Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.580
Filter
1.
Commun Biol ; 7(1): 928, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39090206

ABSTRACT

Wheat grain starch content displays large variations within different pearling fractions, which affecting the processing quality of corresponding flour, while the underlying mechanism on starch gradient formation is unclear. Here, we show that wheat caryopses acquire sugar through the transfer of cells (TCs), inner endosperm (IE), outer endosperm (OE), and finally aleurone (AL) via micro positron emission tomography-computed tomography (PET-CT). To obtain integrated information on spatial transcript distributions, developing caryopses are laser microdissected into AL, OE, IE, and TC. Most genes encoding carbohydrate transporters are upregulated or specifically expressed, and sugar metabolites are more highly enriched in the TC group than in the AL group, in line with the PET-CT results. Genes encoding enzymes in sucrose metabolism, such as sucrose synthase, beta-fructofuranosidase, glucose-1-phosphate adenylyltransferase show significantly lower expression in AL than in OE and IE, indicating that substrate supply is crucial for the formation of starch gradients. Furthermore, the low expressions of gene encoding starch synthase contribute to low starch content in AL. Our results imply that transcriptional regulation represents an important means of impacting starch distribution in wheat grains and suggests breeding targets for enhancing specially pearled wheat with higher quality.


Subject(s)
Gene Expression Regulation, Plant , Starch , Triticum , Triticum/metabolism , Triticum/genetics , Starch/metabolism , Endosperm/metabolism , Biological Transport , Plant Proteins/metabolism , Plant Proteins/genetics , Sucrose/metabolism , Sugars/metabolism
2.
Methods Mol Biol ; 2827: 207-222, 2024.
Article in English | MEDLINE | ID: mdl-38985273

ABSTRACT

In this chapter, we report advances in tissue culture applied to Passiflora. We present reproducible protocols for somatic embryogenesis, endosperm-derived triploid production, and genetic transformation for such species knowledge generated by our research team and collaborators in the last 20 years. Our research group has pioneered the work on passion fruit somatic embryogenesis, and we directed efforts to characterize several aspects of this morphogenic pathway. Furthermore, we expanded the possibilities of understanding the molecular mechanism related to developmental phase transitions of Passiflora edulis Sims. and P. cincinnata Mast., and a transformation protocol is presented for the overexpression of microRNA156.


Subject(s)
Passiflora , Plant Somatic Embryogenesis Techniques , Tissue Culture Techniques , Passiflora/genetics , Passiflora/growth & development , Plant Somatic Embryogenesis Techniques/methods , Tissue Culture Techniques/methods , Transformation, Genetic , MicroRNAs/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development , Endosperm/genetics , Endosperm/growth & development , Gene Expression Regulation, Plant
3.
Commun Biol ; 7(1): 841, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987396

ABSTRACT

Cereal seeds are vital for food, feed, and agricultural sustainability because they store and provide essential nutrients to human and animal food and feed systems. Unraveling molecular processes in seed development is crucial for enhancing cereal grain yield and quality. We analyze spatiotemporal transcriptome and metabolome profiles during sorghum seed development in the inbred line 'BTx623'. Morphological and molecular analyses identify the key stages of seed maturation, specifying starch biosynthesis onset at 5 days post-anthesis (dpa) and protein at 10 dpa. Transcriptome profiling from 1 to 25 dpa reveal dynamic gene expression pathways, shifting from cellular growth and embryo development (1-5 dpa) to cell division, fatty acid biosynthesis (5-25 dpa), and seed storage compounds synthesis in the endosperm (5-25 dpa). Network analysis identifies 361 and 207 hub genes linked to starch and protein synthesis in the endosperm, respectively, which will help breeders enhance sorghum grain quality. The availability of this data in the sorghum reference genome line establishes a baseline for future studies as new pangenomes emerge, which will consider copy number and presence-absence variation in functional food traits.


