Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 762
Filter
1.
Clin Lab ; 70(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38868883

ABSTRACT

BACKGROUND: Antibiotic resistance is a major problem threatening human beings. The genetic determinants that carry resistance genes can be transmitted in several ways in clinical and food environments. Hence, this research study aimed to investigate the presence of New Delhi metallo-beta-lactamase-1 (blaNDM-1) produced by enterotoxigenic Enterobacter cloacae in both clinical and food samples. METHODS AND RESULTS: Twenty-four isolates of Enterobacter spp. were isolated, seven isolates from food samples and 17 isolates from blood taken from neonates and children (1 day - 10 years old) resident in a children's hospital. Antibiotic susceptibility test to 14 antibiotics was performed for all isolates. Enterotoxigenicity of the clinical and foodborne isolates was detected phenotypically using Suckling mouse bioassay. Genomic deoxyribonucleic acid (DNA) was extracted from the isolated Enterobacter spp. that were detected resistant to imipenem. Polymerase chain reaction (PCR) was used to amplify blaNDM-1 gene followed by sequencing. The results of the bioassay revealed that 64.28% of E. cloacae ssp. cloacae isolates were enterotoxigenic. Two E. cloacae ssp. cloacae were imipenem resistant. CONCLUSIONS: This study showed that one isolate from a male child 1 < year was bla NDM-1 positive that was con-firmed by sequencing. This is the first report that revealed blaNDM-1 producing Enterobacter cloacae in Iraq.


Subject(s)
Anti-Bacterial Agents , Enterobacter cloacae , Enterobacteriaceae Infections , Microbial Sensitivity Tests , beta-Lactamases , beta-Lactamases/genetics , Enterobacter cloacae/genetics , Enterobacter cloacae/isolation & purification , Enterobacter cloacae/drug effects , Enterobacter cloacae/enzymology , Humans , Infant , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/diagnosis , Child , Child, Preschool , Anti-Bacterial Agents/pharmacology , Animals , Infant, Newborn , Iraq , Food Microbiology , Mice
2.
J Microorg Control ; 29(2): 81-89, 2024.
Article in English | MEDLINE | ID: mdl-38880620

ABSTRACT

Although recent propagation of carbapenemase-producing Enterobacterales (CPE) has become a problem worldwide, the picture of CPE infection in Japan has not fully been elucidated. In this study, we examined clinical and microbiological characteristics of invasive CPE infection occurring at 8 hospitals in Minami Ibaraki Area between July 2001 to June 2017. Of 7294 Enterobacterales strains isolated from independent cases of bacteremia and/or meningitis, 10 (0.14%) were CPE (8 Enterobacter cloacae-complex, 1 Escherichia coli, and 1 Edwardsiella tarda), all of which had the blaIMP-1 gene and susceptible to gentamicin and trimethoprim/sulfamethoxazole. These strains were isolated from 7 adult and 2 infant bacteremia (1 infant patient developed CPE bacteremia twice) after 2007. The most common portal of entry was intravenous catheters. All of the adult patients were recovered, while the infant patients eventually died. Genomic analyses showed that the 8 E. cloacae-complex strains were classified into 5 groups, each of which was exclusively detected in specific facilities at intervals of up to 3 years, suggesting persistent colonization in the facilities. This study showed that invasive CPE infection in the area was rare, caused by IMP-1-type CPE having susceptibility to various antibiotics, and nonfatal among adult patients.


Subject(s)
Anti-Bacterial Agents , Bacteremia , Bacterial Proteins , Enterobacteriaceae Infections , Microbial Sensitivity Tests , beta-Lactamases , Humans , Japan/epidemiology , Bacteremia/microbiology , Bacteremia/drug therapy , Bacteremia/epidemiology , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/epidemiology , Enterobacteriaceae Infections/drug therapy , beta-Lactamases/genetics , beta-Lactamases/metabolism , Male , Female , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Infant , Middle Aged , Adult , Aged , Enterobacter cloacae/genetics , Enterobacter cloacae/drug effects , Enterobacter cloacae/isolation & purification , Gentamicins/pharmacology , Gentamicins/therapeutic use , Trimethoprim, Sulfamethoxazole Drug Combination/therapeutic use , Trimethoprim, Sulfamethoxazole Drug Combination/pharmacology , Aged, 80 and over , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/isolation & purification
3.
Front Biosci (Elite Ed) ; 16(2): 15, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38939914

ABSTRACT

BACKGROUND: Fall armyworm (Spodoptera frugiperda) is a highly destructive maize pest that significantly threatens agricultural productivity. Existing control methods, such as chemical insecticides and entomopathogens, lack effectiveness, necessitating alternative approaches. METHODS: Gut-associated bacteria were isolated from the gut samples of fall armyworm and screened based on their chitinase and protease-producing ability before characterization through 16S rRNA gene sequence analysis. The efficient chitinase-producing Bacillus licheniformis FGE4 and Enterobacter cloacae FGE18 were chosen to test the biocontrol efficacy. As their respective cell suspensions and extracted crude chitinase enzyme, these two isolates were applied topically on the larvae, supplemented with their feed, and analyzed for their quantitative food use efficiency and survivability. RESULTS: Twenty-one high chitinase and protease-producing bacterial isolates were chosen. Five genera were identified by 16S rRNA gene sequencing: Enterobacter, Enterococcus, Bacillus, Pantoea, and Kocuria. In the biocontrol efficacy test, the consumption index and relative growth rate were lowered in larvae treated with Enterobacter cloacae FGE18 by topical application and feed supplementation. Similarly, topical treatment of Bacillus licheniformis FGE4 to larvae decreased consumption index, relative growth rate, conversion efficiency of ingested food, and digested food values. CONCLUSION: The presence of gut bacteria with high chitinase activity negatively affects insect health. Utilizing gut-derived bacterial isolates with specific insecticidal traits offers a promising avenue to control fall armyworms. This research suggests a potential strategy for future pest management.


Subject(s)
Chitinases , Spodoptera , Animals , Spodoptera/microbiology , Chitinases/metabolism , Chitinases/genetics , RNA, Ribosomal, 16S/genetics , Bacteria/enzymology , Bacillus licheniformis/genetics , Bacillus licheniformis/enzymology , Enterobacter cloacae/genetics , Enterobacter cloacae/enzymology , Larva/microbiology , Pest Control, Biological/methods , Gastrointestinal Tract/microbiology
4.
Virulence ; 15(1): 2367652, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38912723

ABSTRACT

ß-N-acetylglucosaminidase (NagZ), a cytosolic glucosaminidase, plays a pivotal role in peptidoglycan recycling. Previous research demonstrated that NagZ knockout significantly eradicated AmpC-dependent ß-lactam resistance in Enterobacter cloacae. However, NagZ's role in the virulence of E. cloacae remains unclear. Our study, incorporating data on mouse and Galleria mellonella larval mortality rates, inflammation markers, and histopathological examinations, revealed a substantial reduction in the virulence of E. cloacae following NagZ knockout. Transcriptome sequencing uncovered differential gene expression between NagZ knockout and wild-type strains, particularly in nucleotide metabolism pathways. Further investigation demonstrated that NagZ deletion led to a significant increase in cyclic diguanosine monophosphate (c-di-GMP) levels. Additionally, transcriptome sequencing and RT-qPCR confirmed significant differences in the expression of ECL_03795, a gene with an unknown function but speculated to be involved in c-di-GMP metabolism due to its EAL domain known for phosphodiesterase activity. Interestingly, in ECL_03795 knockout strains, a notable reduction in the virulence was observed, and virulence was rescued upon complementation with ECL_03795. Consequently, our study suggests that NagZ's function on virulence is partially mediated through the ECL_03795→c-di-GMP pathway, providing insight into the development of novel therapies and strongly supporting the interest in creating highly efficient NagZ inhibitors.


Subject(s)
Enterobacter cloacae , Animals , Virulence , Mice , Enterobacter cloacae/genetics , Enterobacter cloacae/pathogenicity , Enterobacter cloacae/drug effects , Larva/microbiology , Moths/microbiology , Acetylglucosaminidase/genetics , Acetylglucosaminidase/metabolism , Cyclic GMP/metabolism , Cyclic GMP/analogs & derivatives , Enterobacteriaceae Infections/microbiology , Virulence Factors/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Female , Gene Expression Regulation, Bacterial , Gene Knockout Techniques
5.
Virology ; 595: 110100, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38714025

ABSTRACT

Enterobacter cloacae is a clinically significant pathogen due to its multi-resistance to antibiotics, presenting a challenge in the treatment of infections. As concerns over antibiotic resistance escalate, novel therapeutic approaches have been explored. Bacteriophages, characterized by their remarkable specificity and ability to self-replicate within target bacteria, are emerging as a promising alternative therapy. In this study, we isolated and partially characterized nine lytic bacteriophages targeting E. cloacae, with two selected for comprehensive genomic analysis based on their host range and bacteriolytic activity. All identified phages exhibited a narrow host range, demonstrated stability within a temperature range of 30-60 °C, displayed pH tolerance from 3 to 10, and showed an excellent bacteriolytic capacity for up to 18 h. Notably, the fully characterized phage genomes revealed an absence of lysogenic, virulence, or antibiotic-resistance genes, positioning them as promising candidates for therapeutic intervention against E. cloacae-related diseases. Nonetheless, translating this knowledge into practical therapeutic applications mandates a deeper understanding of bacteriophage interactions within complex biological environments.


Subject(s)
Bacteriophages , Enterobacter cloacae , Genome, Viral , Genomics , Host Specificity , Enterobacter cloacae/virology , Enterobacter cloacae/genetics , Bacteriophages/genetics , Bacteriophages/physiology , Bacteriophages/classification , Bacteriophages/isolation & purification , Phage Therapy , Enterobacteriaceae Infections/microbiology , Bacteriolysis
6.
Nat Commun ; 15(1): 3947, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38729951

ABSTRACT

Gram-negative bacteria (GNB) are a major cause of neonatal sepsis in low- and middle-income countries (LMICs). Although the World Health Organization (WHO) reports that over 80% of these sepsis deaths could be prevented through improved treatment, the efficacy of the currently recommended first- and second-line treatment regimens for this condition is increasingly affected by high rates of drug resistance. Here we assess three well known antibiotics, fosfomycin, flomoxef and amikacin, in combination as potential antibiotic treatment regimens by investigating the drug resistance and genetic profiles of commonly isolated GNB causing neonatal sepsis in LMICs. The five most prevalent bacterial isolates in the NeoOBS study (NCT03721302) are Klebsiella pneumoniae, Acinetobacter baumannii, E. coli, Serratia marcescens and Enterobacter cloacae complex. Among these isolates, high levels of ESBL and carbapenemase encoding genes are detected along with resistance to ampicillin, gentamicin and cefotaxime, the current WHO recommended empiric regimens. The three new combinations show excellent in vitro activity against ESBL-producing K. pneumoniae and E. coli isolates. Our data should further inform and support the clinical evaluation of these three antibiotic combinations for the treatment of neonatal sepsis in areas with high rates of multidrug-resistant Gram-negative bacteria.


Subject(s)
Acinetobacter baumannii , Anti-Bacterial Agents , Gram-Negative Bacteria , Gram-Negative Bacterial Infections , Klebsiella pneumoniae , Microbial Sensitivity Tests , Neonatal Sepsis , Humans , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Neonatal Sepsis/microbiology , Neonatal Sepsis/drug therapy , Infant, Newborn , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/genetics , Gram-Negative Bacteria/isolation & purification , Gram-Negative Bacterial Infections/drug therapy , Gram-Negative Bacterial Infections/microbiology , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/isolation & purification , Acinetobacter baumannii/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Klebsiella pneumoniae/genetics , Amikacin/pharmacology , Amikacin/therapeutic use , Fosfomycin/pharmacology , Fosfomycin/therapeutic use , beta-Lactamases/genetics , beta-Lactamases/metabolism , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli/isolation & purification , Developing Countries , Drug Resistance, Multiple, Bacterial/genetics , Drug Therapy, Combination , Serratia marcescens/drug effects , Serratia marcescens/genetics , Serratia marcescens/isolation & purification , Enterobacter cloacae/drug effects , Enterobacter cloacae/genetics , Enterobacter cloacae/isolation & purification , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
8.
J Glob Antimicrob Resist ; 37: 225-232, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38750896

ABSTRACT

OBJECTIVES: Polymyxins are currently the last-resort treatment against multi-drug resistant Gram-negative bacterial infections, but plasmid-mediated mobile polymyxin resistance genes (mcr) threaten its efficacy, especially in carbapenem-resistant Enterobacter cloacae complex (CRECC). The objective of this study was to provide insights into the mechanism of polymyxin-induced bacterial resistance and the effect of overexpression of mcr-9. METHODS: The clinical strain CRECC414 carrying the mcr-9 gene was treated with a gradient concentration of polymyxin. Subsequently, the broth microdilution was used to determine the minimum inhibitory concentration (MIC) and RT-qPCR was utilized to assess mcr-9 expression. Transcriptome sequencing and whole genome sequencing (WGS) was utilized to identify alterations in strains resulting from increased polymyxin resistance, and significant transcriptomic differences were analysed alongside a comprehensive examination of metabolic networks at the genomic level. RESULTS: Polymyxin treatment induced the upregulation of mcr-9 expression and significantly elevated the MIC of the strain. Furthermore, the WGS and transcriptomic results revealed a remarkable up-regulation of arnBCADTEF gene cassette, indicating that the Arn/PhoPQ system-mediated L-Ara4N modification is the preferred mechanism for achieving high levels of resistance. Additionally, significant alterations in bacterial gene expression were observed with regards to multidrug efflux pumps, oxidative stress and repair mechanisms, cell membrane biosynthesis, as well as carbohydrate metabolic pathways. CONCLUSION: Polymyxin greatly disrupts the transcription of vital cellular pathways. A complete PhoPQ two-component system is a prerequisite for polymyxin resistance of Enterobacter cloacae, even though mcr-9 is highly expressed. These findings provide novel and important information for further investigation of polymyxin resistance of CRECC.


Subject(s)
Anti-Bacterial Agents , Carbapenem-Resistant Enterobacteriaceae , Enterobacter cloacae , Gene Expression Profiling , Microbial Sensitivity Tests , Polymyxins , Polymyxins/pharmacology , Anti-Bacterial Agents/pharmacology , Enterobacter cloacae/drug effects , Enterobacter cloacae/genetics , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/drug effects , Carbapenem-Resistant Enterobacteriaceae/isolation & purification , Humans , Bacterial Proteins/genetics , Whole Genome Sequencing , Gene Expression Regulation, Bacterial/drug effects , Enterobacteriaceae Infections/microbiology , Carbapenems/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Transcriptome
9.
Curr Microbiol ; 81(6): 158, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658428

ABSTRACT

Enterobacter cloacae complex (ECC) widely exists in the hospital environment and is one of the important conditional pathogens of hospital-acquired infection. To investigate the distribution of integrons and carbapenem-resistant genes in clinical ECC, 70 isolates of ECC from non-sputum specimens were collected. Class 1 and class 2 integron integrase gene intI1 and intI2, as well as common carbapenem-resistant genes, blaKPC, blaVIM, blaIMP, blaNDM, blaGES, and blaOXA-23, were screened. Gene cassette arrays and common promoters of class 1 integron together with subtypes of carbapenem-resistant genes were determined by sequencing. Resistant rates to commonly used antimicrobial agents between class 1 integron-positive and integron-negative ECC isolates were analyzed. The whole-genome of blaNDM-7 harboring Enterobacter hormaechei was sequenced and the sequence around blaNDM-7 was analyzed. Twenty isolates were positive for intI1. Nineteen different antimicrobial-resistant gene cassettes and 11 different gene cassette arrays, including aadA22-lnuF, were detected in this study. Common promoters of class 1 integron PcH1, PcW, PcW-P2, and PcH2 were detected in 12, 4, 3, and 1 isolates, respectively. The rates of antimicrobial resistance of intI1-positive isolates were higher than those of intI1-negative isolates to clinical commonly used antimicrobial agents. Carbapenem-resistant genes blaKPC-2, blaNDM-1, blaNDM-2, and blaNDM-7 were detected in 2, 1, 1, and 1 isolates, respectively. blaNDM-7 was located between bleMBL and IS5. To the best of our knowledge, this study reported for the first time of blaNDM-7 in ECC isolate in China.


Subject(s)
Anti-Bacterial Agents , Carbapenems , Enterobacter cloacae , Enterobacteriaceae Infections , Integrons , Integrons/genetics , Carbapenems/pharmacology , Anti-Bacterial Agents/pharmacology , Enterobacteriaceae Infections/microbiology , Enterobacter cloacae/genetics , Enterobacter cloacae/drug effects , Enterobacter cloacae/isolation & purification , Humans , beta-Lactamases/genetics , Microbial Sensitivity Tests , Bacterial Proteins/genetics , China
10.
mSphere ; 9(5): e0006024, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38647313

ABSTRACT

Enterobacter cloacae is an emerging pathogen isolated in healthcare-associated infections. A major virulence factor of this bacterium is the type VI secretion system (T6SS). The genome of E. cloacae harbors two T6SS gene clusters (T6SS-1 and T6SS-2), and the functional characterization of both systems showed that these two T6SSs are not expressed under the same conditions. Here, we report that the major histone-like protein HU positively regulates the expression of both T6SSs and, therefore, the function that each T6SS exerts in E. cloacae. Single deletions of the genes encoding the HU subunits (hupA and hupB) decreased mRNA levels of both T6SS. In contrast, the hupA hupB double mutant dramatically affected the T6SS expression, diminishing its transcription. The direct binding of HU to the promoter regions of T6SS-1 and T6SS-2 was confirmed by electrophoretic mobility shift assay. In addition, single and double mutations in the hup genes affected the ability of inter-bacterial killing, biofilm formation, adherence to epithelial cells, and intestinal colonization, but these phenotypes were restored when such mutants were trans-complemented. Our data broaden our understanding of the regulation of HU-mediated T6SS in these pathogenic bacteria. IMPORTANCE: T6SS is a nanomachine that functions as a weapon of bacterial destruction crucial for successful colonization in a specific niche. Enterobacter cloacae expresses two T6SSs required for bacterial competition, adherence, biofilm formation, and intestinal colonization. Expression of T6SS genes in pathogenic bacteria is controlled by multiple regulatory systems, including two-component systems, global regulators, and nucleoid proteins. Here, we reported that the HU nucleoid protein directly activates both T6SSs in E. cloacae, affecting the T6SS-related phenotypes. Our data describe HU as a new regulator involved in the transcriptional regulation of T6SS and its impact on E. cloacae pathogenesis.


Subject(s)
Bacterial Proteins , DNA-Binding Proteins , Enterobacter cloacae , Gene Expression Regulation, Bacterial , Type VI Secretion Systems , Enterobacter cloacae/genetics , Enterobacter cloacae/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Type VI Secretion Systems/genetics , Type VI Secretion Systems/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Promoter Regions, Genetic , Multigene Family
11.
Microbiol Spectr ; 12(6): e0431223, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38687068

ABSTRACT

Accurate species-level identification of Enterobacter cloacae complex (ECC) is crucial for related research. The classification of ECC is based on strain-to-strain phylogenetic congruence, as well as genomic features including average nucleotide identity (ANI) and digitalized DNA-DNA hybridization (dDDH). ANI and dDDH derived from whole-genome sequencing have emerged as a reliable metric for assessing genetic relatedness between genomes and are increasingly recognized as a standard for species delimitation. Up to now, there are two different classification methods for ECC. The first one categorizes E. hormaechei, a species within ECC, into five subspecies (E. hormaechei subsp. steigerwaltii, subsp. oharae, subsp. xiangfangensis, subsp. hoffmannii, and subsp. hormaechei). The second classifies E. hormaechei as three species: E. hormaechei, "E. xiangfangensis," "E. hoffmanii." While the former is well-accepted in the academic area, the latter may have a greater ability to distinguish different species of ECC. To assess the suitability of these identification criteria for clinical ECC isolates, we conducted a comprehensive analysis involving phylogenetic analysis, ANI and dDDH value alignment, virulence gene identification, and capsule typing on 256 clinical ECC strains isolated from the bloodstream. Our findings indicated that the method of categorizing E. hormaechei into five subspecies has better correlation and consistency with the molecular characteristics of clinical ECC isolates, as evidenced by phylogenetic analysis, virulence genes, and capsule typing. Therefore, the subspecies-based classification method appears more suitable for taxonomic assignments of clinical ECC isolates. IMPORTANCE: Standardizing taxonomy of the Enterobacter cloacae complex (ECC) is necessary for data integration across diverse studies. The study utilized whole-genome data to accurately identify 256 clinical ECC isolated from bloodstream infections using average nucleotide identity (ANI), digitalized DNA-DNA hybridization (dDDH), and phylogenetic analysis. Through comprehensive assessments including phylogenetic analysis, ANI and dDDH comparisons, virulence gene, and capsule typing of the 256 clinical isolates, it was concluded that the classification method based on subspecies exhibited better correlation and consistency with the molecular characteristics of clinical ECC isolates. In summary, this research contributes to the precise identification of clinical ECC at the species level and expands our understanding of ECC.


Subject(s)
Enterobacter cloacae , Enterobacteriaceae Infections , Genome, Bacterial , Phylogeny , Enterobacter cloacae/genetics , Enterobacter cloacae/classification , Enterobacter cloacae/isolation & purification , Humans , Enterobacteriaceae Infections/microbiology , Whole Genome Sequencing , Nucleic Acid Hybridization , DNA, Bacterial/genetics , Bacterial Typing Techniques/methods
12.
Antimicrob Agents Chemother ; 68(5): e0167223, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38517188

ABSTRACT

Carbapenemase-producing Enterobacterales (CPEs) are one of the top priority antimicrobial-resistant pathogens. Among CPEs, those producing acquired metallo-ß-lactamases (MBLs) are considered particularly problematic as few agents are active against them. Imipenemase (IMP) is the most frequently encountered acquired MBL in Japan, but comprehensive assessment of clinical and microbiological features of IMP-producing Enterobacterales infection remains scarce. Here, we retrospectively evaluated 62 patients who were hospitalized at a university hospital in Japan and had IMP-producing Enterobacterales from a clinical culture. The isolates were either Enterobacter cloacae complex or Klebsiella pneumoniae, and most of them were isolated from sputum. The majority of K. pneumoniae, but not E. cloacae complex isolates, were susceptible to aztreonam. Sequence type (ST) 78 and ST517 were prevalent for E. cloacae complex and K. pneumoniae, respectively, and all isolates carried blaIMP-1. Twenty-four of the patients were deemed infected with IMP-producing Enterobacterales. Among the infected patients, therapy varied and largely consisted of conventional ß-lactam agents, fluoroquinolones, or combinations. Three (13%), five (21%), and nine (38%) of them died by days 14, 30, and 90, respectively. While incremental mortality over 90 days was observed in association with underlying comorbidities, active conventional treatment options were available for most patients with IMP-producing Enterobacterales infections, distinguishing them from more multidrug-resistant CPE infections associated with globally common MBLs, such as New Delhi metallo-ß-lactamase (NDM) and Verona integron-encoded metallo-ß-lactamase (VIM).


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Enterobacter cloacae , Klebsiella pneumoniae , Microbial Sensitivity Tests , beta-Lactamases , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , beta-Lactamases/genetics , beta-Lactamases/metabolism , Humans , Enterobacter cloacae/genetics , Enterobacter cloacae/drug effects , Enterobacter cloacae/isolation & purification , Enterobacter cloacae/enzymology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Male , Retrospective Studies , Female , Middle Aged , Aged , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/drug therapy , Aztreonam/pharmacology , Aztreonam/therapeutic use , Japan , Drug Resistance, Multiple, Bacterial/genetics , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , Aged, 80 and over , Adult
13.
Front Cell Infect Microbiol ; 14: 1328123, 2024.
Article in English | MEDLINE | ID: mdl-38481664

ABSTRACT

Background: An outbreak of multidrug-resistant Klebsiella pneumoniae, Escherichia coli, and Enterobacter cloacae infections in a neonatal ward within a tertiary hospital in South Africa resulted in the mortality of 10 patients within six months. In this work, the genomic epidemiology of and the molecular factors mediating this outbreak were investigated. Methods: Bacterial cultures obtained from clinical samples collected from the infected neonates underwent phenotypic and molecular analyses to determine their species, sensitivity to antibiotics, production of carbapenemases, complete resistance genes profile, clonality, epidemiology, and evolutionary relationships. Mobile genetic elements flanking the resistance genes and facilitating their spread were also characterized. Results: The outbreak was centered in two major wards and affected mainly neonates between September 2019 and March 2020. Most isolates (n = 27 isolates) were K. pneumoniae while both E. coli and E. cloacae had three isolates each. Notably, 33/34 isolates were multidrug resistant (MDR), with 30 being resistant to at least four drug classes. All the isolates were carbapenemase-positive, but four bla OXA-48 isolates were susceptible to carbapenems. Bla NDM-1 (n = 13) and bla OXA-48/181 (n = 15) were respectively found on IS91 and IS6-like IS26 composite transposons in the isolates alongside several other resistance genes. The repertoire of resistance and virulence genes, insertion sequences, and plasmid replicon types in the strains explains their virulence, resistance, and quick dissemination among the neonates. Conclusions: The outbreak of fatal MDR infections in the neonatal wards were mediated by clonal (vertical) and horizontal (plasmid-mediated) spread of resistant and virulent strains (and genes) that have been also circulating locally and globally.


Subject(s)
Enterobacteriaceae Infections , Klebsiella pneumoniae , Infant, Newborn , Humans , Escherichia coli/genetics , Enterobacter cloacae/genetics , Enterobacteriaceae Infections/epidemiology , Enterobacteriaceae Infections/microbiology , Molecular Epidemiology , South Africa/epidemiology , beta-Lactamases/genetics , Anti-Bacterial Agents/pharmacology , Tertiary Care Centers , Disease Outbreaks , Microbial Sensitivity Tests
14.
Sci Total Environ ; 920: 170635, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38340846

ABSTRACT

Considerable attention is given to intensive care unit-acquired infections; however, research on the transmission dynamics of multichain carbapenemase-resistant Enterobacter cloacae complex (CRECC) outbreaks remains elusive. A total of 118 non-duplicated CRECC strains were isolated from the clinical, intestinal, and hospital sewage samples collected from Zhejiang province of China during 2022-2023. A total of 64 CRECC strains were isolated from the hospital sewage samples, and their prevalence increased from 10.0 % (95 % confidence interval, CI = 0.52-45.8 %) in 2022 to 63.6 % (95 % CI = 31.6-87.6 %) in 2023. Species-specific identification revealed that Enterobacter hormaechei was the predominant CRECC species isolated in this study (53.4 %, 95 % CI = 44.0-62.6 %). The antimicrobial susceptibility profiles indicated that all 118 CRECC strains conferred high-level resistance to ß-lactam antibiotics, ceftacillin/avibactam, and polymyxin. Furthermore, all CRECC strains exhibited resistance to ß-lactams, quinolones, and fosfomycin, with a higher colistin resistance rate observed in the hospital sewage samples (67.2 %, 95 % CI = 54.2-78.1 %). Several antibiotic resistance genes were identified in CRECC strains, including Class A carbapenemases (blaKPC-2) and Class B carbapenemases (blaNDM-1/blaIMP), but not Class D carbapenemases. The WGS analysis showed that the majority of the CRECC strains carried carbapenemase-encoding genes, with blaNDM-1 being the most prevalent (86.9 %, 95 % CI = 77.4-92.9 %). Furthermore, sequence typing revealed that the isolated CRECC strains belonged to diverse sequence types (STs), among which ST418 was the most prevalent blaNDM-positive strain. The high risk of carbapenemase-producing ST418 E. hormaechei and the blaNDM-harboring IncFIB-type plasmid (81.4 %, 95 % CI = 72.9-87.7 %) were detected and emphasized in this study. This study provides valuable insights into the prevalence, antimicrobial resistance, genomic characteristics, and plasmid analysis of CRECC strains in diverse populations and environments. The clonal relatedness analysis showed sporadic clonal transmission of ST418 E. hormaechei strains, supporting inter-hospital transmission.


Subject(s)
Carbapenem-Resistant Enterobacteriaceae , Enterobacter cloacae , Enterobacter cloacae/genetics , Carbapenems/pharmacology , Sewage , Bacterial Proteins/genetics , beta-Lactamases/genetics , Anti-Bacterial Agents/pharmacology , Plasmids , Carbapenem-Resistant Enterobacteriaceae/genetics , China/epidemiology , Microbial Sensitivity Tests
15.
Microbiol Spectr ; 12(4): e0352923, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38385742

ABSTRACT

Blood-borne infections caused by the carbapenem-resistant Enterobacter cloacae complex (CR-ECC) are major public threats with respect to the challenges encountered during treatment. This study describes the whole genome sequencing-based molecular characteristics of blood isolates (n = 70) of CR-ECC from patients admitted to the intensive care unit of tertiary care hospitals in Kolkata, India, during 2017-2022 with respect to species identification, antimicrobial resistance (AMR) profiling, mechanism of drug resistance, and molecular subtypes. Vitek2 MALDI and species-specific PCR identified Enterobacter hormaechei subsp. xiangfangensis (47.14%) as the emerging CR-ECC subspecies in Kolkata. The predominating carbapenemase and extended-spectrum ß-lactamase genes found were blaNDM-1 (51.42%) and blaCTX-M-15 (27%), respectively. Besides, blaNDM-4, blaNDM-5, blaNDM-7, blaCMH-3, blaSFO-1, blaOXA-181, blaOXA-232, blaKPC-3, and blaDHA-7 genes were also detected, which were not previously reported from India. A multitude of Class 1 integrons (including In180, In4874, In4887, and In4888, which were novel) and plasmid replicon types (IncFIB, IncFII, IncX3, IncHI1-HI2, IncC, and IncR) involved in AMR dissemination were identified. Reverse transcription-PCR and western blot revealed that carbapenem resistance in non-carbapenemase-producing CR-ECC isolates was contributed by elevated levels of ampC, overexpression of acrAB, and loss of ompF. A total of 30 distinct sequence types (STs) were ascertained by multi-locus sequence typing; of which, ST2011, ST2018, ST2055, ST2721, and ST2722 were novel STs. Pulsed-field gel electrophoresis analysis showed heterogeneity (69 pulsotypes with a similarity coefficient of 48.40%) among the circulating isolates, suggesting multiple reservoirs of infections in humans. Phylogenetically and genetically diverse CR-ECC with multiple AMR mechanisms mandates close monitoring of nosocomial infections caused by these isolates to forestall the transmission and dissemination of AMR.IMPORTANCEThe emergence and extensive dissemination of the carbapenem-resistant Enterobacter cloacae complex (CR-ECC) have positioned it as a critical nosocomial global pathogen. The dearth of a comprehensive molecular study pertaining to CR-ECC necessitated this study, which is the first of its kind from India. Characterization of blood isolates of CR-ECC over the last 6 years revealed Enterobacter hormaechei subsp. xiangfangensis as the most prevalent subsp., exhibiting resistance to almost all antibiotics currently in use and harboring diverse transmissible carbapenemase genes. Besides the predominating blaNDM-1 and blaCTX-M-15, we document diverse carbapenemase and AmpC genes, such as blaNDM-4, blaNDM-7, blaOXA-181, blaOXA-232, blaKPC-3, blaCMH-3, blaSFO-1, and blaDHA-7, in CR-ECC, which were not previously reported from India. Furthermore, novel integrons and sequence types were identified. Our findings emphasize the need for strengthened vigilance for molecular epidemiological surveillance of CR-ECC due to the presence of epidemic clones with a phylogenetically diverse and wide array of antimicrobial resistance genes in vulnerable populations.


Subject(s)
Carbapenem-Resistant Enterobacteriaceae , Enterobacter cloacae , Enterobacter , Humans , Enterobacter cloacae/genetics , Multilocus Sequence Typing , Bacterial Proteins/genetics , beta-Lactamases/genetics , Anti-Bacterial Agents/pharmacology , Carbapenem-Resistant Enterobacteriaceae/genetics , Plasmids/genetics , Intensive Care Units , Carbapenems/pharmacology , Microbial Sensitivity Tests
16.
Zhonghua Yu Fang Yi Xue Za Zhi ; 58(1): 48-55, 2024 Jan 06.
Article in Chinese | MEDLINE | ID: mdl-38228549

ABSTRACT

Objective: To investigate the drug-resistant gene characteristics and core genome characteristics of carbapenem-resistant Enterobacter cloacae (CR-ECL) in rural residents of Weifang City, Shandong Province. Methods: Fecal samples were collected from rural community residents in Weifang City, Shandong Province in 2017. Drug-resistant strains were screened using a carbapenem-resistant enterobacter chromogenic medium. CR-ECL positive strains were acquired via Matrix Assisted Laser Desorption Ionization Time of Flight Mass Spectrometry(MALDI-TOFMS) analysis. The antibiotic resistance phenotype of CR-ECL was determined using a microbroth dilution assay. Whole genome sequencing (WGS) and analysis were conducted, along with an examination of the immediate vicinity of the blaNDM gene and phylogenetic analysis of the strains. Results: A total of 628 fecal samples were collected and tested, of which 6 were CR-ECL positive (detection rate 0.96%), all exhibiting multiple drug resistance (MDR) phenotypes. Six CR-ECL strains had four MLST genotypes (ST), all of which carried multiple drug resistance genes (blaNDM-1, blaNDM-5, etc.) and virulence genes (acrA, acrB, entB, fepC, etc.). There were mobile genetic elements ISAba125, TN3-IS3000, TN3 and IS5 in the genetic environment surrounding the blaNDM gene. The phylogenetic tree showed that the multi-locus sequence typing of the core genome (cgMLST) was consistent with the single nucleotide polymorphism (SNPs) results. The cgMLST results showed that the allele differences between strains 2BC0101B and 2BC0251B, 2BG0561B and 2BI0221B were 2 and 1, respectively. The SNPs results showed that the above two pairs of bacteria also clustered together. It was found that the strains of chicken fecal samples in the National Center for Biotechnology Information (NCBI) database were located in the center of the evolutionary tree, and the local sequences could be traced back to American human sequences. Conclusion: Multidrug-resistant CR-ECL is detected in rural community residents in Weifang City, Shandong Province.


Subject(s)
Anti-Bacterial Agents , Enterobacter cloacae , Humans , Anti-Bacterial Agents/therapeutic use , Enterobacter cloacae/genetics , Multilocus Sequence Typing , beta-Lactamases/genetics , Phylogeny , Rural Population , Carbapenems/pharmacology , Microbial Sensitivity Tests
17.
Sci Total Environ ; 914: 170002, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38220024

ABSTRACT

The motility behaviors at the individual-cell level and the collective physiological responsive behaviors of aerobic denitrifier, Enterobacter cloacae strain HNR under high salt stress were investigated. The results revealed that as salinity increased, electron transport activity and adenosine triphosphate content decreased from 15.75 µg O2/g/min and 593.51 mM/L to 3.27 µg O2/g/min and 5.34 mM/L, respectively, at 40 g/L, leading to a reduction in the rotation velocity and vibration amplitude of strain HNR. High salinity stress (40 g/L) down-regulated genes involved in ABC transporters (amino acids, sugars, metal ions, and inorganic ions) and activated the biofilm-related motility regulation mechanism in strain HNR, resulting in a further decrease in flagellar motility capacity and an increase in extracellular polymeric substances secretion (4.08 mg/g cell of PS and 40.03 mg/g cell of PN at 40 g/L). These responses facilitated biofilm formation and proved effective in countering elevated salt stress in strain HNR. Moreover, the genetic diversity associated with biofilm-related motility regulation in strain HNR enhanced the adaptability and stability of the strain HNR populations to salinity stress. This study enables a deeper understanding of the response mechanism of aerobic denitrifiers to high salt stress.


Subject(s)
Enterobacter cloacae , Salt Stress , Enterobacter cloacae/genetics , Biofilms , Extracellular Polymeric Substance Matrix , Ions , Stress, Physiological
18.
Microbiol Spectr ; 12(2): e0185523, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38230935

ABSTRACT

This study describes the identification of the mcr-10.1 gene in a clinical isolate of an ST1 Enterobacter cloacae isolate cultured in 2015 in Kenya. The isolate was multidrug resistant, phenotypically non-susceptible to various antibiotics, including colistin. Whole genome sequence analyses indicated carriage of chromosomally encoded antimicrobial resistance genes and the colistin-resistant gene mcr-10.1 located on a 72-kb plasmid designated pECC011b with an IncFIA(HI1) replicon directly adjacent to tyrosine recombinase gene, xerC, and downstream of an ISKPn26 insertion sequence. Studies have shown that expression of mcr-10.1 may not be sufficient to confer colistin resistance, but a novel non-synonymous mutation (S244T) was identified in the phoQ gene known to influence colistin resistance within lipid modification pathways, which could have complemented the mcr-10.1 resistance mechanism. In silico analysis of the mutant phoQ protein shows the location of the mutation to be at the Histidine kinases, Adenyl cyclases, Methyl-accepting proteins and Phosphatases (HAMP) region, which plays a crucial role in the protein's activity. This study and our previous report of mcr-8 in Klebsiella pneumoniae indicate the presence of mobile mcr genes in the Enterobacterales order of bacteria in Kenya. The study points to the importance of regulation of colistin in the animal industry and enhancing surveillance in both human and animal health to curb the spread of mcr genes and accurately assess the risks posed by these mobile genetic elements in both sectors.IMPORTANCEThis paper reports the detection of new colistin resistance mechanisms in Kenya in a clinical isolate of Enterobacter cloacae in a patient with a healthcare-associated infection. The plasmid-mediated resistance gene, mcr-10.1, and a novel amino acid mutation S244T in the phoQ gene, located in a region of the protein involved in membrane cationic stability contributing to colistin resistance, were detected. Colistin is a critical last-line drug for multidrug-resistant (MDR) gram-negative human infections and is used for treatment and growth promotion in the animal industry. The emergence of the resistance mechanisms points to the potential overuse of colistin in the animal sector in Kenya, which enhances resistance, threatens the utility of colistin, and limits treatment options for MDR infections. This study highlights the need to enhance surveillance of colistin resistance across sectors and strengthen One Health policies that ensure antimicrobial stewardship and implementation of strategies to mitigate the spread of antibiotic resistance.


Subject(s)
Colistin , Enterobacter cloacae , Animals , Humans , Enterobacter cloacae/genetics , Kenya , Anti-Bacterial Agents/pharmacology , Plasmids , Mutation , Microbial Sensitivity Tests , Drug Resistance, Bacterial/genetics
19.
Fish Shellfish Immunol ; 144: 109279, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38072137

ABSTRACT

Toll/Toll-like receptor (TLR) is an important pattern recognition receptor that plays an important role in the immunity of animals. Six Toll genes were identified in Macrobrachium rosenbergii, namely, MrToll, MrToll1, MrToll2, MrToll3, MrToll4, and MrToll5. SMART analysis showed that all six Tolls have a transmembrane domain, a TIR domain, and different number of LRR domains. The phylogenetic tree showed that six Tolls were located in six different branches. Among these six Tolls, only MrToll4 contains the QHR motif, which is similar to insect Toll9. MrToll4 belongs to V-type/scc Toll with only one LRRCT domain. MrToll1 and MrToll5 are classical P-type/mcc Toll with two LRRCT domains and an LRRNT. MrTolls were distributed in the hemocytes, heart, hepatopancreas, gills, stomach, and intestine. During the infection of Enterobacter cloacae, the expression level of MrToll and MrToll1-4 was upregulated in the intestine of M. rosenbergii. RNA interference experiments showed that the expression of most antimicrobial peptide (AMP) genes was negatively regulated by MrTolls during E. cloacae infection. On the contrary, crustin (Cru) 3 and Cru4 were inhibited after the knockdown of MrToll, and Cru1 and Cru4 were significantly downregulated with the knockdown of MrToll4 during E. cloacae challenge. These results suggest that MrTolls may be involved in the regulation of AMP expression in the intestine during E. cloacae infection.


Subject(s)
Palaemonidae , Animals , Enterobacter cloacae/genetics , Phylogeny , Base Sequence , Amino Acid Sequence , Toll-Like Receptors/genetics , Antimicrobial Peptides , Arthropod Proteins , Immunity, Innate/genetics
20.
Microb Genom ; 9(12)2023 Dec.
Article in English | MEDLINE | ID: mdl-38054968

ABSTRACT

Gram-negative bacteria use type VI secretion systems (T6SSs) to antagonize neighbouring cells. Although primarily involved in bacterial competition, the T6SS is also implicated in pathogenesis, biofilm formation and ion scavenging. Enterobacter species belong to the ESKAPE pathogens, and while their antibiotic resistance has been well studied, less is known about their pathogenesis. Here, we investigated the distribution and diversity of T6SS components in isolates of two clinically relevant Enterobacter species, E. cloacae and E. bugandensis. T6SS clusters are grouped into four types (T6SSi-T6SSiv), of which type i can be further divided into six subtypes (i1, i2, i3, i4a, i4b, i5). Analysis of a curated dataset of 31 strains demonstrated that most of them encode T6SS clusters belonging to the T6SSi type. All T6SS-positive strains possessed a conserved i3 cluster, and many harboured one or two additional i2 clusters. These clusters were less conserved, and some strains displayed evidence of deletion. We focused on a pathogenic E. bugandensis clinical isolate for comprehensive in silico effector prediction, with comparative analyses across the 31 isolates. Several new effector candidates were identified, including an evolved VgrG with a metallopeptidase domain and a Tse6-like protein. Additional effectors included an anti-eukaryotic catalase (KatN), M23 peptidase, PAAR and VgrG proteins. Our findings highlight the diversity of Enterobacter T6SSs and reveal new putative effectors that may be important for the interaction of these species with neighbouring cells and their environment.


Subject(s)
Enterobacter cloacae , Type VI Secretion Systems , Enterobacter cloacae/genetics , Type VI Secretion Systems/genetics , Peptide Hydrolases
SELECTION OF CITATIONS
SEARCH DETAIL
...