Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.205
Filter
1.
Sci Rep ; 14(1): 21006, 2024 09 09.
Article in English | MEDLINE | ID: mdl-39251613

ABSTRACT

The emission of glyphosate and antibiotic residues from human activities threatens the diversity and functioning of the microbial community. This study examines the impact of a glyphosate-based herbicide (GBH) and common antibiotics on Gram-negative bacteria within the ESKAPEE group (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp. and Escherichia coli). Ten strains, including type and multidrug-resistant strains for each species were analysed and eight antibiotics (cefotaxime, meropenem, aztreonam, ciprofloxacin, gentamicin, tigecycline, sulfamethoxazole-trimethoprim, and colistin) were combined with the GBH. While most combinations yielded additive or indifferent effects in 70 associations, antagonistic effects were observed with ciprofloxacin and gentamicin in five strains. GBH notably decreased the minimum inhibitory concentration of colistin in eight strains and displayed synergistic activity with meropenem against metallo-ß-lactamase (MBL)-producing strains. Investigation into the effect of GBH properties on outer membrane permeability involved exposing strains to a combination of this GBH and vancomycin. Results indicated that GBH rendered strains sensitive to vancomycin, which is typically ineffective against Gram-negative bacteria. Furthermore, we examined the impact of GBH in combination with three carbapenem agents on 14 strains exhibiting varying carbapenem-resistance mechanisms to assess its effect on carbapenemase activity. The GBH efficiently inhibited MBL activity, demonstrating similar effects to EDTA (ethylenediaminetetraacetic acid). Chelating effect of GBH may have multifaceted impacts on bacterial cells, potentially by increasing outer membrane permeability and inactivating metalloenzyme activity.


Subject(s)
Acinetobacter baumannii , Anti-Bacterial Agents , Glycine , Glyphosate , Gram-Negative Bacteria , Herbicides , Microbial Sensitivity Tests , Glycine/analogs & derivatives , Glycine/pharmacology , Anti-Bacterial Agents/pharmacology , Herbicides/pharmacology , Gram-Negative Bacteria/drug effects , Acinetobacter baumannii/drug effects , Klebsiella pneumoniae/drug effects , Humans , Escherichia coli/drug effects , Pseudomonas aeruginosa/drug effects , Drug Resistance, Multiple, Bacterial/drug effects , Ciprofloxacin/pharmacology , Enterococcus faecium/drug effects , Staphylococcus aureus/drug effects , Colistin/pharmacology , Vancomycin/pharmacology , Enterobacter/drug effects , Drug Synergism , Meropenem/pharmacology , Phenotype , Gentamicins/pharmacology
2.
BMC Genomics ; 25(1): 870, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39300338

ABSTRACT

BACKGROUND: Wastewaters are considered as important players in the spread of antimicrobial resistance, thus affecting the health of humans and animals. Here, we focused on wastewaters as a possible source of carbapenemase-producing Enterobacterales for the environment. METHODS: A total of 180 presumptive coliforms from hospital and municipal wastewaters, and a river in the Czech Republic were obtained by selective cultivation on meropenem-supplemented media and tested for presence of carbapenemase-encoding genes by PCR. Strains carrying genes of interest were characterized by testing antimicrobial susceptibility, carbapenemase production and combination of short- and long- read whole-genome sequencing. The phylogenetic tree including publicly available genomes of Enterobacter asburiae was conducted using Prokka, Roary and RAxML. RESULTS: Three VIM-producing Enterobacter asburiae isolates, members of the Enterobacter cloacae complex, were detected from hospital and municipal wastewaters, and the river. The blaVIM-1 gene was located within a class 1 integron that was carried by different F-type plasmids and one non-typeable plasmid. Furthermore, one of the isolates carried plasmid-borne colistin-resistance gene mcr-10, while in another isolate chromosomally located mcr-9 without colistin resistance phenotype was detected. In addition, the analysis of 685 publicly available E. asburiae genomes showed they frequently carry carbapenemase genes, highlighting the importance of this species in the emergence of resistance to last-line antibiotics. CONCLUSION: Our findings pointed out the important contribution of hospital and community wastewaters in transmission of multi-drug resistant pathogens.


Subject(s)
Colistin , Enterobacter , Wastewater , beta-Lactamases , Wastewater/microbiology , beta-Lactamases/genetics , Enterobacter/genetics , Enterobacter/drug effects , Enterobacter/isolation & purification , Colistin/pharmacology , Phylogeny , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Drug Resistance, Bacterial/genetics , Microbial Sensitivity Tests , Plasmids/genetics , Humans
3.
Nat Commun ; 15(1): 8221, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39300135

ABSTRACT

The main vectors of Zika virus (ZIKV) and dengue virus (DENV) are Aedes aegypti and Ae. albopictus, with Ae. aegypti being more competent. However, the underlying mechanisms remain unclear. Here, we find Ae. albopictus shows comparable vector competence to ZIKV/DENV with Ae. aegypti by blood-feeding after antibiotic treatment or intrathoracic injection. This suggests that midgut microbiota can influence vector competence. Enterobacter hormaechei_B17 (Eh_B17) is isolated from field-collected Ae. albopictus and conferred resistance to ZIKV/DENV infection in Ae. aegypti after gut-transplantation. Sphingosine, a metabolite secreted by Eh_B17, effectively suppresses ZIKV infection in both Ae. aegypti and cell cultures by blocking viral entry during the fusion step, with an IC50 of approximately 10 µM. A field survey reveals that Eh_B17 preferentially colonizes Ae. albopictus compared to Ae. aegypti. And field Ae. albopictus positive for Eh_B17 are more resistant to ZIKV infection. These findings underscore the potential of gut symbiotic bacteria, such as Eh_B17, to modulate the arbovirus vector competence of Aedes mosquitoes. As a natural antiviral agent, Eh_B17 holds promise as a potential candidate for blocking ZIKV/DENV transmission.


Subject(s)
Aedes , Dengue Virus , Enterobacter , Gastrointestinal Microbiome , Mosquito Vectors , Sphingosine , Symbiosis , Zika Virus , Aedes/virology , Aedes/microbiology , Aedes/drug effects , Animals , Mosquito Vectors/microbiology , Mosquito Vectors/virology , Mosquito Vectors/drug effects , Zika Virus/physiology , Zika Virus/drug effects , Dengue Virus/drug effects , Dengue Virus/physiology , Gastrointestinal Microbiome/drug effects , Sphingosine/analogs & derivatives , Sphingosine/metabolism , Sphingosine/pharmacology , Enterobacter/drug effects , Enterobacter/physiology , Zika Virus Infection/transmission , Zika Virus Infection/virology , Dengue/transmission , Dengue/virology , Dengue/prevention & control , Female , Virus Internalization/drug effects , Humans
4.
Emerg Microbes Infect ; 13(1): 2404165, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39258852

ABSTRACT

Carbapenem-resistant Enterobacter cloacae complex is a significant global healthcare threat, particularly carbapenemase-producing Enterobacter hormaechei (CPEH). From January 2017 to January 2021, twenty-two CPEH isolates from a regional teaching hospital in central Taiwan were identified with the carriage of carbapenemase genes blaKPC-2, blaIMP-8, and predominantly blaOXA-48. Over 80% of these CPEH strains clustered into the high-risk ST78 lineage, carrying a blaOXA-48 IncL plasmid (pOXA48-CREH), nearly identical to the endemic plasmid pOXA48-KP in ST11 Klebsiella pneumoniae. This OXA-48-producing ST78 lineage disseminated clonally from 2018 to 2021 and transferred pOXA48-CREH to ST66 and ST90 E. hormaechei. An IMP-8-producing ST78 strain harbouring a blaIMP-8-carrying pIncHI2 plasmid appeared in 2018, and by late 2020, a KPC-2-producing ST78 strain was identified after acquiring a novel blaKPC-2-carrying IncFII plasmid. These findings suggest that the high-risk ST78 lineage of E. hormaechei has emerged as the primary driver behind the transmission of CPEH. ST78 has not only acquired various carbapenemase-gene-carrying plasmids but has also facilitated the transfer of pOXA48-CREH to other lineages. Continuous genomic surveillance and targeted interventions are urgently needed to control the spread of emerging CPEH clones in hospital settings.


Subject(s)
Bacterial Proteins , Enterobacter , Enterobacteriaceae Infections , Plasmids , beta-Lactamases , Taiwan/epidemiology , beta-Lactamases/genetics , beta-Lactamases/metabolism , Humans , Enterobacter/genetics , Enterobacter/isolation & purification , Enterobacter/drug effects , Enterobacter/enzymology , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/transmission , Enterobacteriaceae Infections/epidemiology , Plasmids/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Hospitals , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/isolation & purification
5.
Microbiol Res ; 288: 127867, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39163716

ABSTRACT

BACKGROUND: Enterobacter species are included among the normal human gut microflora and persist in a diverse range of other environmental niches. They have become important opportunistic nosocomial pathogens known to harbour plasmid-mediated multi-class antimicrobial resistance (AMR) determinants. Global AMR surveillance of Enterobacterales isolates shows the genus is second to Klebsiella in terms of frequency of carbapenem resistance. Enterobacter taxonomy is confusing and standard species identification methods are largely inaccurate or insufficient. There are currently 27 named species and a total of 46 taxa in the genus distinguishable via average nucleotide identity (ANI) calculation between pairs of genomic sequences. Here we describe an Enterobacter strain, ECC3473, isolated from the wastewater of an Australian hospital whose species could not be determined by standard methods nor by ribosomal RNA gene multi-locus typing. AIM: To characterise ECC3473 in terms of phenotypic and genotypic antimicrobial resistance, biochemical characteristics and taxonomy as well as to determine the global distribution of the novel species to which it belongs. METHODS: Standard broth dilution and disk diffusion were used to determine phenotypic AMR. The strain's complete genome, including plasmids, was obtained following long- and short read sequencing and a novel long/short read hybrid assembly and polishing, and the genomic basis of AMR was determined. Phylogenomic analysis and quantitative measures of relatedness (ANI, digital DNA-DNA hybridisation, and difference in G+C content) were used to study the taxonomic relationship between ECC3473 and Enterobacter type-strains. NCBI and PubMLST databases and the literature were searched for additional members of the novel species to determine its global distribution. RESULTS: ECC3473 is one of 21 strains isolated globally belonging to a novel Enterobacter species for which the name, Enterobacter adelaidei sp. nov. is proposed. The novel species was found to be resilient in its capacity to persist in contaminated water and adaptable in its ability to accumulate multiple transmissible AMR determinants. CONCLUSION: E. adelaidei sp. nov. may become increasingly important to the dissemination of AMR.


Subject(s)
Drug Resistance, Multiple, Bacterial , Enterobacter , Genome, Bacterial , Hospitals , Phylogeny , Wastewater , Wastewater/microbiology , Enterobacter/genetics , Enterobacter/isolation & purification , Enterobacter/classification , Enterobacter/drug effects , Australia , Drug Resistance, Multiple, Bacterial/genetics , Humans , Anti-Bacterial Agents/pharmacology , Plasmids/genetics , Microbial Sensitivity Tests , Multilocus Sequence Typing , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics
6.
PLoS One ; 19(8): e0306597, 2024.
Article in English | MEDLINE | ID: mdl-39106246

ABSTRACT

Gossypol, a yellow polyphenolic compound found in the Gossypium genus, is toxic to animals that ingest cotton-derived feed materials. However, ruminants display a notable tolerance to gossypol, attributed to the pivotal role of ruminal microorganisms in its degradation. The mechanisms of how rumen microorganisms degrade and tolerate gossypol remain unclear. Therefore, in this study, Enterobacter sp. GD5 was isolated from rumen fluid, and the effects of gossypol on its metabolism and gene expression were investigated using liquid chromatography-mass spectrometry (LC-MS) and RNA analyses. The LC-MS results revealed that gossypol significantly altered the metabolic profiles of 15 metabolites (eight upregulated and seven downregulated). The Kyoto Encyclopedia of Genes and Genomes analysis results showed that significantly different metabolites were associated with glutathione metabolism in both positive and negative ion modes, where gossypol significantly affected the biosynthesis of amino acids in the negative ion mode. Transcriptomic analysis indicated that gossypol significantly affected 132 genes (104 upregulated and 28 downregulated), with significant changes observed in the expression of catalase peroxidase, glutaredoxin-1, glutathione reductase, thioredoxin 2, thioredoxin reductase, and alkyl hydroperoxide reductase subunit F, which are related to antioxidative stress. Furthermore, Gene Ontology analysis revealed significant changes in homeostatic processes following gossypol supplementation. Overall, these results indicate that gossypol induces oxidative stress, resulting in the increased expression of antioxidative stress-related genes in Enterobacter sp. GD5, which may partially explain its tolerance to gossypol.


Subject(s)
Enterobacter , Gossypol , Metabolomics , Gossypol/pharmacology , Gossypol/metabolism , Enterobacter/metabolism , Enterobacter/genetics , Enterobacter/drug effects , Animals , Transcriptome/drug effects , Gene Expression Regulation, Bacterial/drug effects , Metabolome/drug effects , Gene Expression Profiling , Rumen/microbiology , Rumen/metabolism , Rumen/drug effects
7.
Biosensors (Basel) ; 14(7)2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39056615

ABSTRACT

The species included in the ESKAPE group (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and the genus Enterobacter) have a high capacity to develop antimicrobial resistance (AMR), a health problem that is already among the leading causes of death and could kill 10 million people a year by 2050. The generation of new potentially therapeutic molecules has been insufficient to combat the AMR "crisis", and the World Health Organization (WHO) has stated that it will seek to promote the development of rapid diagnostic strategies. The physicochemical properties of metallic nanoparticles (MNPs) have made it possible to design biosensors capable of identifying low concentrations of ESKAPE bacteria in the short term; other systems identify antimicrobial susceptibility, and some have been designed with dual activity in situ (bacterial detection and antimicrobial activity), which suggests that, in the near future, multifunctional biosensors could exist based on MNPs capable of quickly identifying bacterial pathogens in clinical niches might become commercially available. This review focuses on the use of MNP-based systems for the rapid and accurate identification of clinically important bacterial pathogens, exhibiting the necessity for exhaustive research to achieve these objectives. This review focuses on the use of metal nanoparticle-based systems for the rapid and accurate identification of clinically important bacterial pathogens.


Subject(s)
Biosensing Techniques , Klebsiella pneumoniae , Metal Nanoparticles , Staphylococcus aureus , Metal Nanoparticles/chemistry , Humans , Klebsiella pneumoniae/drug effects , Staphylococcus aureus/drug effects , Acinetobacter baumannii/drug effects , Pseudomonas aeruginosa/drug effects , Enterococcus faecium , Drug Resistance, Bacterial , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Early Diagnosis , Enterobacter/drug effects
8.
ACS Infect Dis ; 10(8): 2836-2859, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39024306

ABSTRACT

Accurate detection of bacterial antibiotic sensitivity is crucial for theranostics and the containment of antibiotic-resistant infections. However, the intricate task of detecting and quantifying the antibiotic-induced changes in the bacterial cytoplasmic membrane, and their correlation with other metabolic pathways leading to antibiotic resistance, poses significant challenges. Using a novel class of 4-aminophthalimide (4AP)-based fluorescent dyes with precisely tailored alkyl chains, namely 4AP-C9 and 4AP-C13, we quantify stress-mediated alterations in E. coli membranes. Leveraging the unique depth-dependent positioning and environment-sensitive fluorescence properties of these dyes, we detect antibiotic-induced membrane damage through single-cell imaging and monitoring the fluorescence peak maxima difference ratio (PMDR) of the dyes within the bacterial membrane, complemented by other methods. The correlation between the ROS-induced cytoplasmic membrane damage and the PMDR of dyes quantifies sensitivity against bactericidal antibiotics, which correlates to antibiotic-induced lipid peroxidation. Significantly, our findings largely extend to clinical isolates of E. coli and other ESKAPE pathogens like K. pneumoniae and Enterobacter subspecies. Our data reveal that 4AP-Cn probes can potentially act as precise scales to detect antibiotic-induced membrane damage ("thinning") occurring at a subnanometer scale through the quantification of dyes' PMDR, making them promising membrane dyes for rapid detection of bacterial antibiotic resistance, distinguishing sensitive and resistant infections with high specificity in a clinical setup.


Subject(s)
Anti-Bacterial Agents , Cell Membrane , Escherichia coli , Fluorescent Dyes , Microbial Sensitivity Tests , Fluorescent Dyes/chemistry , Escherichia coli/drug effects , Anti-Bacterial Agents/pharmacology , Cell Membrane/drug effects , Drug Resistance, Bacterial , Humans , Enterobacter/drug effects , Klebsiella pneumoniae/drug effects
9.
J Glob Antimicrob Resist ; 38: 281-291, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38996870

ABSTRACT

INTRODUCTION: Multi-carbapenemase-producing Enterobacterales (M-CPE) are increasingly described. We characterized the M-CPE isolates prospectively recovered in our hospital (Madrid, Spain) over two years (2021-2022). METHODS: We collected 796 carbapenem resistant Enterobacterales (CRE) from clinical and surveillance samples. Carbapenemase production was confirmed with phenotypic (immunochromatographic, disk diffusion) and molecular (PCR, WGS) techniques. Antimicrobial susceptibility was evaluated by a standard broth microdilution method. Clinical and demographic data were collected. RESULTS: Overall, 23 M-CPE (10 Klebsiella pneumoniae, 6 Citrobacter freundii complex, 3 Escherichia coli, 2 Klebsiella oxytoca, and 2 Enterobacter hormaechei) isolates were recovered from 17 patients (3% with CPE, 0.26-0.28 cases per 1000 admissions). OXA-48 + KPC-3 (7/23) and KPC-3 + VIM-1 (5/23) were the most frequent carbapenemase combinations. All patients had prior antibiotics exposure, including carbapenems (8/17). High resistance rates to ceftazidime/avibactam (14/23), imipenem/relebactam (16/23) and meropenem/vaborbactam (7/23) were found. Ceftazidime/avibactam + aztreonam combination was synergistic in all metallo-ß-lactamase producers. Clonal and non-clonal related isolates were found, particularly in K. pneumoniae (5 ST29, 3 ST147, 3 ST307) and C. freundii (3 ST8, 2 ST125, 1 ST563). NDM-1 + OXA-48 was introduced with the ST147-K. pneumoniae high-risk clone linked to the transfer of a Ukrainian patient. We identified four possible nosocomial clonal transmission events between patients of the same clone with the same combination of carbapenemases (KPC-3 + VIM-1-ST29-K. pneumoniae, NDM-1 + OXA-48-ST147-K. pneumoniae and KPC-2 + VIM-1-ST145-K. oxytoca). Carbapenemase-encoding genes were located on different plasmids, except for VIM-1 + KPC-2-ST145-K. oxytoca. Cross-species transmission and a possible acquisition overtime was found, particularly between K. pneumoniae and E. coli producing OXA-48 + KPC-3. CONCLUSION: M-CPE is an emerging threat in our hospital. Co-production of different carbapenemases, including metallo-ß-lactamases, limits therapeutic options and depicts the need to reinforce infection control measures.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Carbapenem-Resistant Enterobacteriaceae , Enterobacteriaceae Infections , Microbial Sensitivity Tests , Tertiary Care Centers , beta-Lactamases , Humans , Spain/epidemiology , beta-Lactamases/genetics , beta-Lactamases/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/epidemiology , Female , Male , Tertiary Care Centers/statistics & numerical data , Middle Aged , Aged , Anti-Bacterial Agents/pharmacology , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/drug effects , Carbapenem-Resistant Enterobacteriaceae/isolation & purification , Adult , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/isolation & purification , Klebsiella pneumoniae/enzymology , Aged, 80 and over , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Escherichia coli/enzymology , Citrobacter freundii/genetics , Citrobacter freundii/drug effects , Citrobacter freundii/isolation & purification , Citrobacter freundii/enzymology , Drug Combinations , Azabicyclo Compounds/pharmacology , Drug Resistance, Multiple, Bacterial , Klebsiella oxytoca/drug effects , Klebsiella oxytoca/genetics , Klebsiella oxytoca/isolation & purification , Klebsiella oxytoca/enzymology , Ceftazidime/pharmacology , Enterobacter/genetics , Enterobacter/drug effects , Enterobacter/isolation & purification , Enterobacter/enzymology , Prospective Studies , Carbapenems/pharmacology , Enterobacteriaceae/drug effects , Enterobacteriaceae/genetics , Enterobacteriaceae/enzymology , Enterobacteriaceae/isolation & purification
10.
Appl Environ Microbiol ; 90(8): e0116524, 2024 08 21.
Article in English | MEDLINE | ID: mdl-39012101

ABSTRACT

Antibiotic resistance has emerged as a global threat to public health, generating a growing interest in investigating the presence of antibiotic-resistant bacteria in environments influenced by anthropogenic activities. Wastewater treatment plants in hospital serve as significant reservoirs of antimicrobial-resistant bacteria, where a favorable environment is established, promoting the proliferation and transfer of resistance genes among different bacterial species. In our study, we isolated a total of 243 strains from 5 hospital wastewater sites in Mexico, belonging to 21 distinct Gram-negative bacterial species. The presence of ß-lactamase was detected in 46.9% (114/243) of the isolates, which belonging to the Enterobacteriaceae family. We identified a total of 169 ß-lactamase genes; blaTEM in 33.1%, blaCTX-M in 25.4%, blaKPC in 25.4%, blaNDM 8.8%, blaSHV in 5.3%, and blaOXA-48 in 1.1% distributed in 12 different bacteria species. Among the 114 of the isolates, 50.8% were found to harbor at least one carbapenemase and were discharged into the environment. The carbapenemase blaKPC was found in six Citrobacter spp. and E. coli, while blaNDM was detected in two distinct Enterobacter spp. and E. coli. Notably, blaNDM-1 was identified in a 110 Kb IncFII conjugative plasmid in E. cloacae, E. xiangfangensis, and E. coli within the same hospital wastewater. In conclusion, hospital wastewater showed the presence of Enterobacteriaceae carrying a high frequency of carbapenemase blaKPC and blaNDM. We propose that hospital wastewater serves as reservoirs for resistance mechanism within bacterial communities and creates an optimal environment for the exchange of this resistance mechanism among different bacterial strains. IMPORTANCE: The significance of this study lies in its findings regarding the prevalence and diversity of antibiotic-resistant bacteria and genes identified in hospital wastewater in Mexico. The research underscores the urgent need for enhanced surveillance and prevention strategies to tackle the escalating challenge of antibiotic resistance, particularly evident through the elevated frequencies of carbapenemase genes such as blaKPC and blaNDM within the Enterobacteriaceae family. Moreover, the identification of these resistance genes on conjugative plasmids highlights the potential for widespread transmission via horizontal gene transfer. Understanding the mechanisms of antibiotic resistance in hospital wastewater is crucial for developing targeted interventions aimed at reducing transmission, thereby safeguarding public health and preserving the efficacy of antimicrobial therapies.


Subject(s)
Bacterial Proteins , Citrobacter , Enterobacter , Hospitals , Wastewater , beta-Lactamases , Wastewater/microbiology , beta-Lactamases/genetics , Bacterial Proteins/genetics , Citrobacter/genetics , Citrobacter/enzymology , Citrobacter/drug effects , Citrobacter/isolation & purification , Enterobacter/genetics , Enterobacter/drug effects , Enterobacter/isolation & purification , Enterobacter/enzymology , Anti-Bacterial Agents/pharmacology , Mexico
11.
J Glob Antimicrob Resist ; 38: 309-316, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39004343

ABSTRACT

OBJECTIVE: The aim of this study is to characterise the molecular characteristics of NDM-producing Enterobacterales, which have been on the increase in recent years in Japan, where IMP-producing bacteria are dominant among carbapenemase-producing Enterobacterales. METHODS: We collected 21 strains of NDM-producing Enterobacterales detected between 2015 and 2022 at five hospitals in Tokyo and performed illumina whole genome sequencing. For the seven selected strains, nanopore long-read sequencing was also performed to characterise the plasmids harbouring blaNDM. RESULTS: Fourteen strains were Escherichia coli and all carried blaNDM-5. Among these strains, eight and three were sequence type (ST) 410 and ST167, respectively, and both groups of strains were spread clonally in different hospitals. Two strains of Klebsiella pneumoniae ST147 carrying blaNDM-1 were detected in a hospital, and these strains had also spread clonally. The remainder included Enterobacter hormaechei, Klebsiella quasipneumoniae, Citrobacter amalonaticus, and Klebsiella michiganensis. Plasmid analysis revealed that an identical IncX3 plasmid harbouring blaNDM-5 was shared among four strains of different bacterial species (E. coli, C. amalonaticus, K. michiganensis, and E. hormaechei) detected at the same hospital. In addition, a Klebsiella quasipneumoniae strain detected at a different hospital also carried an IncX3 plasmid with a similar genetic structure. CONCLUSIONS: Nosocomial spread of multiple multidrug-resistant global clones and transmission of IncX3 plasmids harbouring blaNDM-5 among multiple species were detected as the major pathways of spread of NDM-producing Enterobacterales in Tokyo. Early detection of carriers and measures to prevent nosocomial spread are important to prevent further spread of NDM-producing organisms.


Subject(s)
Enterobacteriaceae Infections , Escherichia coli , Klebsiella pneumoniae , Plasmids , beta-Lactamases , Plasmids/genetics , beta-Lactamases/genetics , Humans , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/transmission , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Tokyo , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Whole Genome Sequencing , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Klebsiella/genetics , Klebsiella/drug effects , Klebsiella/enzymology , Enterobacter/genetics , Enterobacter/drug effects , Enterobacter/isolation & purification , Citrobacter/genetics , Citrobacter/drug effects , Drug Resistance, Multiple, Bacterial/genetics , Enterobacteriaceae/genetics , Enterobacteriaceae/drug effects , Enterobacteriaceae/enzymology , Enterobacteriaceae/isolation & purification
12.
Eur J Clin Microbiol Infect Dis ; 43(10): 2047-2051, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39046566

ABSTRACT

Carbapenem-resistance in Enterobacter spp due to acquisition of mobile carbapenemases is of concern. An Enterobacter spp grew on ChromID CARBA medium and was positive for the mCIM carbapenemase detection assay. Susceptibility testing showed resistance to aztreonam and reduced susceptibility to imipenem. Conventional PCR using FRI primers detected a blaFRI gene. Whole genome sequencing reveled a new variant; blaFRI-12 was closest in sequence to blaFRI-5 differing by 13 amino acids and was found on a unique 110Kb IncR plasmid. Given the intrinsic nature of Enterobacter spp. to be carbapenem non-susceptible, blaFRI-types may be under reported globally.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Enterobacter , Enterobacteriaceae Infections , beta-Lactamases , Humans , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , beta-Lactamases/genetics , Enterobacter/genetics , Enterobacter/enzymology , Enterobacter/drug effects , Enterobacter/isolation & purification , Enterobacteriaceae Infections/microbiology , Microbial Sensitivity Tests , Plasmids/genetics , Whole Genome Sequencing
13.
BMC Infect Dis ; 24(1): 711, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030479

ABSTRACT

BACKGROUND: Enterobacter cloacae complex (ECC) including different species are isolated from different human clinical samples. ECC is armed by many different virulence genes (VGs) and they were also classified among ESKAPE group by WHO recently. The present study was designed to find probable association between VGs and antibiotic susceptibility in different ECC species. METHODS: Forty-five Enterobacter isolates that were harvested from different clinical samples were classified in four different species. Seven VGs were screened by PCR technique and antibiotic susceptibility assessment was performed by disk-diffusion assay. RESULT: Four Enterobacter species; Enterobacter cloacae (33.3%), Enterobacter hormaechei (55.6%), Enterobacter kobei (6.7%) and Enterobacter roggenkampii (4.4%) were detected. Minimum antibiotic resistance was against carbapenem agents and amikacin even in MDR isolates. 33.3% and 13.3% of isolates were MDR and XDR respectively. The rpoS (97.8%) and csgD (11.1%) showed maximum and minimum frequency respectively. Blood sample isolated were highly virulent but less resistant in comparison to the other sample isolates. The csgA, csgD and iutA genes were associated with cefepime sensitivity. CONCLUSION: The fepA showed a predictory role for differentiating of E. hormaechei from other species. More evolved iron acquisition system in E. hormaechei was hypothesized. The fepA gene introduced as a suitable target for designing novel anti-virulence/antibiotic agents against E. hormaechei. Complementary studies on other VGs and ARGs and with bigger study population is recommended.


Subject(s)
Anti-Bacterial Agents , Enterobacter cloacae , Enterobacteriaceae Infections , Microbial Sensitivity Tests , Virulence Factors , Humans , Anti-Bacterial Agents/pharmacology , Enterobacter cloacae/genetics , Enterobacter cloacae/drug effects , Enterobacter cloacae/isolation & purification , Enterobacter cloacae/pathogenicity , Enterobacteriaceae Infections/microbiology , Virulence Factors/genetics , Virulence/genetics , Bacterial Proteins/genetics , Drug Resistance, Multiple, Bacterial/genetics , Enterobacter/genetics , Enterobacter/drug effects , Enterobacter/isolation & purification , Male , Female
14.
ACS Infect Dis ; 10(7): 2336-2355, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38866389

ABSTRACT

The misuse of antibiotics has led to the global spread of drug-resistant bacteria, especially multi-drug-resistant (MDR) ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species). These opportunistic bacteria pose a significant threat, in particular within hospitals, where they cause nosocomial infections, leading to substantial morbidity and mortality. To comprehensively explore ESKAPE pathogenesis, virulence, host immune response, diagnostics, and therapeutics, researchers increasingly rely on necessitate suitable animal infection models. However, no single model can fully replicate all aspects of infectious diseases. Notably when studying opportunistic pathogens in immunocompetent hosts, rapid clearance by the host immune system can limit the expression of characteristic disease symptoms. In this study, we examine the critical role of animal infection models in understanding ESKAPE pathogens, addressing limitations and research gaps. We discuss applications and highlight key considerations for effective models. Thoughtful decisions on disease replication, parameter monitoring, and data collection are crucial for model reliability. By meticulously replicating human diseases and addressing limitations, researchers maximize the potential of animal infection models. This aids in targeted therapeutic development, bridges knowledge gaps, and helps combat MDR ESKAPE pathogens, safeguarding public health.


Subject(s)
Disease Models, Animal , Drug Resistance, Multiple, Bacterial , Animals , Humans , Enterococcus faecium/drug effects , Enterococcus faecium/physiology , Pseudomonas aeruginosa/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Klebsiella pneumoniae/drug effects , Acinetobacter baumannii/drug effects , Cross Infection/microbiology , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Enterobacter/drug effects , Bacterial Infections/microbiology
15.
Indian J Med Microbiol ; 50: 100647, 2024.
Article in English | MEDLINE | ID: mdl-38871082

ABSTRACT

INTRODUCTION: Bloodstream infections (BSI) due to ESKAPEEc pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanni, Pseudomonas aeruginosa, Enterobacter spp. and Escherichia coli), cause significant mobility and mortality worldwide and are among the most common healthcare associated infections. Rising rates of antimicrobial resistance (AMR) in India are alarming, because of the high infection rates and poor control of antibiotic use. This single-centre, retrospective study was undertaken to identify the patterns of distribution and antimicrobial resistance of ESKAPEEc pathogens in bloodstream infections. METHODOLOGY: Blood samples from patients with suspected BSI were cultured and antimicrobial susceptibility testing was performed on automated systems (BD Bactec Fx/BactAlert 3D and Vitek2). The microbiological data on bacterial BSI was retrieved from the laboratory records and antimicrobial resistance profiles were analysed. RESULTS: 10.7% of the blood culture samples showed bacterial growth during the study period (adult > paediatric and intensive care unit (ICU) > ward > outpatient department (OPD)). E. coli (24%) and K. pneumoniae (20.5%) were the predominant species isolated, followed by S. aureus (9.5%) and A. baumanni (9%). High rates of resistance to third generation cephalosporins, ß-lactam-ß-lactamase inhibitor combinations (BL-BLI) and carbapenems was observed, in Gram-negative isolates, especially from ICU patients. Methicillin-resistant S. aureus (MRSA) isolates increased from 67% to 88% over the five-year period. Vancomycin-resistance among Enterococcus isolates also escalated to 40% in 2022 with 11% linezolid resistance. CONCLUSION: The study revealed that more than 77% of bloodstream infections were caused by ESKAPEEc pathogens, with high rates of resistance to most antimicrobials. This reinforces the importance of monitoring the frequency of bacteria and antibiograms in individual treatment and hospital infection control programs.


Subject(s)
Anti-Bacterial Agents , Bacteremia , Microbial Sensitivity Tests , Tertiary Care Centers , Humans , India/epidemiology , Retrospective Studies , Bacteremia/microbiology , Bacteremia/epidemiology , Bacteremia/drug therapy , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Adult , Drug Resistance, Bacterial , Enterococcus faecium/drug effects , Enterococcus faecium/isolation & purification , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Staphylococcus aureus/drug effects , Enterobacter/drug effects , Enterobacter/isolation & purification , Female , Male , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/isolation & purification , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/isolation & purification , Child
16.
Genes (Basel) ; 15(6)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38927749

ABSTRACT

BACKGROUND: Currently, the Enterobacteriaceae species are responsible for a variety of serious infections and are already considered a global public health problem, especially in underdeveloped countries, where surveillance and monitoring programs are still scarce and limited. Analyses were performed on the complete genome of an extensively antibiotic-resistant strain of Enterobater hormaechei, which was isolated from a patient with non-Hodgkin's lymphoma, who had been admitted to a hospital in the city of Manaus, Brazil. METHODS: Phenotypical identification and susceptibility tests were performed in automated equipment. Total DNA extraction was performed using the PureLink genomic DNA mini-Kit. The genomic DNA library was prepared with Illumina Microbial Amplicon Prep and sequenced in the MiSeq Illumina Platform. The assembly of the whole-genome and individual analyses of specific resistance genes extracted were carried out using online tools and the Geneious Prime software. RESULTS: The analyses identified an extensively resistant ST90 clone of E. hormaechei carrying different genes, including blaCTX-M-15, blaGES-2, blaTEM-1A, blaACT-15, blaOXA-1 and blaNDM-1, [aac(3)-IIa, aac(6')-Ian, ant(2″)-Ia], [aac(6')-Ib-cr, (qnrB1)], dfrA25, sul1 and sul2, catB3, fosA, and qnrB, in addition to resistance to chlorhexidine, which is widely used in patient antisepsis. CONCLUSIONS: These findings highlight the need for actions to control and monitor these pathogens in the hospital environment.


Subject(s)
Drug Resistance, Multiple, Bacterial , Enterobacter , Genome, Bacterial , Lymphoma, Non-Hodgkin , Whole Genome Sequencing , Humans , Enterobacter/genetics , Enterobacter/drug effects , Enterobacter/isolation & purification , Lymphoma, Non-Hodgkin/genetics , Lymphoma, Non-Hodgkin/microbiology , Lymphoma, Non-Hodgkin/drug therapy , Drug Resistance, Multiple, Bacterial/genetics , Whole Genome Sequencing/methods , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/drug therapy , Enterobacteriaceae Infections/genetics , Microbial Sensitivity Tests , Brazil
17.
J Antimicrob Chemother ; 79(7): 1569-1576, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38742708

ABSTRACT

BACKGROUND: The aac(6')-Im (aacA16) amikacin, netilmicin and tobramycin resistance gene cassette had been circulating globally undetected for many years in a sublineage of Acinetobacter baumannii global clone 2. OBJECTIVES: To identify sources for the aac(6')-Im fragment found in A. baumannii. METHODS: MinION long-read sequencing and Unicycler hybrid assemblies were used to determine the genetic context of the aac(6')-Im gene. Quantitative reverse transcriptase PCR was used to measure expression. RESULTS: Among >60 000 non-Acinetobacter draft genomes in the MRSN collection, the aac(6')-Im gene was detected in Pseudomonas putida and Enterobacter hormaechei isolates recovered from patients in Thailand between 2016 and 2019. Genomes of multiply resistant P. putida MRSN365855 and E. hormaechei MRSN791417 were completed. The class 1 integron containing the aac(6')-Im cassette was in the chromosome in MRSN365855, and in an HI2 plasmid in MRSN791417. However, MRSN791417 was amikacin susceptible and the gene was not expressed due to loss of the Pc promoter of the integron. Further examples of aac(6')-Im in plasmids from or the chromosome of various Gram-negative species were found in the GenBank nucleotide database. The aac(6')-Im context in integrons in pMRSN791417-8 and a Klebsiella plasmid pAMR200031 shared similarities with the aac(6')-Im region of AbGRI2-Im islands in A. baumannii. In other cases, the cassette array including the aac(6')-Im cassette was different. CONCLUSIONS: The aac(6')-Im gene is widespread, being found so far in several different species and in several different gene cassette arrays. The lack of amikacin resistance in E. hormaechei highlights the importance of correlating resistance gene content and antibiotic resistance phenotype.


Subject(s)
Acinetobacter baumannii , Aminoglycosides , Anti-Bacterial Agents , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Acinetobacter baumannii/genetics , Acinetobacter baumannii/drug effects , Humans , Aminoglycosides/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Thailand , Integrons/genetics , Plasmids/genetics , Amikacin/pharmacology , Enterobacter/genetics , Enterobacter/drug effects , Bacterial Proteins/genetics , Tobramycin/pharmacology , Acetyltransferases/genetics , Genome, Bacterial
18.
BMC Plant Biol ; 24(1): 474, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38811913

ABSTRACT

BACKGROUND: The biosynthesis of zinc oxide nanoparticles (ZnO NPs) using Enterobacter sp. and the evaluation of their antimicrobial and copper stress (Cu+ 2)-reducing capabilities in Vicia faba (L.) plants. The green-synthesized ZnO NPs were validated using X-ray powder diffraction (XRD); Fourier transformed infrared (FTIR), Ultraviolet-Visible spectroscopy (UV-Vis), Transmission electron microscope (TEM) and scanning electron microscopy (SEM) techniques. ZnO NPs could serve as an improved bactericidal agent for various biological applications. as well as these nanoparticles used in alleviating the hazardous effects of copper stress on the morphological and physiological traits of 21-day-old Vicia faba (L.) plants. RESULTS: The results revealed that different concentrations of ZnO NPs (250, 500, or 1000 mg L-1) significantly alleviated the toxic effects of copper stress (100 mM CuSO4) and increased the growth parameters, photosynthetic efficiency (Fv/Fm), and pigments (Chlorophyll a and b) contents in Cu-stressed Vicia faba (L.) seedlings. Furthermore, applying high concentration of ZnO NPs (1000 mg L-1) was the best dose in maintaining the levels of antioxidant enzymes (CAT, SOD, and POX), total soluble carbohydrates, total soluble proteins, phenolic and flavonoid in all Cu-stressed Vicia faba (L.) seedlings. Additionally, contents of Malondialdehyde (MDA) and hydrogen peroxide (H2O2) were significantly suppressed in response to high concentrations of ZnO NPs (1000 mg L-1) in all Cu-stressed Vicia faba (L.) seedlings. Also, it demonstrates strong antibacterial action (0.9 mg/ml) against various pathogenic microorganisms. CONCLUSIONS: The ZnO NPs produced in this study demonstrated the potential to enhance plant detoxification and tolerance mechanisms, enabling plants to better cope with environmental stress. Furthermore, these nanoparticles could serve as an improved bactericidal agent for various biological applications.


Subject(s)
Copper , Enterobacter , Metal Nanoparticles , Vicia faba , Zinc Oxide , Vicia faba/drug effects , Vicia faba/metabolism , Zinc Oxide/pharmacology , Enterobacter/drug effects , Enterobacter/metabolism , Metal Nanoparticles/chemistry , Green Chemistry Technology , Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Stress, Physiological/drug effects , Antioxidants/metabolism , Seedlings/drug effects
19.
J Hazard Mater ; 473: 134662, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38788574

ABSTRACT

Sediment cadmium contamination poses risks to aquatic ecosystems. Phytoremediation is an environmentally sustainable method to mitigate cadmium contamination. Submerged macrophytes are affected by cadmium stress, but plant growth-promoting rhizobacteria (PGPR) can restore the health status of submerged macrophytes. Herein, we aimed to reduce sediment cadmium concentration and reveal the mechanism by which the combined application of the PGPR Enterobacter ludwigii and the submerged macrophyte Vallisneria natans mitigates cadmium contamination. Sediment cadmium concentration decreased by 21.59% after submerged macrophytes were planted with PGPR, probably because the PGPR colonized the rhizosphere and roots of the macrophytes. The PGPR induced a 5.09-fold increase in submerged macrophyte biomass and enhanced plant antioxidant response to cadmium stress, as demonstrated by decreases in oxidative product levels (reactive oxygen species and malondialdehyde), which corresponded to shift in rhizosphere metabolism, notably in antioxidant defence systems (i.e., the peroxidation of linoleic acid into 9-hydroperoxy-10E,12Z-octadecadienoic acid) and in some amino acid metabolism pathways (i.e., arginine and proline). Additionally, PGPR mineralized carbon in the sediment to promote submerged macrophyte growth. Overall, PGPR mitigated sediment cadmium accumulation via a synergistic plantmicrobe mechanism. This work revealed the mechanism by which PGPR and submerged macrophytes control cadmium concentration in contaminated sediment.


Subject(s)
Biodegradation, Environmental , Cadmium , Enterobacter , Geologic Sediments , Water Pollutants, Chemical , Cadmium/toxicity , Cadmium/metabolism , Enterobacter/metabolism , Enterobacter/growth & development , Enterobacter/drug effects , Geologic Sediments/microbiology , Geologic Sediments/chemistry , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/toxicity , Rhizosphere , Hydrocharitaceae/metabolism , Hydrocharitaceae/microbiology , Hydrocharitaceae/growth & development , Plant Roots/metabolism , Plant Roots/microbiology , Plant Roots/drug effects , Plant Roots/growth & development , Biomass
20.
BMC Microbiol ; 24(1): 136, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658819

ABSTRACT

OBJECTIVES: In the recent years, multidrug resistant (MDR) neonatal septicemia-causing Enterobacterales has been dramatically increased due to the extended-spectrum beta-lactamases (ESBLs) and AmpC enzymes. This study aimed to assess the antibiotic resistance pattern, prevalence of ESBLs/AmpC beta-lactamase genes, and Enterobacterial Repetitive Intergenic Consensus Polymerase Chain Reaction (ERIC-PCR) fingerprints in Enterobacterales isolated from neonatal sepsis. RESULTS: In total, 59 Enterobacterales isolates including 41 (69.5%) Enterobacter species, 15 (25.4%) Klebsiella pneumoniae and 3 (5.1%) Escherichia coli were isolated respectively. Resistance to ceftazidime and cefotaxime was seen in all of isolates. Furthermore, all of them were multidrug-resistant (resistant to three different antibiotic categories). The phenotypic tests showed that 100% of isolates were ESBL-positive. Moreover, AmpC production was observed in 84.7% (n = 50/59) of isolates. Among 59 ESBL-positive isolates, the highest percentage belonged to blaCTX-M-15 gene (66.1%) followed by blaCTX-M (45.8%), blaCTX-M-14 (30.5%), blaSHV (28.8%), and blaTEM (13.6%). The frequency of blaDHA, blaEBC, blaMOX and blaCIT genes were 24%, 24%, 4%, and 2% respectively. ERIC-PCR analysis revealed that Enterobacterales isolates were genetically diverse. The remarkable prevalence of MDR Enterobacterales isolates carrying ESBL and AmpC beta-lactamase genes emphasizes that efficient surveillance measures are essential to avoid the more expansion of drug resistance amongst isolates.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Drug Resistance, Multiple, Bacterial , Enterobacteriaceae Infections , Microbial Sensitivity Tests , Neonatal Sepsis , beta-Lactamases , beta-Lactamases/genetics , Humans , Iran/epidemiology , Infant, Newborn , Drug Resistance, Multiple, Bacterial/genetics , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/epidemiology , Anti-Bacterial Agents/pharmacology , Prevalence , Bacterial Proteins/genetics , Neonatal Sepsis/microbiology , Neonatal Sepsis/epidemiology , Enterobacteriaceae/genetics , Enterobacteriaceae/drug effects , Enterobacteriaceae/enzymology , Enterobacteriaceae/isolation & purification , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Klebsiella pneumoniae/enzymology , Enterobacter/genetics , Enterobacter/drug effects , Enterobacter/isolation & purification , Enterobacter/enzymology , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL