Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant J ; 104(3): 693-705, 2020 11.
Article in English | MEDLINE | ID: mdl-32777127

ABSTRACT

Serrulatane diterpenoids are natural products found in plants from a subset of genera within the figwort family (Scrophulariaceae). Many of these compounds have been characterized as having anti-microbial properties and share a common diterpene backbone. One example, leubethanol from Texas sage (Leucophyllum frutescens) has demonstrated activity against multi-drug-resistant tuberculosis. Leubethanol is the only serrulatane diterpenoid identified from this genus; however, a range of such compounds have been found throughout the closely related Eremophila genus. Despite their potential therapeutic relevance, the biosynthesis of serrulatane diterpenoids has not been previously reported. Here we leverage the simple product profile and high accumulation of leubethanol in the roots of L. frutescens and compare tissue-specific transcriptomes with existing data from Eremophila serrulata to decipher the biosynthesis of leubethanol. A short-chain cis-prenyl transferase (LfCPT1) first produces the rare diterpene precursor nerylneryl diphosphate, which is cyclized by an unusual plastidial terpene synthase (LfTPS1) into the characteristic serrulatane diterpene backbone. Final conversion to leubethanol is catalyzed by a cytochrome P450 (CYP71D616) of the CYP71 clan. This pathway documents the presence of a short-chain cis-prenyl diphosphate synthase, previously only found in Solanaceae, which is likely involved in the biosynthesis of other known diterpene backbones in Eremophila. LfTPS1 represents neofunctionalization of a compartment-switching terpene synthase accepting a novel substrate in the plastid. Biosynthetic access to leubethanol will enable pathway discovery to more complex serrulatane diterpenoids which share this common starting structure and provide a platform for the production and diversification of this class of promising anti-microbial therapeutics in heterologous systems.


Subject(s)
Diterpenes/metabolism , Scrophulariaceae/metabolism , Alkyl and Aryl Transferases/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Eremophila Plant/genetics , Escherichia coli/genetics , Neoprene/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/metabolism , Plants, Genetically Modified , Polyisoprenyl Phosphates/metabolism , Scrophulariaceae/genetics , Nicotiana/genetics , Nicotiana/metabolism , Transferases/genetics , Transferases/metabolism
2.
Heredity (Edinb) ; 119(6): 389-401, 2017 12.
Article in English | MEDLINE | ID: mdl-28976495

ABSTRACT

Understanding the patterns of contemporary gene dispersal within and among populations is of critical importance to population genetics and in managing populations for conservation. In contrast to diploids, there are few studies of gene dispersal in autopolyploids, in part due to complex polysomic inheritance and genotype ambiguity. Here we develop a novel approach for population assignment for codominant markers for autotetraploids and autohexaploids. This method accounts for polysomic inheritance, unreduced gametes and unknown allele dosage. It can also utilise information regarding the origin and genotype of one parent for population assignment of maternal or paternal parents. Using simulations, we demonstrate that our approach achieves high levels of accuracy for assignment even when population divergence is low (FST~0.06) and with only 12 microsatellite loci. We also show that substantially higher accuracy is achieved when known maternal information is utilised, regardless of whether allele dosage is known. Although this novel method exhibited near identical levels of accuracy to Structure when population divergence was high, it performed substantially better for most parameters at moderate (FST=0.06) to low levels of divergence (FST=0.03). These methods fill an important gap in the toolset for autopolyploids and pave the way for investigating contemporary gene dispersal in a widespread group of organisms.


Subject(s)
Genetics, Population , Models, Genetic , Polyploidy , Alleles , Eremophila Plant/genetics , Gene Frequency , Genotype , Likelihood Functions , Microsatellite Repeats , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...