metabolism , Pseudomonas aeruginosa/enzymology , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Protein Aggregates , Hydrophobic and Hydrophilic Interactions , Endopeptidase Clp/metabolism , Endopeptidase Clp/genetics , Heat-Shock Proteins/metabolism , Heat-Shock Proteins/chemistry
10.
Int J Mol Sci ; 25(3)2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38339144

ABSTRACT

Mitochondrial unfolded protein stress response (mtUPR) plays a critical role in regulating cellular and metabolic stress response and helps maintain protein homeostasis. Caseinolytic peptidase P (CLPP) is one of the key regulators of mtUPR and promotes unfolded protein degradation. Previous studies demonstrated that global deletion of Clpp resulted in female infertility, whereas no impairment was found in the mouse model with targeted deletion of Clpp in cumulus/granulosa cells. These results suggest the need to delineate the function of Clpp in oocytes. In this study, we aimed to further explore the role of mtUPR in female reproductive competence and senescence using a mouse model. Oocyte-specific targeted deletion of Clpp in mice resulted in female subfertility associated with metabolic and functional abnormalities in oocytes, thus highlighting the importance of CLPP-mediated protein homeostasis in oocyte competence and reproductive function.


Subject(s)
Endopeptidase Clp , Infertility, Female , Mitochondria , Female , Fertility/genetics , Infertility, Female/genetics , Infertility, Female/metabolism , Mitochondria/metabolism , Oocytes/metabolism , Unfolded Protein Response/genetics , Endopeptidase Clp/genetics , Endopeptidase Clp/metabolism , Animals , Mice
11.
Biomolecules ; 14(2)2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38397478

ABSTRACT

The serine peptidase CLPP is conserved among bacteria, chloroplasts, and mitochondria. In humans and mice, its loss causes Perrault syndrome, which presents with growth deficits, infertility, deafness, and ataxia. In the filamentous fungus Podospora anserina, CLPP loss leads to longevity. CLPP substrates are selected by CLPX, an AAA+ unfoldase. CLPX is known to target delta-aminolevulinic acid synthase (ALAS) to promote pyridoxal phosphate (PLP) binding. CLPX may also influence cofactor association with other enzymes. Here, the evaluation of P. anserina metabolomics highlighted a reduction in arginine/histidine levels. In Mus musculus cerebellum, reductions in arginine/histidine and citrulline occurred with a concomitant accumulation of the heme precursor protoporphyrin IX. This suggests that the increased biosynthesis of 5-carbon (C5) chain deltaALA consumes not only C4 succinyl-CoA and C1 glycine but also specific C5 delta amino acids. As enzymes responsible for these effects, the elevated abundance of CLPX and ALAS is paralleled by increased OAT (PLP-dependent, ornithine delta-aminotransferase) levels. Possibly as a consequence of altered C1 metabolism, the proteome profiles of P. anserina CLPP-null cells showed strong accumulation of a methyltransferase and two mitoribosomal large subunit factors. The reduced histidine levels may explain the previously observed metal interaction problems. As the main nitrogen-storing metabolite, a deficiency in arginine would affect the urea cycle and polyamine synthesis. Supplementation of arginine and histidine might rescue the growth deficits of CLPP-mutant patients.


Subject(s)
Avena , Eukaryota , Animals , Mice , Arginine , Avena/metabolism , Endopeptidase Clp/genetics , Endopeptidase Clp/metabolism , Eukaryota/metabolism , Heme/metabolism , Histidine , Organic Anion Transporters
12.
ACS Synth Biol ; 13(2): 669-682, 2024 02 16.
Article in English | MEDLINE | ID: mdl-38317378

ABSTRACT

Protein degron tags have proven to be uniquely useful for the characterization of gene function. Degrons can mediate quick depletion, usually within minutes, of a protein of interest, allowing researchers to characterize cellular responses to the loss of function. To develop a general-purpose degron tool in Escherichia coli, we sought to build upon a previously characterized system of SspB-dependent inducible protein degradation. For this, we created a family of expression vectors containing a destabilized allele of SspB, capable of a rapid and nearly perfect "off-to-on" induction response. Using this system, we demonstrated excellent control over several DNA metabolism enzymes. However, other substrates did not respond to degron tagging in such an ideal manner, indicating the apparent limitations of SspB-dependent systems. Several degron-tagged proteins were degraded too slowly to be completely depleted during active growth, whereas others appeared to be completely refractory to degron-promoted degradation. Thus, only a minority of our, admittedly biased, selection of degron substrates proved to be amenable to efficient SspB-catalyzed degradation. We also uncovered an apparent stalling and/or disengagement of ClpXP from a degron-tagged allele of beta-galactosidase (beta-gal). While a degron-containing fusion peptide attached to the carboxy-terminus of beta-gal was degraded quantitatively, no reductions in beta-gal activity or concentration were detected, demonstrating an apparently novel mechanism of protease resistance. We conclude that substrate-dependent effects of the SspB system present a continued challenge to the widespread adoption of this degron system. For substrates that prove to be degradable, we provide a series of titratable SspB-expression vehicles.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Carrier Proteins/genetics , Proteolysis , Degrons , Adenosine Triphosphatases/metabolism , Endopeptidase Clp/genetics , Endopeptidase Clp/metabolism
13.
Sci Rep ; 14(1): 2572, 2024 01 31.
Article in English | MEDLINE | ID: mdl-38296985

ABSTRACT

Bacterial caseinolytic protease P subunit (ClpP) is important and vital for cell survival and infectivity. Recent publications describe and discuss the complex structure-function relationship of ClpP and its processive activity mediated by 14 catalytic sites. Even so, there are several aspects yet to be further elucidated, such as the paradoxical allosteric modulation of ClpP by peptidomimetic boronates. These compounds bind to all catalytic sites, and in specific conditions, they stimulate a dysregulated degradation of peptides and globular proteins, instead of inhibiting the enzymatic activity, as expected for serine proteases in general. Aiming to explore and explain this paradoxical effect, we solved and refined the crystal structure of native ClpP from Staphylococcus epidermidis (Se), an opportunistic pathogen involved in nosocomial infections, as well as ClpP in complex with ixazomib at 1.90 Å and 2.33 Å resolution, respectively. The interpretation of the crystal structures, in combination with complementary biochemical and biophysical data, shed light on how ixazomib affects the ClpP conformational state and activity. Moreover, SEC-SAXS and DLS measurements show, for the first time, that a peptidomimetic boronate compound also induces the assembly of the tetradecameric structure from isolated homomeric heptameric rings of a gram-positive organism.


Subject(s)
Glycine/analogs & derivatives , Peptidomimetics , Peptidomimetics/pharmacology , Scattering, Small Angle , X-Ray Diffraction , Boron Compounds/pharmacology , Boron Compounds/metabolism , Endopeptidase Clp/metabolism , Bacterial Proteins/metabolism
14.
Pediatr Dev Pathol ; 27(2): 198-204, 2024.
Article in English | MEDLINE | ID: mdl-37903135

ABSTRACT

Caseinolytic peptidase B homolog (CLPB) is a mitochondrial protein which is highly expressed in brain. Its deficiency may be associated with severe neonatal encephalopathy. This report describes a case of fatal neonatal encephalopathy associated with biallelic stop-gain mutation in CLPB (NM_001258392.3:c.1159C>T/p.Arg387*). Neurologic disorder encompasses pre- and post-natal features including polyhydramnios, intrauterine growth restriction, respiratory insufficiency, lethargy, excessive startle reflex, generalized hypertonia, and epileptic seizures. Brain macroscopic examination demonstrates frontal severe periventricular cystic leukoencephalopathy, along with mild ex-vacuo tri-ventricular dilatation. The most striking immunohistopathologic features are striato-thalamic neurodegeneration and deep white matter loss associated with strong reactive astrogliosis. This report supports that CLPB deficiency should be considered among the neurometabolic disorders associated with severe prenatal-onset neurologic impairment that may result from cystic leukoencephalopathy.


Subject(s)
Epilepsy , Infant, Newborn, Diseases , Leukoencephalopathies , Infant, Newborn , Female , Pregnancy , Humans , Endopeptidase Clp/genetics , Endopeptidase Clp/metabolism , Brain/pathology , Epilepsy/metabolism , Leukoencephalopathies/diagnosis , Leukoencephalopathies/genetics , Leukoencephalopathies/metabolism , Codon, Nonsense/metabolism , Infant, Newborn, Diseases/pathology
15.
Mol Microbiol ; 121(1): 98-115, 2024 01.
Article in English | MEDLINE | ID: mdl-38041395

ABSTRACT

Bacterial cell division requires the coordinated assembly and disassembly of a large protein complex called the divisome; however, the exact role of molecular chaperones in this critical process remains unclear. We here provide genetic evidence that ClpX unfoldase activity is a determinant for proper coordination of bacterial cell division by showing the growth defect of a Staphylococcus aureus clpX mutant is rescued by a spontaneously acquired G325V substitution in the ATP-binding domain of the essential FtsA cell division protein. The polymerization state of FtsA is thought to control initiation of bacterial septum synthesis and, while restoring the aberrant FtsA dynamics in clpX cells, the FtsAG325V variant displayed reduced ability to interact with itself and other cell division proteins. In wild-type cells, the ftsAG325V allele shared phenotypes with Escherichia coli superfission ftsA mutants and accelerated the cell cycle, increased the risk of daughter cell lysis, and conferred sensitivity to heat and antibiotics inhibiting cell wall synthesis. Strikingly, lethality was mitigated by spontaneous mutations that inactivate ClpX. Taken together, our results suggest that ClpX promotes septum synthesis by antagonizing FtsA interactions and illuminates the critical role of a protein unfoldase in coordinating bacterial cell division.


Subject(s)
Escherichia coli Proteins , Staphylococcal Infections , Humans , Bacterial Proteins/metabolism , Endopeptidase Clp/genetics , Endopeptidase Clp/metabolism , Staphylococcus aureus/metabolism , Cell Division/genetics , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , ATPases Associated with Diverse Cellular Activities/genetics , Molecular Chaperones/genetics , Molecular Chaperones/metabolism
16.
Angew Chem Int Ed Engl ; 63(3): e202314028, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38029352

ABSTRACT

The caseinolytic protease is a highly conserved serine protease, crucial to prokaryotic and eukaryotic protein homeostasis, and a promising antibacterial and anticancer drug target. Herein, we describe the potent cystargolides as the first natural ß-lactone inhibitors of the proteolytic core ClpP. Based on the discovery of two clpP genes next to the cystargolide biosynthetic gene cluster in Kitasatospora cystarginea, we explored ClpP as a potential cystargolide target. We show the inhibition of Staphylococcus aureus ClpP by cystargolide A and B by different biochemical methods in vitro. Synthesis of semisynthetic derivatives and probes with improved cell penetration allowed us to confirm ClpP as a specific target in S. aureus cells and to demonstrate the anti-virulence activity of this natural product class. Crystal structures show cystargolide A covalently bound to all 14 active sites of ClpP from S. aureus, Aquifex aeolicus, and Photorhabdus laumondii, and reveal the molecular mechanism of ClpP inhibition by ß-lactones, the predominant class of ClpP inhibitors.


Subject(s)
Dipeptides , Staphylococcus aureus , Staphylococcus aureus/metabolism , Catalytic Domain , Dipeptides/metabolism , Virulence , Endopeptidase Clp/metabolism
17.
Nucleic Acids Res ; 52(3): 1341-1358, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38113276

ABSTRACT

MTU1 controls intramitochondrial protein synthesis by catalyzing the 2-thiouridine modification of mitochondrial transfer RNAs (mt-tRNAs). Missense mutations in the MTU1 gene are associated with life-threatening reversible infantile hepatic failure. However, the molecular pathogenesis is not well understood. Here, we investigated 17 mutations associated with this disease, and our results showed that most disease-related mutations are partial loss-of-function mutations, with three mutations being particularly severe. Mutant MTU1 is rapidly degraded by mitochondrial caseinolytic peptidase (CLPP) through a direct interaction with its chaperone protein CLPX. Notably, knockdown of CLPP significantly increased mutant MTU1 protein expression and mt-tRNA 2-thiolation, suggesting that accelerated proteolysis of mutant MTU1 plays a role in disease pathogenesis. In addition, molecular dynamics simulations demonstrated that disease-associated mutations may lead to abnormal intermolecular interactions, thereby impairing MTU1 enzyme activity. Finally, clinical data analysis underscores a significant correlation between patient prognosis and residual 2-thiolation levels, which is partially consistent with the AlphaMissense predictions. These findings provide a comprehensive understanding of MTU1-related diseases, offering prospects for modification-based diagnostics and novel therapeutic strategies centered on targeting CLPP.


Subject(s)
Mitochondria , Mitochondrial Proteins , Peptide Hydrolases , tRNA Methyltransferases , Humans , Endopeptidase Clp/genetics , Endopeptidase Clp/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Mutation , Peptide Hydrolases/genetics , Proteolysis , RNA, Mitochondrial/metabolism , RNA, Transfer/metabolism , tRNA Methyltransferases/genetics , Mitochondrial Proteins/metabolism
18.
Curr Drug Targets ; 25(2): 108-120, 2024.
Article in English | MEDLINE | ID: mdl-38151841

ABSTRACT

Antimicrobial resistance (AMR) to currently available antibiotics/drugs is a global threat. It is desirable to develop new drugs that work through a novel target(s) to avoid drug resistance. This review discusses the potential of the caseinolytic protease P (ClpP) peptidase complex as a novel target for finding novel antibiotics, emphasising the ClpP's structure and function. ClpP contributes to the survival of bacteria via its ability to destroy misfolded or aggregated proteins. In consequence, its inhibition may lead to microbial death. Drugs inhibiting ClpP activity are currently being tested, but no drug against this target has been approved yet. It was demonstrated that Nblocked dipeptides are essential for activating ClpP's proteolytic activity. Hence, compounds mimicking these dipeptides could act as inhibitors of the formation of an active ClpP complex. Drugs, including Bortezomib, Cisplatin, Cefmetazole, and Ixazomib, inhibit ClpP activation. However, they were not approved as drugs against the target because of their high toxicity, likely due to the presence of strong electrophiles in their warheads. The modifications of these warheads could be a good strategy to reduce the toxicity of these molecules. For instance, a boronate warhead was replaced by a chloromethyl ketone, and this new molecule was shown to exhibit selectivity for prokaryotic ClpP. A better understanding of the structure and function of the ClpP complex would benefit the search for compounds mimicking N-blocked dipeptides that would inhibit ClpP complex activity and cause bacterial death.


Subject(s)
Anti-Bacterial Agents , Bacteria , Endopeptidase Clp , Peptide Hydrolases , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Bacteria/metabolism , Dipeptides/metabolism , Endopeptidase Clp/chemistry , Endopeptidase Clp/metabolism , Peptide Hydrolases/metabolism
19.
J Biol Chem ; 300(2): 105568, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38103640

ABSTRACT

Upon Mg2+ starvation, a condition often associated with virulence, enterobacteria inhibit the ClpXP-dependent proteolysis of the master transcriptional regulator, σs, via IraM, a poorly understood antiadaptor that prevents RssB-dependent loading of σs onto ClpXP. This inhibition results in σs accumulation and expression of stress resistance genes. Here, we report on the structural analysis of RssB bound to IraM, which reveals that IraM induces two folding transitions within RssB, amplified via a segmented helical linker. These conformational changes result in an open, yet inhibited RssB structure in which IraM associates with both the C-terminal and N-terminal domains of RssB and prevents binding of σs to the 4-5-5 face of the N-terminal receiver domain. This work highlights the remarkable structural plasticity of RssB and reveals how a stress-specific RssB antagonist modulates a core stress response pathway that could be leveraged to control biofilm formation, virulence, and the development of antibiotic resistance.


Subject(s)
Escherichia coli Proteins , Models, Molecular , Transcription Factors , Endopeptidase Clp/metabolism , Escherichia coli/chemistry , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Phosphorylation , Protein Binding , Protein Domains , Protein Folding , Protein Structure, Tertiary , Sigma Factor/metabolism , Transcription Factors/chemistry , Transcription Factors/metabolism
20.
Int J Mol Sci ; 24(24)2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38139332

ABSTRACT

The mitochondrial matrix peptidase CLPP is crucial during cell stress. Its loss causes Perrault syndrome type 3 (PRLTS3) with infertility, neurodegeneration, and a growth deficit. Its target proteins are disaggregated by CLPX, which also regulates heme biosynthesis via unfolding ALAS enzymes, providing access for pyridoxal-5'-phosphate (PLP). Despite efforts in diverse organisms with multiple techniques, CLPXP substrates remain controversial. Here, avoiding recombinant overexpression, we employed complexomics in mitochondria from three mouse tissues to identify endogenous targets. A CLPP absence caused the accumulation and dispersion of CLPX-VWA8 as AAA+ unfoldases, and of PLPBP. Similar changes and CLPX-VWA8 co-migration were evident for mitoribosomal central protuberance clusters, translation factors like GFM1-HARS2, the RNA granule components LRPPRC-SLIRP, and enzymes OAT-ALDH18A1. Mitochondrially translated proteins in testes showed reductions to <30% for MTCO1-3, the mis-assembly of the complex IV supercomplex, and accumulated metal-binding assembly factors COX15-SFXN4. Indeed, heavy metal levels were increased for iron, molybdenum, cobalt, and manganese. RT-qPCR showed compensatory downregulation only for Clpx mRNA; most accumulated proteins appeared transcriptionally upregulated. Immunoblots validated VWA8, MRPL38, MRPL18, GFM1, and OAT accumulation. Co-immunoprecipitation confirmed CLPX binding to MRPL38, GFM1, and OAT, so excess CLPX and PLP may affect their activity. Our data mechanistically elucidate the mitochondrial translation fidelity deficits which underlie progressive hearing impairment in PRLTS3.


Subject(s)
Endopeptidase Clp , Hearing Loss , Mitochondria , Animals , Mice , Adenosine Triphosphatases/metabolism , ATPases Associated with Diverse Cellular Activities/metabolism , Endopeptidase Clp/genetics , Endopeptidase Clp/metabolism , Hearing Loss/genetics , Hearing Loss/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Molecular Chaperones/metabolism , Respiration/genetics , Protein Biosynthesis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL