Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 593
Filter
1.
Int J Biol Macromol ; 190: 441-455, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34506858

ABSTRACT

A novel esterase (est3S) gene, 1026 bp in size, was cloned from a metagenomic library made of uncultured microorganisms from the contents of cow rumen. The esterolytic enzyme (Est3S) is composed of 342 amino acids and shows the highest identity with EstGK1 (71.7%) and EstZ3 (63.78%) esterases from the uncultured bacterium. The Est3S did not cluster in any up-to-date classes (I to XVIII) of esterase and lipase. Est3S protein molecular weight was determined to be 38 kDa by gel electrophoresis and showed optimum activity at pH 7.0 and 40 °C and is partially resistant to organic solvents. Est3S activity was enhanced by K+, Na+, Mg2+, and Ca2+ and its highest activity was observed toward the short-chain p-nitrophenyl esters. Additionally, Est3S can degrade chlorpyrifos (CP) and methyl parathion (70% to 80%) in an hour. A mutated Est3S (Ser132-Ala132) did not show any activity toward CP and ester substrates. Notably, the GHS132QG motif is superimposed with the homolog esterase and cutinase-like esterase. Therefore, Ser132 is the critical amino acid like other esterases. The Est3S is relatively stable with ester compounds, and the methyl parathion complex was confirmed by molecular dynamics simulation. NOVELTY STATEMENT: A novel esterase gene (est3S) expressing esters and organophosphorus insecticide degradation traits was isolated from the uncultured bacterium in the contents of cow rumen. The Est3S protein did not cluster in any up-to-date classes (I to XVIII) of esterase/lipase proteins. Est3S was stable with the ligands up to 100 ns during the molecular dynamic simulations.


Subject(s)
Esterases/genetics , Gene Library , Metagenomics , Molecular Docking Simulation , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Organophosphorus Compounds/metabolism , Rumen/enzymology , Amino Acid Sequence , Animals , Base Sequence , Biocatalysis , Catalytic Domain , Cattle , Cloning, Molecular , Esterases/chemistry , Esterases/isolation & purification , Esterases/metabolism , Kinetics , Ligands , Molecular Weight , Phylogeny , Physical Chromosome Mapping , Recombinant Proteins/metabolism , Substrate Specificity
2.
Sci Rep ; 11(1): 10440, 2021 05 17.
Article in English | MEDLINE | ID: mdl-34001974

ABSTRACT

Metagenomic data mining of the Nellore cattle rumen microbiota identified a new bifunctional enzyme, endo-1,4-ß-xylanase/esterase, which was subsequently overexpressed in E. coli BL21 (DE3). This enzyme was stable at pH intervals of 5 to 6.5 and temperatures between 30 and 45 °C, and under the test conditions, it had a Vmax of 30.959 ± 2.334 µmol/min/mg, Km of 3.6 ± 0.6 mM and kcat of 2.323 ± 175 s-1. Additionally, the results showed that the enzyme is tolerant to NaCl and organic solvents and therefore is suitable for industrial environments. Xylanases are widely applicable, and the synergistic activity of endo-1,4-ß-xylanase/esterase in a single molecule will improve the degradation efficiency of heteroxylans via the creation of xylanase binding sites. Therefore, this new molecule has the potential for use in lignocellulosic biomass processing and as an animal feed food additive and could improve xylooligosaccharide production efficiency.


Subject(s)
Bacterial Proteins/metabolism , Endo-1,4-beta Xylanases/metabolism , Esterases/metabolism , Gastrointestinal Microbiome , Rumen/microbiology , Animals , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Cattle , Endo-1,4-beta Xylanases/genetics , Endo-1,4-beta Xylanases/isolation & purification , Enzyme Assays , Esterases/genetics , Esterases/isolation & purification , Glucuronates/biosynthesis , Industrial Microbiology/methods , Lignin/metabolism , Metagenome , Oligosaccharides/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Renewable Energy
3.
J Food Sci ; 86(4): 1475-1487, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33655547