Subject(s)
Gene Expression Regulation, Plant , Metabolome , Seeds , Sorghum , Transcriptome , Sorghum/genetics , Sorghum/metabolism , Seeds/metabolism , Seeds/genetics , Seeds/growth & development , Gene Regulatory Networks , Gene Expression Profiling , Endosperm/metabolism , Endosperm/genetics , Starch/biosynthesis , Starch/metabolism , Edible Grain/genetics , Edible Grain/metabolism
4.
New Phytol ; 243(5): 1855-1869, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38962989

ABSTRACT

Grain filling in maize (Zea mays) is intricately linked to cell development, involving the regulation of genes responsible for the biosynthesis of storage reserves (starch, proteins, and lipids) and phytohormones. However, the regulatory network coordinating these biological functions remains unclear. In this study, we identified 1744 high-confidence target genes co-regulated by the transcription factors (TFs) ZmNAC128 and ZmNAC130 (ZmNAC128/130) through chromatin immunoprecipitation sequencing coupled with RNA-seq analysis in the zmnac128/130 loss-of-function mutants. We further constructed a hierarchical regulatory network using DNA affinity purification sequencing analysis of downstream TFs regulated by ZmNAC128/130. In addition to target genes involved in the biosynthesis of starch and zeins, we discovered novel target genes of ZmNAC128/130 involved in the biosynthesis of lipids and indole-3-acetic acid (IAA). Consistently, the number of oil bodies, as well as the contents of triacylglycerol, and IAA were significantly reduced in zmnac128/130. The hierarchical regulatory network centered by ZmNAC128/130 revealed a significant overlap between the direct target genes of ZmNAC128/130 and their downstream TFs, particularly in regulating the biosynthesis of storage reserves and IAA. Our results indicated that the biosynthesis of storage reserves and IAA is coordinated by a multi-TFs hierarchical regulatory network in maize endosperm.


Subject(s)
Endosperm , Gene Expression Regulation, Plant , Gene Regulatory Networks , Indoleacetic Acids , Plant Proteins , Transcription Factors , Zea mays , Zea mays/genetics , Zea mays/metabolism , Indoleacetic Acids/metabolism , Endosperm/metabolism , Endosperm/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Genes, Plant , Mutation/genetics , Starch/metabolism , Starch/biosynthesis
5.
Mol Plant ; 17(7): 1110-1128, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38825830

ABSTRACT

Spatiotemporal regulation of gene expression by polycomb repressive complex 2 (PRC2) is critical for animal and plant development. The Arabidopsis fertilization independent seed (FIS)-PRC2 complex functions specifically during plant reproduction from gametogenesis to seed development. After a double fertilization event, triploid endosperm proliferates early, followed by the growth of a diploid embryo, which replaces the endosperm in Arabidopsis and many dicots. Key genes critical for endosperm proliferation such as IKU2 and MINI3 are activated after fertilization. Here we report that two MADS-box AGAMOUS-LIKE (AGL) proteins associate with the key endosperm proliferation loci and recruit the FIS-PRC2 repressive complex at 4-5 days after pollination (DAP). Interestingly, AGL9 and AGL15 only accumulate toward the end of endosperm proliferation at 4-5 DAP and promote the deposition of H3K27me3 marks at key endosperm proliferation loci. Disruption of AGL9 and AGL15 or overexpression of AGL9 or AGL15 significantly influence endosperm proliferation and cellularization. Genome-wide analysis with cleavage Under Targets and tagmentation (CUT&Tag) sequencing and RNA sequencing revealed the landscape of endosperm H3K27me3 marks and gene expression profiles in Col-0 and agl9 agl15. CUT&Tag qPCR also demonstrated the occupancy of the two MADS-box proteins and FIS-PRC2 on a few representative target loci. Our studies suggest that MADS-box proteins could potentially recruit PRC2 to regulate many other developmental processes in plants or even in fungi and animals.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Endosperm , Gene Expression Regulation, Plant , MADS Domain Proteins , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Endosperm/metabolism , Endosperm/growth & development , Endosperm/genetics , MADS Domain Proteins/metabolism , MADS Domain Proteins/genetics , Polycomb Repressive Complex 2/metabolism , Polycomb Repressive Complex 2/genetics , Seeds/metabolism , Seeds/growth & development , Seeds/genetics , Cell Proliferation
6.
Plant Sci ; 346: 112151, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38848768

ABSTRACT

Endosperm, the major storage organ in cereal grains, determines the grain yield and quality. Mitochondria provide the energy for dry matter accumulation, in the endosperm development. Although mitochondrial single-stranded DNA-binding proteins (mtSSBs) play a canonical role in the maintenance of single-stranded mitochondrial DNA, their molecular functions in RNA processing and endosperm development remain obscure. Here, we report a defective rice endosperm mutant, floury endosperm26 (flo26), which develops abnormal starch grains in the endosperm. Map-based cloning and complementation experiments showed that FLO26 allele encodes a mitochondrial single-stranded DNA-binding protein, named as mtSSB1.1. Loss of function of mtSSB1.1 affects the transcriptional level of many mitochondrially-encoded genes and RNA splicing of nad1, a core component of respiratory chain complex I in mitochondria. As a result, dysfunctional mature nad1 led to dramatically decreased complex I activity, thereby reducing ATP production. Our results reveal that mtSSB1.1 plays an important role in the maintenance of mitochondrial function and endosperm development by stabilizing the splicing of mitochondrial RNA in rice.


Subject(s)
Endosperm , Oryza , Plant Proteins , RNA Splicing , Oryza/genetics , Oryza/metabolism , Oryza/growth & development , Endosperm/genetics , Endosperm/metabolism , Endosperm/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Genes, Mitochondrial , Mitochondria/metabolism , Mitochondria/genetics , Gene Expression Regulation, Plant
7.
Planta ; 260(1): 19, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38839605

ABSTRACT

MAIN CONCLUSION: A mutation was first found to cause the great generation of glutelin precursors (proglutelins) in rice (Oryza sativa L.) endosperm, and thus referred to as GPGG1. The GPGG1 was involved in synthesis and compartmentation of storage proteins. The PPR-like gene in GPGG1-mapped region was determined as its candidate gene. In the wild type rice, glutelins and prolamins are synthesized on respective subdomains of rough endoplasmic reticulum (ER) and intracellularly compartmentalized into different storage protein bodies. In this study, a storage protein mutant was obtained and characterized by the great generation of proglutelins combining with the lacking of 13 kD prolamins. A dominant genic-mutation, referred to as GPGG1, was clarified to result in the proteinous alteration. Novel saccular composite-ER was shown to act in the synthesis of proglutelins and 14 kD prolamins in the mutant. Additionally, a series of organelles including newly occurring several compartments were shown to function in the transfer, trans-plasmalemmal transport, delivery, deposition and degradation of storage proteins in the mutant. The GPGG1 gene was mapped to a 67.256 kb region of chromosome 12, the pentatricopeptide repeat (PPR)-like gene in this region was detected to contain mutational sites.


Subject(s)
Endosperm , Glutens , Mutation , Oryza , Oryza/genetics , Oryza/metabolism , Endosperm/genetics , Endosperm/metabolism , Glutens/genetics , Glutens/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Prolamins/genetics , Prolamins/metabolism , Seed Storage Proteins/genetics , Seed Storage Proteins/metabolism , Endoplasmic Reticulum/metabolism , Chromosome Mapping , Genome, Plant/genetics
8.
Plant J ; 119(3): 1449-1464, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38837713

ABSTRACT

The aleurone layer in cereal grains acts as a major reservoir of essential mineral nutrients, significantly influencing seed germination. However, the molecular mechanism underlying the redistribution of nutrients from the aleurone layer in the germinating seed is still not well understood. Here, in rice, we identified a plasma membrane (PM) localized magnesium transporter, MAGNESIUM RELEASE TRANSPORTER 3 (MGR3), is critical for seed germination. OsMGR3 is predominantly expressed in the aleurone layer cells of endosperm, facilitating magnesium remobilization during germination. Non-invasive Micro-test Technology assay data demonstrated that the loss-of-function of OsMGR3 restrained magnesium efflux from the aleurone layer. In the embryo/endosperm grafting experiment, we observed that the mutation of OsMGR3 in the aleurone layer suppressed the growth and differentiation of the embryo during germination. Furthermore, magnesium fluorescence imaging revealed the osmgr3 mutant seeds showed impaired exportation of aleurone layer-stored magnesium to the embryo, consequently delaying germination. Importantly, we discovered that disrupting OsMGR3 could inhibit pre-harvest sprouting without affecting rice yield and quality. Therefore, the magnesium efflux transporter OsMGR3 in the aleurone layer represents a promising genetic target for future agronomic trait improvement.


Subject(s)
Cell Membrane , Germination , Magnesium , Oryza , Plant Proteins , Seeds , Oryza/genetics , Oryza/metabolism , Oryza/growth & development , Oryza/physiology , Magnesium/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Seeds/genetics , Seeds/metabolism , Seeds/growth & development , Cell Membrane/metabolism , Gene Expression Regulation, Plant , Endosperm/metabolism , Endosperm/genetics , Mutation
9.
New Phytol ; 243(1): 213-228, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38715414

ABSTRACT

Arabidopsis lamin analogs CROWDED NUCLEIs (CRWNs) are necessary to maintain nuclear structure, genome function, and proper plant growth. However, whether and how CRWNs impact reproduction and genome-wide epigenetic modifications is unknown. Here, we investigate the role of CRWNs during the development of gametophytes, seeds, and endosperm, using genomic and epigenomic profiling methods. We observed defects in crwn mutant seeds including seed abortion and reduced germination rate. Quadruple crwn null genotypes were rarely transmitted through gametophytes. Because defects in seeds often stem from abnormal endosperm development, we focused on crwn1 crwn2 (crwn1/2) endosperm. These mutant seeds exhibited enlarged chalazal endosperm cysts and increased expression of stress-related genes and the MADS-box transcription factor PHERES1 and its targets. Previously, it was shown that PHERES1 expression is regulated by H3K27me3 and that CRWN1 interacts with the PRC2 interactor PWO1. Thus, we tested whether crwn1/2 alters H3K27me3 patterns. We observed a mild loss of H3K27me3 at several hundred loci, which differed between endosperm and leaves. These data indicate that CRWNs are necessary to maintain the H3K27me3 landscape, with tissue-specific chromatin and transcriptional consequences.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Endosperm , Gene Expression Regulation, Plant , Histones , Mutation , Reproduction , Arabidopsis/genetics , Arabidopsis/physiology , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Histones/metabolism , Endosperm/genetics , Endosperm/metabolism , Mutation/genetics , Seeds/genetics , Seeds/growth & development , Cell Nucleus/metabolism , Methylation
10.
Plant J ; 119(2): 1134-1157, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38709819

ABSTRACT

The evolutionary and ecological success of spermatophytes is intrinsically linked to the seed habit, which provides a protective environment for the initial development of the new generation. This environment includes an ephemeral nourishing tissue that supports embryo growth. In gymnosperms this tissue originates from the asexual proliferation of the maternal megagametophyte, while in angiosperms it is a product of fertilization, and is called the endosperm. The emergence of these nourishing tissues is of profound evolutionary value, and they are also food staples for most of the world's population. Here, using Orthofinder to infer orthologue genes among newly generated and previously published datasets, we provide a comparative transcriptomic analysis of seed nourishing tissues from species of several angiosperm clades, including those of early diverging lineages, as well as of one gymnosperm. Our results show that, although the structure and composition of seed nourishing tissues has seen significant divergence along evolution, there are signatures that are conserved throughout the phylogeny. Conversely, we identified processes that are specific to species within the clades studied, and thus illustrate their functional divergence. With this, we aimed to provide a foundation for future studies on the evolutionary history of seed nourishing structures, as well as a resource for gene discovery in future functional studies.


Subject(s)
Cycadopsida , Magnoliopsida , Phylogeny , Seeds , Transcriptome , Seeds/genetics , Seeds/metabolism , Magnoliopsida/genetics , Magnoliopsida/metabolism , Cycadopsida/genetics , Gene Expression Regulation, Plant , Endosperm/genetics , Endosperm/metabolism , Gene Expression Profiling , Biological Evolution
11.
BMC Plant Biol ; 24(1): 458, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38797860

ABSTRACT

BACKGROUND: The endosperm serves as the primary source of nutrients for maize (Zea mays L.) kernel embryo development and germination. Positioned at the base of the endosperm, the transfer cells (TCs) of the basal endosperm transfer layer (BETL) generate cell wall ingrowths, which enhance the connectivity between the maternal plant and the developing kernels. These TCs play a crucial role in nutrient transport and defense against pathogens. The molecular mechanism underlying BETL development in maize remains unraveled. RESULTS: This study demonstrated that the MYB-related transcription factor ZmMYBR29, exhibited specific expression in the basal cellularized endosperm, as evidenced by in situ hybridization analysis. Utilizing the CRISPR/Cas9 system, we successfully generated a loss-of-function homozygous zmmybr29 mutant, which presented with smaller kernel size. Observation of histological sections revealed abnormal development and disrupted morphology of the cell wall ingrowths in the BETL. The average grain filling rate decreased significantly by 26.7% in zmmybr29 mutant in comparison to the wild type, which impacted the dry matter accumulation within the kernels and ultimately led to a decrease in grain weight. Analysis of RNA-seq data revealed downregulated expression of genes associated with starch synthesis and carbohydrate metabolism in the mutant. Furthermore, transcriptomic profiling identified 23 genes that expressed specifically in BETL, and the majority of these genes exhibited altered expression patterns in zmmybr29 mutant. CONCLUSIONS: In summary, ZmMYBR29 encodes a MYB-related transcription factor that is expressed specifically in BETL, resulting in the downregulation of genes associated with kernel development. Furthermore, ZmMYBR29 influences kernels weight by affecting the grain filling rate, providing a new perspective for the complementation of the molecular regulatory network in maize endosperm development.


Subject(s)
Edible Grain , Endosperm , Gene Expression Regulation, Plant , Plant Proteins , Transcription Factors , Zea mays , Zea mays/genetics , Zea mays/growth & development , Zea mays/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Edible Grain/genetics , Edible Grain/growth & development , Edible Grain/metabolism , Endosperm/genetics , Endosperm/growth & development , Endosperm/metabolism , Cell Wall/metabolism , Cell Wall/genetics , Seeds/genetics , Seeds/growth & development , Seeds/metabolism , CRISPR-Cas Systems
12.
Nat Plants ; 10(6): 1018-1026, 2024 06.
Article in English | MEDLINE | ID: mdl-38806655

ABSTRACT

The endosperm is a reproductive tissue supporting embryo development. In most flowering plants, the initial divisions of endosperm nuclei are not succeeded by cellularization; this process occurs only after a specific number of mitotic cycles have taken place. The timing of cellularization significantly influences seed viability and size. Previous research implicated auxin as a key factor in initiating nuclear divisions and determining the timing of cellularization. Here we uncover the involvement of a family of clustered auxin response factors (cARFs) as dosage-sensitive regulators of endosperm cellularization. cARFs, maternally expressed and paternally silenced, are shown to induce cellularization, thereby restricting seed growth. Our findings align with the predictions of the parental conflict theory, suggesting that cARFs represent major molecular targets in this conflict. We further demonstrate a recurring amplification of cARFs in the Brassicaceae, suggesting an evolutionary response to parental conflict by reinforcing maternal control over endosperm cellularization. Our study highlights that antagonistic parental control on endosperm cellularization converges on auxin biosynthesis and signalling.


Subject(s)
Arabidopsis , Endosperm , Gene Expression Regulation, Plant , Indoleacetic Acids , Endosperm/metabolism , Endosperm/genetics , Indoleacetic Acids/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Brassicaceae/genetics , Brassicaceae/metabolism , Brassicaceae/physiology , Plant Growth Regulators/metabolism
14.
Curr Biol ; 34(8): R308-R312, 2024 04 22.
Article in English | MEDLINE | ID: mdl-38653196

ABSTRACT

Flowering plants, also known as angiosperms, emerged approximately 150 to 200 million years ago. Since then, they have undergone rapid and extensive expansion, now encompassing around 90% of all land plant species. The remarkable diversification of this group has been a subject of in-depth investigations, and several evolutionary innovations have been proposed to account for their success. In this primer, we will specifically focus on one such innovation: the advent of seeds containing endosperm.


Subject(s)
Biological Evolution , Magnoliopsida , Reproduction , Magnoliopsida/physiology , Magnoliopsida/genetics , Reproduction/physiology , Endosperm/physiology , Seeds/physiology
15.
Int J Biol Macromol ; 267(Pt 2): 131663, 2024 May.
Article in English | MEDLINE | ID: mdl-38636760

ABSTRACT

Palm seedlings are visually selected from mature fruits in a slow process that leads to nonuniform germination and high embryo mortality. In this study, we determined the levels of monosaccharides, their crystallinity, and their role in the formation of Euterpe edulis endosperm during seed maturation. Seeds harvested from 108 to 262 days after anthesis (DAA) were analyzed morphologically, physiologically, and chemically to measure soluble and insoluble lignins, ashes, structural carbohydrates, degree of crystallinity, and endo-ß-mannanase. The seeds achieved maximum germination and vigor at 164 DAA. During the early stages, only compounds with a low structural order were formed. The contents of soluble and insoluble lignins, ashes, glucans, and galactans decreased during maturation. Those of mannans, the main structural carbohydrate in the endosperm, increased along with the degree of crystallinity, as suggested by a mannan-I-type X-ray diffraction pattern. Similarly, endo-ß-mannanase activity peaked at 262 DAA. The superior physiological outcome of seeds and seedlings at 164 DAA implies a 98-day shorter harvesting time. The state of mannans during seed maturation could be used as a marker to improve seedling production by E. edulis.


Subject(s)
Arecaceae , Germination , Mannans , Seeds , Seeds/growth & development , Seeds/chemistry , Mannans/chemistry , Arecaceae/chemistry , Arecaceae/growth & development , Trees , Lignin/chemistry , Lignin/metabolism , Endosperm/chemistry , Endosperm/metabolism , Seedlings/growth & development
16.
Mol Plant ; 17(5): 788-806, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38615195

ABSTRACT

During maize endosperm filling, sucrose not only serves as a source of carbon skeletons for storage-reserve synthesis but also acts as a stimulus to promote this process. However, the molecular mechanisms underlying sucrose and endosperm filling are poorly understood. In this study, we found that sucrose promotes the expression of endosperm-filling hub gene Opaque2 (O2), coordinating with storage-reserve accumulation. We showed that the protein kinase SnRK1a1 can attenuate O2-mediated transactivation, but sucrose can release this suppression. Biochemical assays revealed that SnRK1a1 phosphorylates O2 at serine 41 (S41), negatively affecting its protein stability and transactivation ability. We observed that mutation of SnRK1a1 results in larger seeds with increased kernel weight and storage reserves, while overexpression of SnRK1a1 causes the opposite effect. Overexpression of the native O2 (O2-OE), phospho-dead (O2-SA), and phospho-mimetic (O2-SD) variants all increased 100-kernel weight. Although O2-SA seeds exhibit smaller kernel size, they have higher accumulation of starch and proteins, resulting in larger vitreous endosperm and increased test weight. O2-SD seeds display larger kernel size but unchanged levels of storage reserves and test weight. O2-OE seeds show elevated kernel dimensions and nutrient storage, like a mixture of O2-SA and O2-SD seeds. Collectively, our study discovers a novel regulatory mechanism of maize endosperm filling. Identification of S41 as a SnRK1-mediated phosphorylation site in O2 offers a potential engineering target for enhancing storage-reserve accumulation and yield in maize.


Subject(s)
Endosperm , Plant Proteins , Sucrose , Zea mays , Zea mays/metabolism , Zea mays/genetics , Endosperm/metabolism , Phosphorylation , Plant Proteins/metabolism , Plant Proteins/genetics , Sucrose/metabolism , Gene Expression Regulation, Plant , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Seeds/metabolism , Seeds/genetics , Seeds/growth & development
17.
J Biosci Bioeng ; 138(1): 44-53, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38614830

ABSTRACT

Kopyor is a coconut with unique characteristics from Indonesia, one of the largest coconut producers in the world. Kopyor is an edible mature coconut with soft endosperm. Although this fruit is one of the most popular coconuts in the world, there are limited studies on its properties, including its sensory attributes and metabolite profiles. This study investigates the characteristics of kopyor using sensory evaluation, a widely targeted metabolomics approach, and multivariate analysis. The liquid (water) and solid (flesh) endosperms were collected as the samples. The results showed that kopyor has characteristics that distinguish it from normal mature and young coconuts. Kopyor water has a milky, creamy, nutty, bitter, and astringent taste with an oily aftertaste and mouthfeel. Kopyor flesh is soft and moist and gives a sandy mouth feel. This study analyzed the sensory attributes of the kopyor endosperm for the first time and compared it with those of normal mature and young coconuts. A gas chromatography mass spectrometry analysis showed that kopyor contained wider variety of metabolites than normal coconuts of the same age. Based on the differential analysis and orthogonal projections to latent structures-regression, kopyor water was characterized by the accumulation of flavor-related metabolites, such as amino acids and organic acids, which contributed to its sensory complexity. This study solidified the effects of maturation and endosperm type on metabolite accumulation in kopyor endosperm. This pioneering information will lead to the future use of kopyor and other unique coconuts worldwide for food, contributing to the sustainability of the coconut industry.


Subject(s)
Cocos , Gas Chromatography-Mass Spectrometry , Metabolomics , Taste , Cocos/chemistry , Metabolomics/methods , Indonesia , Endosperm/metabolism , Endosperm/chemistry , Humans
18.
J Genet Genomics ; 51(8): 855-865, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38599515

ABSTRACT

The early development of the endosperm is crucial for balancing the allocation of maternal nutrients to offspring. This process is believed to be evolutionarily associated with genomic imprinting, resulting in parentally biased allelic gene expression. Beyond FertilizationIndependentSeed (FIS) genes, the number of imprinted genes involved in early endosperm development and seed size determination remains limited. This study introduces early endosperm-expressed HAIKU (IKU) downstream Candidate F-box 1 (ICF1) and ICF2 as maternally expressed imprinted genes (MEGs) in Arabidopsis thaliana. Although these genes are also demethylated by DEMETER (DME) in the central cell, their activation differs from the direct DME-mediated activation seen in classical MEGs such as the FIS genes. Instead, ICF maternal alleles carry pre-established hypomethylation in their promoters, priming them for activation by the WRKY10 transcription factor in the endosperm. On the contrary, paternal alleles are predominantly suppressed by CG methylation. Furthermore, we find that ICF genes partially contribute to the small seed size observed in iku mutants. Our discovery reveals a two-step regulatory mechanism that highlights the important role of conventional transcription factors in the activation of imprinted genes, which was previously not fully recognized. Therefore, the mechanism provides a new dimension to understand the transcriptional regulation of imprinting in plant reproduction and development.


Subject(s)
Arabidopsis Proteins , Arabidopsis , DNA Methylation , Endosperm , Gene Expression Regulation, Plant , Genomic Imprinting , Transcription Factors , Endosperm/genetics , Genomic Imprinting/genetics , Arabidopsis/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant/genetics , DNA Methylation/genetics , Alleles , Seeds/genetics , Seeds/growth & development , N-Glycosyl Hydrolases , Trans-Activators
19.
New Phytol ; 242(6): 2635-2651, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38634187

ABSTRACT

Endosperm is the main storage organ in cereal grain and determines grain yield and quality. The molecular mechanisms of heat shock proteins in regulating starch biosynthesis and endosperm development remain obscure. Here, we report a rice floury endosperm mutant flo24 that develops abnormal starch grains in the central starchy endosperm cells. Map-based cloning and complementation test showed that FLO24 encodes a heat shock protein HSP101, which is localized in plastids. The mutated protein FLO24T296I dramatically lost its ability to hydrolyze ATP and to rescue the thermotolerance defects of the yeast hsp104 mutant. The flo24 mutant develops more severe floury endosperm when grown under high-temperature conditions than normal conditions. And the FLO24 protein was dramatically induced at high temperature. FLO24 physically interacts with several key enzymes required for starch biosynthesis, including AGPL1, AGPL3 and PHO1. Combined biochemical and genetic evidence suggests that FLO24 acts cooperatively with HSP70cp-2 to regulate starch biosynthesis and endosperm development in rice. Our results reveal that FLO24 acts as an important regulator of endosperm development, which might function in maintaining the activities of enzymes involved in starch biosynthesis in rice.


Subject(s)
Endosperm , Oryza , Plant Proteins , Starch , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/biosynthesis , Endosperm/genetics , Endosperm/growth & development , Endosperm/metabolism , Gene Expression Regulation, Plant , Genetic Complementation Test , Mutation/genetics , Oryza/genetics , Oryza/metabolism , Oryza/growth & development , Plant Proteins/metabolism , Plant Proteins/genetics , Plastids/metabolism , Protein Binding , Starch/biosynthesis , Starch/genetics , Thermotolerance , Transcription Factors
20.
Plant Cell ; 36(7): 2512-2530, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38635902

ABSTRACT

Cereal grains are an important source of food and feed. To provide comprehensive spatiotemporal information about biological processes in developing seeds of cultivated barley (Hordeum vulgare L. subsp. vulgare), we performed a transcriptomic study of the embryo, endosperm, and seed maternal tissues collected from grains 4-32 days after pollination. Weighted gene co-expression network and motif enrichment analyses identified specific groups of genes and transcription factors (TFs) potentially regulating barley seed tissue development. We defined a set of tissue-specific marker genes and families of TFs for functional studies of the pathways controlling barley grain development. Assessing selected groups of chromatin regulators revealed that epigenetic processes are highly dynamic and likely play a major role during barley endosperm development. The repressive H3K27me3 modification is globally reduced in endosperm tissues and at specific genes related to development and storage compounds. Altogether, this atlas uncovers the complexity of developmentally regulated gene expression in developing barley grains.


Subject(s)
Endosperm , Gene Expression Regulation, Plant , Hordeum , Seeds , Transcriptome , Hordeum/genetics , Hordeum/growth & development , Hordeum/metabolism , Seeds/genetics , Seeds/growth & development , Seeds/metabolism , Transcriptome/genetics , Endosperm/genetics , Endosperm/metabolism , Endosperm/growth & development , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Profiling , Gene Regulatory Networks , Gene Expression Regulation, Developmental , Epigenesis, Genetic , Histones/metabolism , Histones/genetics
SELECTION OF CITATIONS
SEARCH DETAIL