ABSTRACT

Cypermethrin (CY) is a synthetic pyrethroid widely used to control insect pests and it elicits a toxic effect on the human body. In this study, Bacillus licheniformis B-1 isolated from tea garden soil was used to degrade CY effectively. A specific enzyme was mainly localized in the extracellular compartments of B-1. This enzyme was identified as an esterase that could be produced without CY. The enzyme was purified 23.03-fold to apparent homogeneity with 8.38% overall recovery by ammonium sulfate precipitation, anion exchange chromatography, and gel filtration chromatography. The molecular mass of the CY-degrading enzyme was 66.4 kDa, and its optimal pH and temperature were 8.5 and 40 °C, respectively. Appropriate Zn2+ , Mn2+ , Mg2+ , Tween 80, SDS, Triton X-100, and BSA concentrations could greatly increase the activity of this enzyme. By contrast, EDTA, 1,10-phenanthroline, NaF, and PMSF strongly inhibited its activity. The purified enzyme showed Km and Vmax values were 5.532 nmol/mL and 33.445 nmol/min. The CY residue in lettuce and cherry tomatoes could be removed more than 50% under the conditions of the treatment concentration for 500 mg/L and the enzyme preparation dilution of 100 times. These results suggested that the CY-degrading enzyme, a constitutive enzyme that mainly exists in the extracellular space, was a novel esterase that might be used to detoxify CY, and could remove CY in vegetables effectively. PRACTICAL APPLICATION: Our research found a novel cypermethrin-hydrolyzing esterase from Bacillus licheniformis B-1 and proved that the enzyme could remove cypermethrin in vegetables effectively.


Subject(s)
Bacillus licheniformis/enzymology , Esterases/isolation & purification , Esterases/metabolism , Pyrethrins/metabolism , Chromatography, Gel , Enzyme Stability , Esterases/chemistry , Humans , Hydrogen-Ion Concentration , Hydrolysis , Molecular Weight , Temperature
4.
Sci Rep ; 11(1): 5032, 2021 03 03.
Article in English | MEDLINE | ID: mdl-33658582

ABSTRACT

During oviposition, ectoparasitoid wasps not only inject their eggs but also a complex mixture of proteins and peptides (venom) in order to regulate the host physiology to benefit their progeny. Although several endoparasitoid venom proteins have been identified, little is known about the components of ectoparasitoid venom. To characterize the protein composition of Torymus sinensis Kamijo (Hymenoptera: Torymidae) venom, we used an integrated transcriptomic and proteomic approach and identified 143 venom proteins. Moreover, focusing on venom gland transcriptome, we selected additional 52 transcripts encoding putative venom proteins. As in other parasitoid venoms, hydrolases, including proteases, phosphatases, esterases, and nucleases, constitute the most abundant families in T. sinensis venom, followed by protease inhibitors. These proteins are potentially involved in the complex parasitic syndrome, with different effects on the immune system, physiological processes and development of the host, and contribute to provide nutrients to the parasitoid progeny. Although additional in vivo studies are needed, initial findings offer important information about venom factors and their putative host effects, which are essential to ensure the success of parasitism.


Subject(s)
Deoxyribonucleases/genetics , Esterases/genetics , Insect Proteins/genetics , Peptide Hydrolases/genetics , Phosphoric Monoester Hydrolases/genetics , Proteome/genetics , Wasp Venoms/chemistry , Animals , Deoxyribonucleases/classification , Deoxyribonucleases/isolation & purification , Deoxyribonucleases/metabolism , Esterases/classification , Esterases/isolation & purification , Esterases/metabolism , Gene Ontology , Insect Proteins/classification , Insect Proteins/isolation & purification , Insect Proteins/metabolism , Molecular Sequence Annotation , Oviposition/physiology , Peptide Hydrolases/classification , Peptide Hydrolases/isolation & purification , Peptide Hydrolases/metabolism , Phosphoric Monoester Hydrolases/classification , Phosphoric Monoester Hydrolases/isolation & purification , Phosphoric Monoester Hydrolases/metabolism , Protease Inhibitors/classification , Protease Inhibitors/isolation & purification , Protease Inhibitors/metabolism , Proteome/classification , Proteome/isolation & purification , Proteome/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcriptome , Wasp Venoms/toxicity , Wasps/chemistry , Wasps/pathogenicity , Wasps/physiology
5.
Nat Commun ; 12(1): 459, 2021 01 19.
Article in English | MEDLINE | ID: mdl-33469030

ABSTRACT

Some Bacteroidetes and other human colonic bacteria can degrade arabinoxylans, common polysaccharides found in dietary fiber. Previous work has identified gene clusters (polysaccharide-utilization loci, PULs) for degradation of simple arabinoxylans. However, the degradation of complex arabinoxylans (containing side chains such as ferulic acid, a phenolic compound) is poorly understood. Here, we identify a PUL that encodes multiple esterases for degradation of complex arabinoxylans in Bacteroides species. The PUL is specifically upregulated in the presence of complex arabinoxylans. We characterize some of the esterases biochemically and structurally, and show that they release ferulic acid from complex arabinoxylans. Growth of four different colonic Bacteroidetes members, including Bacteroides intestinalis, on complex arabinoxylans results in accumulation of ferulic acid, a compound known to have antioxidative and immunomodulatory properties.


Subject(s)
Bacterial Proteins/metabolism , Bacteroides/enzymology , Esterases/metabolism , Gastrointestinal Microbiome/physiology , Xylans/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Bacterial Proteins/ultrastructure , Bacteroides/genetics , Colon/microbiology , Coumaric Acids/metabolism , Crystallography, X-Ray , Dietary Fiber/metabolism , Enzyme Assays , Esterases/genetics , Esterases/isolation & purification , Esterases/ultrastructure , Humans , Intestinal Mucosa/microbiology , Molecular Dynamics Simulation , Multigene Family/genetics , Substrate Specificity , Xylans/chemistry
6.
Int J Biol Macromol ; 165(Pt A): 1139-1148, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33031847

ABSTRACT

The YbfF esterase family, which has a bifurcated binding pocket for diverse ligands, could serve as excellent biocatalysts in industrial and biotechnological applications. Here, the identification, characterization, and immobilization of a novel YbfF esterase (YbfFHalomonas elongata) from Halomonas elongata DSM 2581 is reported. Biochemical characterization of YbfF was carried out using activity staining, chromatographic analysis, kinetic analysis, activity assay, acetic acid release, and pH-indicator-based hydrolysis. YbfFH.elongata displayed broad substrate specificity, including that for p-nitrophenyl esters, glucose pentaacetate, tert-butyl acetate, and ß-lactam-containing compounds, with high efficiency. Based on a homology model of YbfFH.elongata, Trp237 in the substrate-binding pocket, a critical residue for catalytic activity and substrate specificity was identified and characterized. Furthermore, crosslinked enzyme aggregates and nanoflower formation were explored to enhance the chemical stability and recyclability of YbfFH.elongata. The present study is the first report of a YbfF esterase from extremophiles, and explains its protein stability, catalytic activity, substrate specificities and diversities, kinetics, functional residues, amyloid formation, and immobilization.


Subject(s)
Bacterial Proteins/chemistry , Enzymes, Immobilized/chemistry , Esterases/chemistry , Halomonas/enzymology , Bacterial Proteins/genetics , Enzymes, Immobilized/genetics , Esterases/genetics , Esterases/isolation & purification , Kinetics , Protein Stability , Substrate Specificity/genetics
7.
BMC Microbiol ; 20(1): 302, 2020 10 10.
Article in English | MEDLINE | ID: mdl-33036549

ABSTRACT

BACKGROUND: Yaks are able to utilize the gastrointestinal microbiota to digest plant materials. Although the cellulolytic bacteria in the yak rumen have been reported, there is still limited information on the diversity of the major microorganisms and putative carbohydrate-metabolizing enzymes for the degradation of complex lignocellulosic biomass in its gut ecosystem. RESULTS: Here, this study aimed to decode biomass-degrading genes and genomes in the yak fecal microbiota using deep metagenome sequencing. A comprehensive catalog comprising 4.5 million microbial genes from the yak feces were established based on metagenomic assemblies from 92 Gb sequencing data. We identified a full spectrum of genes encoding carbohydrate-active enzymes, three-quarters of which were assigned to highly diversified enzyme families involved in the breakdown of complex dietary carbohydrates, including 120 families of glycoside hydrolases, 25 families of polysaccharide lyases, and 15 families of carbohydrate esterases. Inference of taxonomic assignments to the carbohydrate-degrading genes revealed the major microbial contributors were Bacteroidaceae, Ruminococcaceae, Rikenellaceae, Clostridiaceae, and Prevotellaceae. Furthermore, 68 prokaryotic genomes were reconstructed and the genes encoding glycoside hydrolases involved in plant-derived polysaccharide degradation were identified in these uncultured genomes, many of which were novel species with lignocellulolytic capability. CONCLUSIONS: Our findings shed light on a great diversity of carbohydrate-degrading enzymes in the yak gut microbial community and uncultured species, which provides a useful genetic resource for future studies on the discovery of novel enzymes for industrial applications.


Subject(s)
Esterases/genetics , Gastrointestinal Microbiome/genetics , Glycoside Hydrolases/genetics , Metagenomics , Microbial Consortia/genetics , Polysaccharide-Lyases/genetics , Rumen/microbiology , Animals , Bacteroidaceae/enzymology , Bacteroidaceae/genetics , Bacteroidaceae/isolation & purification , Bacteroidetes/enzymology , Bacteroidetes/genetics , Bacteroidetes/isolation & purification , Carbohydrate Metabolism , Cattle , Clostridiaceae/enzymology , Clostridiaceae/genetics , Clostridiaceae/isolation & purification , Esterases/classification , Esterases/isolation & purification , Esterases/metabolism , Feces/microbiology , Gene Expression , Genetic Variation , Glycoside Hydrolases/classification , Glycoside Hydrolases/isolation & purification , Glycoside Hydrolases/metabolism , High-Throughput Nucleotide Sequencing , Lignin/metabolism , Metagenome , Metagenomics/methods , Polysaccharide-Lyases/classification , Polysaccharide-Lyases/isolation & purification , Polysaccharide-Lyases/metabolism , Prevotella/enzymology , Prevotella/genetics , Prevotella/isolation & purification , Rumen/enzymology , Ruminococcus/enzymology , Ruminococcus/genetics , Ruminococcus/isolation & purification
8.
Bioorg Chem ; 104: 104214, 2020 11.
Article in English | MEDLINE | ID: mdl-32927128

ABSTRACT

In this paper, we study the activity and specificity of EstDZ2, a new thermostable carboxyl esterase of unknown function, which was isolated from a metagenome library from a Russian hot spring. The biocatalytic reaction employing EstDZ2 proved to be an efficient method for the hydrolysis of aryl p-, o- or m-substituted esters of butyric acid and esters of secondary alcohols. Docking studies revealed structural features of the enzyme that led to activity differences among the different substrates.


Subject(s)
Esterases/metabolism , Temperature , Alcohols/chemistry , Alcohols/metabolism , Biocatalysis , Butyric Acid/chemistry , Butyric Acid/metabolism , Esterases/chemistry , Esterases/isolation & purification , Gene Library , Hot Springs , Hydrolysis , Molecular Docking Simulation , Molecular Structure
9.
Food Funct ; 11(4): 3235-3244, 2020 Apr 30.
Article in English | MEDLINE | ID: mdl-32219251

ABSTRACT

Dicaffeoylquinic acids (DiCQAs), the main components of kudingcha made from the leaves of Ilex kudingcha, could be transformed by gut microbiota. However, the information about the related microorganisms and enzymes involved in the biotransformation of DiCQAs in the human gut is limited. Therefore, a strain of bacteria that could hydrolyze DiCQAs, belonging to Lactobacillus fermentum named L. fermentum LF-12, was isolated from human feces in the present study. Furthermore, an esterase for the hydrolysis of DiCQAs was purified from L. fermentum LF-12 and heterogeneously expressed in Escherichia coli. The esterase could be induced to exert superior hydrolytic activity in the presence of lactose as the carbon source. The molecular weight of the purified esterase was determined to be 31.9 kDa, and the isoelectric point, optimal pH and temperature for the esterase were 4.71, 6.5 and 45 °C, respectively. The enzyme activity was improved by Mg2+ and Ca2+, and reduced by Co2+, Cu2+, EDTA and some kinds of organic solvents. The present results provide new insights into the metabolism of DiCQAs by the human gut.


Subject(s)
Esterases/chemistry , Esterases/genetics , Esterases/isolation & purification , Limosilactobacillus fermentum/enzymology , Limosilactobacillus fermentum/genetics , Quinic Acid/analogs & derivatives , Cloning, Molecular , Escherichia coli/genetics , Feces/microbiology , Gastrointestinal Microbiome , Humans , Hydrolysis , Limosilactobacillus fermentum/isolation & purification , Phylogeny , Quinic Acid/metabolism , Recombinant Proteins , Temperature
10.
Nat Commun ; 11(1): 1026, 2020 02 24.
Article in English | MEDLINE | ID: mdl-32094331

ABSTRACT

Structural and functional studies were conducted of the glucuronoyl esterase (GE) from Cerrena unicolor (CuGE), an enzyme catalyzing cleavage of lignin-carbohydrate ester bonds. CuGE is an α/ß-hydrolase belonging to carbohydrate esterase family 15 (CE15). The enzyme is modular, comprised of a catalytic and a carbohydrate-binding domain. SAXS data show CuGE as an elongated rigid molecule where the two domains are connected by a rigid linker. Detailed structural information of the catalytic domain in its apo- and inactivated form and complexes with aldouronic acids reveal well-defined binding of the 4-O-methyl-a-D-glucuronoyl moiety, not influenced by the nature of the attached xylo-oligosaccharide. Structural and sequence comparisons within CE15 enzymes reveal two distinct structural subgroups. CuGE belongs to the group of fungal CE15-B enzymes with an open and flat substrate-binding site. The interactions between CuGE and its natural substrates are explained and rationalized by the structural results, microscale thermophoresis and isothermal calorimetry.


Subject(s)
Catalytic Domain , Esterases/metabolism , Fungal Proteins/metabolism , Glucuronic Acid/metabolism , Polyporales/enzymology , Carbohydrates , Cell Wall/metabolism , Crystallography, X-Ray , Esterases/isolation & purification , Esterases/ultrastructure , Fungal Proteins/isolation & purification , Fungal Proteins/ultrastructure , Hydrolysis , Lignin/metabolism , Protein Structure, Secondary , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Recombinant Proteins/ultrastructure , Scattering, Small Angle , Structure-Activity Relationship , Substrate Specificity , X-Ray Diffraction
11.
Appl Biochem Biotechnol ; 191(1): 112-124, 2020 May.
Article in English | MEDLINE | ID: mdl-31956956

ABSTRACT

Esterases are widely used in the food industry. Here, a new thermophilic bacterium, Geobacillus thermodenitrificans PS01, was isolated and the esterase-encoding gene est1 was cloned, sequenced, and recombinant expressed in Escherichia coli Tuner (DE3). The highest activity of recombinant Est1 was detected at pH 8.0, and 40 °C and the extreme stability was observed at pH 6-9 over 30 days at 4 °C. In particular, Est1 can hydrolyze short- to medium-chain (C2-C10) triglycerides and p-nitrophenyl esters (C2-C12) and was not inhibited by most metal ions. Kinetic parameters of p-nitrophenyl butyrate hydrolysis under optimal conditions were determined: Km, 22.76 µM; kcat, 10,415 s-1; and kcat/Km, 457.53 µM-1 s-1. The outstanding specification of Est1 indicates its potential for use in industrial applications.


Subject(s)
Bacterial Proteins , Esterases , Geobacillus/enzymology , Bacterial Proteins/biosynthesis , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Esterases/biosynthesis , Esterases/chemistry , Esterases/genetics , Esterases/isolation & purification , Geobacillus/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification
12.
Anal Biochem ; 591: 113554, 2020 02 15.
Article in English | MEDLINE | ID: mdl-31863727

ABSTRACT

Esterases and lipases enduring harsh conditions, including low temperature and extreme tolerance to organic solvents, have attracted great attention in recent times. In the current study, a full open reading frame of 747 bp that encodes a novel, cold-adapted esterase (estHIJ) of 248 amino acids from Bacillus halodurans strain NAH-Egypt was heterologously cloned and expressed in E. coli BL21 (DE3) Rosetta. Amino acid sequence analysis revealed that estHIJ belongs to family XIII of lipolytic enzymes, with a characteristic pentapeptide motif (G-L-S-L-G). The recombinant estHIJ was purified using Ni-affinity chromatography to homogeneity with purification fold, yield, specific activity, and molecular weight (MW) of 3.5, 47.5%, 19.8 U/mg and 29 kDa, respectively. The enzyme showed preferential substrate specificity towards pNP-acetate (C2), with catalytic efficiency of 46,825 min-1 mM-1 estHIJ displayed optimal activity at 30 °C and pH (7.0-8.0). estHIJ demonstrated robust stability in the presence of 50% (v/v) non-polar solvents and 4 M NaCl after 15 h and 6 h of incubation, respectively. The promising features of the recombinant estHIJ underpin its potential in several fields, e.g., the synthesis of pharmaceutical compounds and the food industry.


Subject(s)
Bacillus/enzymology , Bacterial Proteins , Esterases , Bacterial Proteins/chemistry , Bacterial Proteins/isolation & purification , Enzyme Stability , Esterases/chemistry , Esterases/isolation & purification , Kinetics , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Substrate Specificity
13.
J Microbiol Biotechnol ; 30(2): 216-225, 2020 Feb 28.
Article in English | MEDLINE | ID: mdl-31838795

ABSTRACT

An esterase gene, estA1, was cloned from Alteromonas sp. 39-G1 isolated from the Beaufort Sea. The gene is composed of 1,140 nucleotides and codes for a 41,190 Da protein containing 379 amino acids. As a result of a BLAST search, the protein sequence of esterase EstA1 was found to be identical to Alteromonas sp. esterase (GenBank: PHS53692). As far as we know, no research on this enzyme has yet been conducted. Phylogenetic analysis showed that esterase EstA1 was a member of the bacterial lipolytic enzyme family IV (hormone sensitive lipases). Two deletion mutants (Δ20 and Δ54) of the esterase EstA1 were produced in Escherichia coli BL21 (DE3) cells with part of the N-terminal of the protein removed and His-tag attached to the C-terminal. These enzymes exhibited the highest activity toward p-nitrophenyl (pNP) acetate (C2) and had little or no activity towards pNP-esters with acyl chains longer than C6. Their optimum temperature and pH of the catalytic activity were 45°C and pH 8.0, respectively. As the NaCl concentration increased, their enzyme activities continued to increase and the highest enzyme activities were measured in 5 M NaCl. These enzymes were found to be stable for up to 8 h in the concentration of 3-5 M NaCl. Moreover, they have been found to be stable for various metal ions, detergents and organic solvents. These salt-tolerant and chemical-resistant properties suggest that the enzyme esterase EstA1 is both academically and industrially useful.


Subject(s)
Alteromonas/enzymology , Aquatic Organisms/enzymology , Esterases/chemistry , Esterases/isolation & purification , Esterases/metabolism , Salt Tolerance , Amino Acid Sequence , Cloning, Molecular , Enzyme Activation , Enzyme Inhibitors/pharmacology , Enzyme Stability , Esterases/genetics , Hydrogen-Ion Concentration , Ions , Mutation , Recombinant Proteins , Sequence Analysis, DNA , Solvents , Structure-Activity Relationship , Substrate Specificity
14.
Biotechnol Lett ; 41(10): 1223-1232, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31456128

ABSTRACT

OBJECTIVE: To purify an esterase which can selectively hydrolyze (R,S)-ethyl indoline-2-carboxylate to produce (S)-indoline-2-carboxylic acid and characterize its enzymatic properties. RESULTS: An intracellular esterase from Bacillus aryabhattai B8W22 was isolated and the purified protein was identified as a carboxylesterase by MALDI-TOF mass spectrometry. The enzyme (named BaCE) was 59.03-fold purification determined to be of approximately 35 kDa. Its specific activity was 0.574 U/mL with 20% yield. The enzyme showed maximum activity at pH 8.5 and 30 °C and was stable at 20-30 °C using pNPB as the substrate. The Km, Vmax, kcat and kcat/Km of the esterase were 0.52 mM, 6.39 µM/min, 26.87 min-1 and 51.67 mM/min, respectively. The esterase demonstrated high enantioselectivity toward (S)-ethyl indoline-2-carboxylate with 96.55% e.e.p at 44.39% conversion, corresponding to an E value of 133.45. CONCLUSIONS: In this study, a new esterase BaCE with an apparent molecular mass of 35 kDa was purified to homogeneity for the first time. The esterase from Bacillus aryabhattai B8W22 was isolated with a purification more than 59-fold and a yield of 20% by anion exchange chromatography and hydrophobic interaction chromatography. And its biochemical characterization were described in detail with pNPB as substrate. It displayed high enantioselectivity toward (S)-ethyl indoline-2-carboxylate. We next plan to highly express esterase BaCE in Escherichia coli, and apply it to industrial production of (S)-indoline-2-carboxylic acid.


Subject(s)
Bacillus/enzymology , Esterases/isolation & purification , Esterases/metabolism , Indoles/metabolism , Biotransformation , Enzyme Stability , Esterases/chemistry , Hydrogen-Ion Concentration , Kinetics , Molecular Weight , Substrate Specificity , Temperature
15.
Acta Crystallogr F Struct Biol Commun ; 75(Pt 4): 270-277, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30950828

ABSTRACT

The human membrane-bound α/ß-hydrolase domain 6 (ABHD6) protein modulates endocannabinoid signaling, which controls appetite, pain and learning, as well as being linked to Alzheimer's and Parkinson's diseases, through the degradation of the key lipid messenger 2-arachidonylglycerol (2-AG). This makes ABHD6 an attractive therapeutic target that lacks structural information. In order to better understand the molecular mechanism of 2-AG-hydrolyzing enzymes, the PA2949 protein from Pseudomonas aeruginosa, which has 49% sequence similarity to the ABHD6 protein, was cloned, overexpressed, purified and crystallized. Overexpression of PA2949 in the homologous host yielded the membrane-bound enzyme, which was purified in milligram amounts. Besides their sequence similarity, the enzymes both show specificity for the hydrolysis of 2-AG and esters of medium-length fatty acids. PA2949 in the presence of n-octyl ß-D-glucoside showed a higher activity and stability at room temperature than those previously reported for PA2949 overexpressed and purified from Escherichia coli. A suitable expression host and stabilizing detergent were crucial for obtaining crystals, which belonged to the tetragonal space group I4122 and diffracted to a resolution of 2.54 Å. This study provides hints on the functional similarity of ABHD6-like proteins in prokaryotes and eukaryotes, and might guide the structural study of these difficult-to-crystallize proteins.


Subject(s)
Esterases/chemistry , Esterases/isolation & purification , Monoacylglycerol Lipases/chemistry , Pseudomonas aeruginosa/enzymology , Sequence Homology, Amino Acid , Amino Acid Sequence , Crystallization , Enzyme Stability , Humans , Kinetics , Substrate Specificity , Temperature
16.
PLoS One ; 14(4): e0215084, 2019.
Article in English | MEDLINE | ID: mdl-30951551

ABSTRACT

Fermentation-respiration switch protein (FrsA) was thought to play an important role in controlling the metabolic flux between respiration and fermentation pathways, whereas the biochemical function of FrsA was unclear yet. A gene coding for FrsA protein from Vibrio vulnificus was chemically synthesized. The recombinant VvFrsA was expressed as a soluble protein and purified by Ni-NTA affinity chromatography. The protein had a subunit molecular weight of ca. 45 kDa by SDS-PAGE and preferred short-chain esters when p-nitrophenyl alkanoate esters were used as substrates. Optimum condition for VvFrsA was found to be at pH 9.0 and 50 °C. The protein retained high esterase activity at alkaline condition and would denature slowly at over 50 °C. With p-nitrophenyl acetate as the substrate, the Km and kcat were determined to be 18.6 mM and 0.67 s-1, respectively, by steady-state kinetic assay. Molecular dynamics simulation and docking model structure revealed that p-nitrophenyl acetate could be the substrate of VvFrsA. In conclusion our results demonstrated that the protein was able to catalyze the hydrolysis of esters, especially p-nitrophenyl acetate, for the first time.


Subject(s)
Bacterial Proteins/isolation & purification , Bacterial Proteins/metabolism , Esterases/isolation & purification , Esterases/metabolism , Fermentation , Respiration , Vibrio vulnificus/enzymology , Bacterial Proteins/genetics , Esterases/genetics , Esters/metabolism , Hydrolysis , Models, Theoretical , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Substrate Specificity
17.
Appl Microbiol Biotechnol ; 103(10): 4065-4075, 2019 May.
Article in English | MEDLINE | ID: mdl-30949809

ABSTRACT

Glucuronoyl esterases (CE15 family) enable targeted cleavage of ester linkages in lignin-carbohydrate complexes (LCCs), particularly those linking lignin and glucuronoyl residues in xylan. A substantial challenge in characterization and kinetic analysis of CE15 enzymes has been the lack of proper substrates. Here, we present an assay using an insoluble LCC-rich lignin fraction from birch; lignin-rich pellet (LRP). The assay employs quantification of enzyme reaction products by LC-MS. The kinetics of four fungal CE15 enzymes, PsGE, CuGE, TtGE, and AfuGE originating from lignocellulose-degrading fungi Punctularia strigosozonata, Cerrena unicolor, Thielavia terrestris, and Armillaria fuscipes respectively were characterized and compared using this new assay. All four enzymes had activity on LRP and showed a clear preference for the insoluble substrate compared with smaller soluble LCC mimicking esters. End-product profiles were near identical for the four enzymes but differences in kinetic parameters were observed. TtGE possesses an alternative active site compared with the three other enzymes as it has the position of the catalytic glutamic acid occupied by a serine. TtGE performed poorly compared with the other enzymes. We speculate that glucuronoyl LCCs are not the preferred substrate of TtGE. Removal of an N-terminal CBM on CuGE affected the catalytic efficiently of the enzyme by reducing Kcat by more than 30%. Reaction products were detected from all four CE15s on a similar substrate from spruce indicating a more generic GE activity not limited to the hardwood. The assay with natural substrate represents a novel tool to study the natural function and kinetics of CE15s.


Subject(s)
Basidiomycota/enzymology , Carbohydrate Metabolism , Esterases/metabolism , Lignin/metabolism , Sordariales/enzymology , Betula/chemistry , Chromatography, Liquid , Esterases/isolation & purification , Kinetics , Lignin/isolation & purification , Mass Spectrometry
18.
Appl Microbiol Biotechnol ; 103(8): 3421-3437, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30809711

ABSTRACT

Owing to the functional versatility and potential applications in industry, interest in lipolytic enzymes tolerant to organic solvents is increasing. In this study, functional screening of a compost soil metagenome resulted in identification of two lipolytic genes, est1 and est2, encoding 270 and 389 amino acids, respectively. The two genes were heterologously expressed and characterized. Est1 and Est2 are thermostable enzymes with optimal enzyme activities at 80 and 70 °C, respectively. A second-order rotatable design, which allows establishing the relationship between multiple variables with the obtained responses, was used to explore the combined effects of temperature and pH on esterase stability. The response curve indicated that Est1, and particularly Est2, retained high stability within a broad range of temperature and pH values. Furthermore, the effects of organic solvents on Est1 and Est2 activities and stabilities were assessed. Notably, Est2 activity was significantly enhanced (two- to tenfold) in the presence of ethanol, methanol, isopropanol, and 1-propanol over a concentration range between 6 and 30% (v/v). For the short-term stability (2 h of incubation), Est2 exhibited high tolerance against 60% (v/v) of ethanol, methanol, isopropanol, DMSO, and acetone, while Est1 activity resisted these solvents only at lower concentrations (below 30%, v/v). Est2 also displayed high stability towards some water-immiscible organic solvents, such as ethyl acetate, diethyl ether, and toluene. With respect to long-term stability, Est2 retained most of its activity after 26 days of incubation in the presence of 30% (v/v) ethanol, methanol, isopropanol, DMSO, or acetone. All of these features indicate that Est1 and Est2 possess application potential.


Subject(s)
Composting , Esterases/chemistry , Esterases/metabolism , Metagenome/genetics , Solvents/chemistry , Base Sequence , Cloning, Molecular , Enzyme Activation , Enzyme Stability , Esterases/genetics , Esterases/isolation & purification , Gene Library , Hot Temperature , Hydrogen-Ion Concentration , Lipolysis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Substrate Specificity
19.
Int J Biol Macromol ; 126: 1192-1200, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30625356

ABSTRACT

A new bacterial lipolytic enzyme Est903 was obtained from paper mill sludge via metagenomic approach. Est903 displayed moderate similarities to two lipolytic enzymes from Rhodopirellula islandica and contained a distinctive pentapeptide motif (GFSAG) that differed from those of all known fourteen families of bacterial lipolytic enzymes. Est903 was regarded as from a new bacterial lipolytic enzyme family through multiple sequence alignment and phylogenetic analysis. The recombinant Est903 showed the highest activity for ρ-nitrophenol butyrate. The pH optimum and temperature optimum of the recombinant enzyme was 9.0 and 51 °C, respectively. Also, this enzyme displayed moderate thermostability, high activity under alkaline conditions, and good tolerance against several organic solvents. In addition, the compatibility test and washing performance analysis revealed that Est903 had good compatibility with commercial laundry detergent and high cleaning ability of oil stains. These good properties make Est903 a potential candidate in organic synthesis or detergent industry.


Subject(s)
Esterases/isolation & purification , Esterases/metabolism , Gene Library , Industrial Waste , Metagenomics , Paper , Sewage , Amino Acid Sequence , Detergents/pharmacology , Esterases/chemistry , Esterases/genetics , Indicators and Reagents , Ions , Metals/pharmacology , Phylogeny , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Solutions , Solvents/chemistry , Textiles
20.
Biomolecules ; 9(12)2019 12 16.
Article in English | MEDLINE | ID: mdl-31888238

ABSTRACT

PMGL3 is a cold-adapted esterase which was recently isolated from the permafrost metagenomic library. It exhibits maximum activity at 30 °C and low stability at elevated temperatures (40 °C and higher). Sequence alignment has revealed that PMGL3 is a member of the hormone-sensitive lipase (HSL) family. In this work, we demonstrated that incubation at 40 °C led to the inactivation of the enzyme (t1/2 = 36 min), which was accompanied by the formation of tetramers and higher molecular weight aggregates. In order to increase the thermal stability of PMGL3, its two cysteines Cys49 and Cys207 were substituted by the hydrophobic residues, which are found at the corresponding positions of thermostable esterases from the HSL family. One of the obtained mutants, C207F, possessed improved stability at 40 °C (t1/2 = 169 min) and increased surface hydrophobicity, whereas C49V was less stable in comparison with the wild type PMGL3. Both mutants exhibited reduced values of Vmax and kcat, while C207F demonstrated increased affinity to the substrate, and improved catalytic efficiency.


Subject(s)
Cold Temperature , Esterases/antagonists & inhibitors , Esterases/isolation & purification , Gene Library , Metagenome/genetics , Permafrost/microbiology , Enzyme Stability , Esterases/chemistry , Esterases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...