Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 8.212
1.
Free Radic Biol Med ; 220: 236-248, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38704052

Alcoholic liver disease (ALD) is a common chronic redox disease caused by increased alcohol consumption. Abstinence is a major challenge for people with alcohol dependence, and approved drugs have limited efficacy. Therefore, this study aimed to explore a new treatment strategy for ALD using ferroferric oxide endohedral fullerenol (Fe3O4@C60(OH)n) in combination with static magnetic and electric fields (sBE). The primary hepatocytes of 8-9-week-old female BALB/c mice were used to evaluate the efficacy of the proposed combination treatment. A mouse chronic binge ethanol feeding model was established to determine the alleviatory effect of Fe3O4@C60(OH)n on liver injury under sBE exposure. Furthermore, the ability of Fe3O4@C60(OH)n to eliminate •OH was evaluated. Alcohol-induced hepatocyte and mitochondrial damage were reversed in vitro. Additionally, the combination therapy reduced liver damage, alleviated oxidative stress by improving antioxidant levels, and effectively inhibited liver lipid accumulation in animal experiments. Here, we used a combination of magnetic derivatives of fullerenol and sBE to further improve the ROS clearance rate, thereby alleviating ALD. The developed combination treatment may effectively improve alcohol-induced liver damage and maintain redox balance without apparent toxicity, thereby enhancing therapy aimed at ALD and other redox diseases.


Fullerenes , Hepatocytes , Liver Diseases, Alcoholic , Mice, Inbred BALB C , Oxidative Stress , Reactive Oxygen Species , Animals , Fullerenes/pharmacology , Fullerenes/chemistry , Fullerenes/therapeutic use , Mice , Reactive Oxygen Species/metabolism , Female , Hepatocytes/metabolism , Hepatocytes/drug effects , Hepatocytes/pathology , Oxidative Stress/drug effects , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/pathology , Liver Diseases, Alcoholic/drug therapy , Liver/metabolism , Liver/pathology , Liver/drug effects , Antioxidants/pharmacology , Disease Models, Animal , Humans , Oxidation-Reduction/drug effects , Ethanol/toxicity
2.
Int Immunopharmacol ; 134: 112185, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38701540

Chronic ethanol consumption is a prevalent condition in contemporary society and exacerbates anxiety symptoms in healthy individuals. The activation of microglia, leading to neuroinflammatory responses, may serve as a significant precipitating factor; however, the precise molecular mechanisms underlying this phenomenon remain elusive. In this study, we initially confirmed that chronic ethanol exposure (CEE) induces anxiety-like behaviors in mice through open field test and elevated plus maze test. The cGAS/STING signaling pathway has been confirmed to exhibits a significant association with inflammatory signaling responses in both peripheral and central systems. Western blot analysis confirmed alterations in the cGAS/STING signaling pathway during CEE, including the upregulation of p-TBK1 and p-IRF3 proteins. Moreover, we observed microglial activation in the prefrontal cortex (PFC) of CEE mice, characterized by significant alterations in branching morphology and an increase in cell body size. Additionally, we observed that administration of CEE resulted in mitochondrial dysfunction within the PFC of mice, accompanied by a significant elevation in cytosolic mitochondrial DNA (mtDNA) levels. Furthermore, our findings revealed that the inhibition of STING by H-151 effectively alleviated anxiety-like behavior and suppressed microglial activation induced by CEE. Our study unveiled a significant association between anxiety-like behavior, microglial activation, inflammation, and mitochondria dysfunction during CEE.


Anxiety , Ethanol , Membrane Proteins , Mice, Inbred C57BL , Microglia , Nucleotidyltransferases , Prefrontal Cortex , Signal Transduction , Animals , Microglia/drug effects , Microglia/metabolism , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/genetics , Anxiety/chemically induced , Membrane Proteins/metabolism , Membrane Proteins/genetics , Ethanol/toxicity , Signal Transduction/drug effects , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Prefrontal Cortex/pathology , Male , Mice , Behavior, Animal/drug effects , DNA, Mitochondrial/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Disease Models, Animal , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-3/genetics , Protein Serine-Threonine Kinases
3.
Reprod Toxicol ; 126: 108605, 2024 Jun.
Article En | MEDLINE | ID: mdl-38735594

Paternal alcohol use is emerging as a plausible driver of alcohol-related growth and patterning defects. Studies from our lab using an inbred C57Bl/6 J mouse model suggest that these paternally-inherited phenotypes result from paternally programmed deficits in the formation and function of the placenta. The 129S1/SvImJ genetic background is typically more susceptible to fetoplacental growth defects due to strain-specific differences in placental morphology. We hypothesized that these placental differences would sensitize 129S1/SvImJ-C57Bl/6 J hybrid offspring to paternally-inherited fetoplacental growth phenotypes induced by paternal alcohol exposure. Using a limited access model, we exposed C57Bl/6 J males to alcohol and bred them to naïve 129S1/SvImJ dams. We then assayed F1 hybrid offspring for alterations in fetoplacental growth and used micro-CT imaging to contrast placental histological patterning between the preconception treatments. F1 hybrid placentae exhibit larger placental weights than pure C57Bl/6 J offspring but display a proportionally smaller junctional zone with increased glycogen content. The male F1 hybrid offspring of alcohol-exposed sires exhibit modest placental hyperplasia but, unlike pure C57Bl/6 J offspring, do not display observable changes in placental histology, glycogen content, or measurable impacts on fetal growth. Although F1 hybrid female offspring do not exhibit any measurable alterations in fetoplacental growth, RT-qPCR analysis of placental gene expression reveals increased expression of genes participating in the antioxidant response. The reduced placental junctional zone but increased glycogen stores of 129S1/SvImJ-C57Bl/6 J F1 hybrid placentae ostensibly attenuate the previously observed placental patterning defects and fetal growth restriction induced by paternal alcohol use in the C57Bl/6 J strain.


Ethanol , Mice, Inbred C57BL , Paternal Exposure , Phenotype , Placenta , Female , Animals , Pregnancy , Male , Placenta/drug effects , Placenta/metabolism , Ethanol/toxicity , Paternal Exposure/adverse effects , Mice , Mice, 129 Strain
4.
J Mol Neurosci ; 74(2): 44, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38630337

Plants are a valuable source of information for pharmacological research and new drug discovery. The present study aimed to evaluate the neuroprotective potential of the leaves of the medicinal plant Sterculia setigera. In vitro, the effect of Sterculia setigera leaves dry hydroethanolic extract (SSE) was tested on cultured cerebellar granule neurons (CGN) survival when exposed to hydrogen peroxide (H2O2) or 6-hydroxydopamine (6-OHDA), using the viability probe fluorescein diacetate (FDA), a lactate dehydrogenase (LDH) activity assay, an immunocytochemical staining against Gap 43, and the quantification of the expression of genes involved in apoptosis, necrosis, or oxidative stress. In vivo, the effect of intraperitoneal (ip) injection of SSE was assessed on the developing brain of 8-day-old Wistar rats exposed to ethanol neurotoxicity by measuring caspase-3 activity on cerebellum homogenates, the expression of some genes in tissue extracts, the thickness of cerebellar cortical layers and motor coordination. In vitro, SSE protected CGN against H2O2 and 6-OHDA-induced cell death at a dose of 10 µg/mL, inhibited the expression of genes Casp3 and Bad, and upregulated the expression of Cat and Gpx7. In vivo, SSE significantly blocked the deleterious effect of ethanol by reducing the activity of caspase-3, inhibiting the expression of Bax and Tp53, preventing the reduction of the thickness of the internal granule cell layer of the cerebellar cortex, and restoring motor functions. Sterculia setigera exerts neuroactive functions as claimed by traditional medicine and should be a good candidate for the development of a neuroprotective treatment against neurodegenerative diseases.


Cell Death , Ethanol , Neurons , Neuroprotective Agents , Plant Extracts , Plant Leaves , Sterculia , Animals , Rats , Caspase 3/metabolism , Ethanol/administration & dosage , Ethanol/chemistry , Ethanol/toxicity , Hydrogen Peroxide/toxicity , Neuroprotective Agents/administration & dosage , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacology , Oxidopamine/toxicity , Rats, Wistar , Sterculia/chemistry , Plant Leaves/chemistry , Plants, Medicinal/chemistry , Neurons/cytology , Neurons/drug effects , Neurons/enzymology , Neurons/pathology , Lactate Dehydrogenases/metabolism , GAP-43 Protein/analysis , Apoptosis/genetics , Oxidative Stress/genetics , Cerebellum/cytology , Cerebellum/drug effects , Cerebellum/pathology , Cerebellum/physiology , Male , Female , Cells, Cultured , Cell Death/drug effects , Gene Expression Regulation/drug effects , Phytochemicals/administration & dosage , Phytochemicals/analysis , Phytochemicals/chemistry , Phytochemicals/pharmacology , Plant Extracts/administration & dosage , Plant Extracts/chemistry , Plant Extracts/pharmacology , Antioxidants/analysis , Antioxidants/chemistry , Antioxidants/pharmacology , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry , Liquid Chromatography-Mass Spectrometry , Secondary Metabolism
5.
Biomed Pharmacother ; 174: 116554, 2024 May.
Article En | MEDLINE | ID: mdl-38636401

We aimed to investigate the effectiveness of physical training as a protective strategy to mitigate alveolar bone damage and blood antioxidant defense caused by ethanol (EtOH) consumption in a binge-drinking pattern. Male Wistar rats aged approximately 90 days were divided into four groups: control, training, EtOH, and training + EtOH. The physical training protocol was conducted on a treadmill for four consecutive weeks, while the animals in the EtOH group were administered EtOH via orogastric gavage for three consecutive days each week, following the binge drink pattern. After the training period, blood and mandibles were collected for plasma oxidative biochemistry analysis, and the alveolar bone was subjected to physicochemical composition analysis, tissue evaluation, and microtomography evaluation. Our results showed that EtOH induced oxidative stress and physical exercise promoted the recovery of antioxidant action. Physical training minimized the damage to the mineral/matrix composition of the alveolar bone due to EtOH consumption and increased the density of osteocytes in the trained group treated with EtOH than in those exposed only to EtOH. Furthermore, physical training reduced damage to the alveolar bone caused by EtOH consumption. Our findings suggest that physical training can serve as an effective strategy to reduce systemic enzymatic oxidative response damage and alleviate alveolar bone damage resulting from alcohol consumption. Further investigations are warranted to elucidate the underlying mechanisms and explore, in addition to physical training, the potential effects of other activities with varying intensities on managing alcohol-induced bone damage.


Antioxidants , Binge Drinking , Ethanol , Oxidative Stress , Physical Conditioning, Animal , Rats, Wistar , Animals , Male , Antioxidants/pharmacology , Antioxidants/metabolism , Physical Conditioning, Animal/physiology , Oxidative Stress/drug effects , Binge Drinking/blood , Ethanol/toxicity , Rats
6.
Environ Health Perspect ; 132(4): 47007, 2024 Apr.
Article En | MEDLINE | ID: mdl-38619879

BACKGROUND: Environmental pollutants, including polychlorinated biphenyls (PCBs) have been implicated in the pathogenesis of liver disease. Our group recently demonstrated that PCB126 promoted steatosis, hepatomegaly, and modulated intermediary metabolism in a rodent model of alcohol-associated liver disease (ALD). OBJECTIVE: To better understand how PCB126 promoted ALD in our previous model, the current study adopts multiple omics approaches to elucidate potential mechanistic hypotheses. METHODS: Briefly, male C57BL/6J mice were exposed to 0.2mg/kg polychlorinated biphenyl (PCB) 126 or corn oil vehicle prior to ethanol (EtOH) or control diet feeding in the chronic-binge alcohol feeding model. Liver tissues were collected and prepared for mRNA sequencing, phosphoproteomics, and inductively coupled plasma mass spectrometry for metals quantification. RESULTS: Principal component analysis showed that PCB126 uniquely modified the transcriptome in EtOH-fed mice. EtOH feeding alone resulted in >4,000 differentially expressed genes (DEGs), and PCB126 exposure resulted in more DEGs in the EtOH-fed group (907 DEGs) in comparison with the pair-fed group (503 DEGs). Top 20 significant gene ontology (GO) biological processes included "peptidyl tyrosine modifications," whereas top 25 significantly decreasing GO molecular functions included "metal/ion/zinc binding." Quantitative, label-free phosphoproteomics and western blot analysis revealed no major significant PCB126 effects on total phosphorylated tyrosine residues in EtOH-fed mice. Quantified hepatic essential metal levels were primarily significantly lower in EtOH-fed mice. PCB126-exposed mice had significantly lower magnesium, cobalt, and zinc levels in EtOH-fed mice. DISCUSSION: Previous work has demonstrated that PCB126 is a modifying factor in metabolic dysfunction-associated steatotic liver disease (MASLD), and our current work suggests that pollutants also modify ALD. PCB126 may, in part, be contributing to the malnutrition aspect of ALD, where metal deficiency is known to contribute and worsen prognosis. https://doi.org/10.1289/EHP14132.


Environmental Pollutants , Fatty Liver , Liver Diseases, Alcoholic , Polychlorinated Biphenyls , Male , Mice , Animals , Multiomics , Mice, Inbred C57BL , Ethanol/toxicity , Ethanol/metabolism , Liver/metabolism , Polychlorinated Biphenyls/toxicity , Polychlorinated Biphenyls/metabolism , Liver Diseases, Alcoholic/etiology , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/pathology , Environmental Pollutants/toxicity , Environmental Pollutants/metabolism , Zinc/metabolism , Tyrosine/metabolism
7.
Biol Res ; 57(1): 15, 2024 Apr 04.
Article En | MEDLINE | ID: mdl-38576018

BACKGROUND: Alcohol, a widely abused drug, significantly diminishes life quality, causing chronic diseases and psychiatric issues, with severe health, societal, and economic repercussions. Previously, we demonstrated that non-voluntary alcohol consumption increases the opening of Cx43 hemichannels and Panx1 channels in astrocytes from adolescent rats. However, whether ethanol directly affects astroglial hemichannels and, if so, how this impacts the function and survival of astrocytes remains to be elucidated. RESULTS: Clinically relevant concentrations of ethanol boost the opening of Cx43 hemichannels and Panx1 channels in mouse cortical astrocytes, resulting in the release of ATP and glutamate. The activation of these large-pore channels is dependent on Toll-like receptor 4, P2X7 receptors, IL-1ß and TNF-α signaling, p38 mitogen-activated protein kinase, and inducible nitric oxide (NO) synthase. Notably, the ethanol-induced opening of Cx43 hemichannels and Panx1 channels leads to alterations in cytokine secretion, NO production, gliotransmitter release, and astrocyte reactivity, ultimately impacting survival. CONCLUSION: Our study reveals a new mechanism by which ethanol impairs astrocyte function, involving the sequential stimulation of inflammatory pathways that further increase the opening of Cx43 hemichannels and Panx1 channels. We hypothesize that targeting astroglial hemichannels could be a promising pharmacological approach to preserve astrocyte function and synaptic plasticity during the progression of various alcohol use disorders.


Alcoholism , Connexin 43 , Mice , Rats , Animals , Connexin 43/metabolism , Astrocytes/metabolism , Ethanol/toxicity , Ethanol/metabolism , Alcoholism/metabolism , Cells, Cultured , Connexins/metabolism , Nerve Tissue Proteins/metabolism
8.
J Neurosci Res ; 102(5): e25337, 2024 May.
Article En | MEDLINE | ID: mdl-38680084

Hepatic encephalopathy (HE) is defined as decline in neurological function during chronic liver disease (CLD). Alcohol is a major etiological factor in the pathogenesis of fibrosis/cirrhosis and has also been documented to directly impact the brain. However, the role of alcohol in the development of HE in CLD remains unclear. Here, we investigated the impact of excessive alcohol administration on neurological deterioration in rats with CLD. Starting day 7 post-BDL surgery, rats were administered alcohol twice daily (51% v/v ethanol, 3 g/kg, via gavage) for 4 weeks. Motor coordination was assessed weekly using rotarod and anxiety-like behavior was evaluated with open field and elevated plus maze at 5 weeks. Upon sacrifice, brains were collected for western blot and immunohistochemical analyses to investigate neuronal integrity and oxidative stress status. Alcohol worsened motor coordination performance and increased anxiety-like behavior in BDL rats. Impairments were associated with decreased neuronal markers of NeuN and SMI311, increased apoptotic markers of cleaved/pro-caspase-3 and Bax/Bcl2, increased necroptosis markers of pRIP3 and pMLKL, decreased total antioxidant capacity (TAC), and increased 4-hydroxynonenal (4-HNE)modified proteins in the cerebellum of BDL-alcohol rats when compared to respective controls. Immunofluorescence confirmed the colocalization of cleaved caspase-3 and pMLKL in the granular neurons of the cerebellum of BDL-alcohol rats. Excessive alcohol consumption exacerbates HE which leads to associated apoptotic and necroptotic neuronal loss in the cerebellum of BDL-alcohol rats. Additionally, higher levels of 4-HNE and decreased TAC in the cerebellum of BDL-alcohol rats suggest oxidative stress is the triggering factor of apoptotic and necroptotic neuronal loss/injury.


Ethanol , Hepatic Encephalopathy , Neurons , Oxidative Stress , Animals , Male , Hepatic Encephalopathy/pathology , Hepatic Encephalopathy/chemically induced , Hepatic Encephalopathy/metabolism , Ethanol/toxicity , Ethanol/adverse effects , Rats , Neurons/pathology , Neurons/drug effects , Neurons/metabolism , Oxidative Stress/drug effects , Oxidative Stress/physiology , Cell Death/drug effects , Rats, Sprague-Dawley , Apoptosis/drug effects , Anxiety/etiology
9.
Free Radic Biol Med ; 220: 15-27, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38679301

BACKGROUND: Chronic alcohol exposure induces cognitive impairment and NLRP3 inflammasome activation in the mPFC (medial prefrontal cortex). Mitophagy plays a crucial role in neuroinflammation, and dysregulated mitophagy is associated with behavioral deficits. However, the potential relationships among mitophagy, inflammation, and cognitive impairment in the context of alcohol exposure have not yet been studied. NRF2 promotes the process of mitophagy, while alcohol inhibits NRF2 expression. Whether NRF2 activation can ameliorate defective mitophagy and neuroinflammation in the presence of alcohol remains unknown. METHODS: BV2 cells and primary microglia were treated with alcohol. C57BL/6J mice were repeatedly administered alcohol intragastrically. BNIP3-siRNA, PINK1-siRNA, CCCP and bafilomycin A1 were used to regulate mitophagy in BV2 cells. RTA-408 acted as an NRF2 activator. Mitochondrial dysfunction, mitophagy and NLRP3 inflammasome activation were assayed. Behavioral tests were used to assess cognition. RESULTS: Chronic alcohol exposure impaired the initiation of both receptor-mediated mitophagy and PINK1-mediated mitophagy in the mPFC and in vitro microglial cells. Silencing BNIP3 or PINK1 induced mitochondrial dysfunction and aggravated alcohol-induced NLRP3 inflammasome activation in BV2 cells. In addition, alcohol exposure inhibited the NRF2 expression both in vivo and in vitro. NRF2 activation by RTA-408 ameliorated NLRP3 inflammasome activation and mitophagy downregulation in microglia, ultimately improving cognitive impairment in the presence of alcohol. CONCLUSION: Chronic alcohol exposure-induced impaired mitophagy initiation contributed to NLRP3 inflammasome activation and cognitive deficits, which could be alleviated by NRF2 activation via RTA-408.


Cognitive Dysfunction , Inflammasomes , Membrane Proteins , Microglia , Mitophagy , NF-E2-Related Factor 2 , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , Mitophagy/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Mice , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Inflammasomes/metabolism , Inflammasomes/genetics , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/genetics , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/pathology , Microglia/metabolism , Microglia/drug effects , Microglia/pathology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Male , Mice, Inbred C57BL , Mitochondria/metabolism , Mitochondria/drug effects , Mitochondria/pathology , Protein Kinases/metabolism , Protein Kinases/genetics , Prefrontal Cortex/metabolism , Prefrontal Cortex/pathology , Prefrontal Cortex/drug effects , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Ethanol/toxicity , Ethanol/adverse effects
10.
Biomed Pharmacother ; 175: 116590, 2024 Jun.
Article En | MEDLINE | ID: mdl-38653109

Alcohol-associated liver disease (ALD) is a leading factor of liver-related death worldwide. ALD has various manifestations that include steatosis, hepatitis, and cirrhosis and is currently without approved pharmacotherapies. The Src homology phosphatase 2 (Shp2) is a drug target in some cancers due to its positive regulation of Ras-mitogen-activated protein kinase signaling and cell proliferation. Shp2 pharmacological inhibition yields beneficial outcomes in animal disease models, but its impact on ALD remains unexplored. This study aims to investigate the effects of Shp2 inhibition and its validity using a preclinical mouse model of ALD. We report that the administration of SHP099, a potent and selective allosteric inhibitor of Shp2, partially ameliorated ethanol-induced hepatic injury, inflammation, and steatosis in mice. Additionally, Shp2 inhibition was associated with reduced ethanol-evoked activation of extracellular signal-regulated kinase (ERK), oxidative, and endoplasmic reticulum (ER) stress in the liver. Besides the liver, excessive alcohol consumption induces multi-organ injury and dysfunction, including the intestine. Notably, Shp2 inhibition diminished ethanol-induced intestinal inflammation and permeability, abrogated the reduction in tight junction protein expression, and the activation of ERK and stress signaling in the ileum. Collectively, Shp2 pharmacological inhibition mitigates the deleterious effects of ethanol in the liver and intestine in a mouse model of ALD. Given the multifactorial aspects underlying ALD pathogenesis, additional studies are needed to decipher the utility of Shp2 inhibition alone or as a component in a multitherapeutic regimen to combat this deadly malady.


Disease Models, Animal , Ethanol , Liver Diseases, Alcoholic , Mice, Inbred C57BL , Protein Tyrosine Phosphatase, Non-Receptor Type 11 , Animals , Liver Diseases, Alcoholic/pathology , Liver Diseases, Alcoholic/prevention & control , Liver Diseases, Alcoholic/enzymology , Liver Diseases, Alcoholic/drug therapy , Mice , Male , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Ethanol/toxicity , Liver/drug effects , Liver/pathology , Liver/enzymology , Liver/metabolism , Endoplasmic Reticulum Stress/drug effects , Oxidative Stress/drug effects
11.
J Proteome Res ; 23(5): 1801-1809, 2024 May 03.
Article En | MEDLINE | ID: mdl-38655769

Alcohol consumption perturbs the gut immune barrier and ultimately results in alcoholic liver diseases, but little is known about how immune-related cells in the gut are perturbed in this process. In this study, we employed laser capture microdissection and a label-free proteomics approach to investigate the consequences of alcohol exposure to the proteomes of crypts and villi in the proximal small intestine. Intestinal tissues from alcohol-fed and pair-fed mice were microdissected to selectively capture cells in the crypts and villi regions, followed by one-pot protein digestion and data-independent LC-MS/MS analysis. We successfully identified over 3000 proteins from each of the crypt or villi regions equivalent to ∼3000 cells. Analysis of alcohol-treated tissues indicated an enhanced alcohol metabolism and reduced levels of α-defensins in crypts, alongside increased lipid metabolism and apoptosis in villi. Immunofluorescence imaging further corroborated the proteomic findings. Our work provides a detailed profiling of the proteomic changes in the compartments of the mouse small intestine and aids in molecular-level understanding of alcohol-induced tissue damage.


Ethanol , Intestine, Small , Proteomics , Animals , Intestine, Small/metabolism , Intestine, Small/drug effects , Intestine, Small/pathology , Proteomics/methods , Mice , Ethanol/toxicity , Tandem Mass Spectrometry , Proteome/metabolism , Proteome/analysis , Proteome/drug effects , Laser Capture Microdissection , Chromatography, Liquid , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Intestinal Mucosa/pathology , Mice, Inbred C57BL , Male , Apoptosis/drug effects , Lipid Metabolism/drug effects
12.
Wei Sheng Yan Jiu ; 53(1): 66-70, 2024 Jan.
Article Zh | MEDLINE | ID: mdl-38443174

OBJECTIVE: To explore the ameliorative effect of yeast extract(YE) on the inflammatory response of human hepatoma cells(HepG2) induced by ethyl alcohol(EtOH) and lipopolysaccharide(LPS), and further explore the potential molecular mechanism based on Toll-like receptor 4(TLR4)/nuclear factor kappa B(NF-κB) signaling pathway. METHODS: HepG2 cells were induced by 50 mmol/L EtOH and 1 µg/mL LPS combined with YE intervention. The expression level of inflammatory cytokines was detected by ELISA. The expression level of TLR4 and the nuclear translocation of NF-κB were detected by immunofluorescence staining. The expression levels of TLR4, NF-κB, phospho-NF-κB-P65(P-NF-κB-p65), nucleus-phospho-NF-κB-p65(N-P-NF-κB-p65), tumor necrosis factor-α(TNF-α), interleukin-6(IL-6), and interleukin-1ß(IL-1ß) were detected by Western blot. RESULTS: Compared with the control group, the cells in EtOH+LPS group produced a large number of inflammatory factors and had a significant inflammatory response. YE intervention significantly alleviated EtOH+LPS induced hepatocyte inflammatory response. Further molecular mechanism studies showed that YE significantly reduced TLR4 expression level and inhibited NF-κB nuclear translocation in hepatocytes. CONCLUSION: YE can effectively inhibit the inflammatory response of HepG2 cells induced by EtOH and LPS, and its molecular mechanism may be related to the down-regulation of TLR4/NF-κB pathway.


Lipopolysaccharides , NF-kappa B , Humans , Hep G2 Cells , Toll-Like Receptor 4 , Ethanol/toxicity , Interleukin-1beta , Interleukin-6 , Tumor Necrosis Factor-alpha
13.
Int J Med Sci ; 21(4): 755-764, 2024.
Article En | MEDLINE | ID: mdl-38464835

Alcoholic liver disease (ALD) poses a substantial global health challenge, with its pathogenesis deeply rooted in mitochondrial dysfunction. Our study explores the pivotal roles of Phosphoglycerate mutase family member 5 (Pgam5) and Voltage-Dependent Anion Channel 1 (VDAC1) in the progression of ALD, providing novel insights into their interplay and impact on mitochondrial integrity. We demonstrate that Pgam5 silencing preserves hepatocyte viability and attenuates ethanol-induced apoptosis, underscoring its detrimental role in exacerbating hepatocyte dysfunction. Pgam5's influence extends to the regulation of VDAC1 oligomerization, a key process in mitochondrial permeability transition pore (mPTP) opening, mitochondrial swelling, and apoptosis initiation. Notably, the inhibition of VDAC1 oligomerization through Pgam5 silencing or pharmacological intervention (VBIT-12) significantly preserves mitochondrial function, evident in the maintenance of mitochondrial membrane potential and reduced reactive oxygen species (ROS) production. In vivo experiments using hepatocyte-specific Pgam5 knockout (Pgam5hKO) and control mice reveal that Pgam5 deficiency mitigates ethanol-induced liver histopathology, inflammation, lipid peroxidation, and metabolic disorder, further supporting its role in ALD progression. Our findings highlight the critical involvement of Pgam5 and VDAC1 in mitochondrial dysfunction in ALD, suggesting potential therapeutic targets. While promising, these findings necessitate further research, including human studies, to validate their clinical applicability and explore broader implications in liver diseases. Overall, our study provides a significant advancement in understanding ALD pathophysiology, paving the way for novel therapeutic strategies targeting mitochondrial pathways in ALD.


Liver Diseases, Alcoholic , Mitochondrial Diseases , Animals , Humans , Mice , Ethanol/toxicity , Ethanol/metabolism , Liver Diseases, Alcoholic/genetics , Mitochondria/genetics , Mitochondria/metabolism , Phosphoglycerate Mutase/genetics , Phosphoglycerate Mutase/metabolism , Voltage-Dependent Anion Channel 1/genetics , Voltage-Dependent Anion Channel 1/metabolism
14.
Sci Rep ; 14(1): 6193, 2024 03 14.
Article En | MEDLINE | ID: mdl-38486044

Gastric ulcers are a type of digestive disease that can severely affect a person's quality of life. Our study aimed to investigate the effects of fish oil on ethanol-induced gastric ulcers in rats, with the purpose of providing more comprehensive information on the topic. The study looked at various factors such as gastric ulcer index, and nitric oxide (NO) levels in stomach tissue. To investigate apoptosis, the mRNA levels of Bax, Bcl-2, and Caspase 3 were analyzed. The results showed that fish oil can reduce gastric acidity and the gastric ulcer index in cases of ethanol-induced gastric ulcers. It was found that fish oil can increase NO levels and improve the anti-apoptotic system by increasing the expression of Bcl-2 while decreasing the expression of Bax and Caspase 3. In general, the study demonstrates that fish oil can protect the stomach from ethanol-induced damage by reducing the apoptosis pathway via nitric oxide.


Stomach Ulcer , Humans , Rats , Animals , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Stomach Ulcer/metabolism , Caspase 3/metabolism , Gastric Mucosa/metabolism , Nitric Oxide/metabolism , Ethanol/toxicity , Ethanol/metabolism , Fish Oils/adverse effects , Quality of Life , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism , Apoptosis
15.
Dig Dis Sci ; 69(5): 1701-1713, 2024 May.
Article En | MEDLINE | ID: mdl-38551744

BACKGROUND AND AIM: he mixed lineage kinase domain like pseudokinase (MLKL) is known to play a protective role in non-alcoholic fatty liver disease (NAFLD) via inhibition of necroptosis pathway. However, the role of MLKL in alcoholic liver disease (ALD) is not yet clear. METHOD: C57BL/6N wild-type (WT) and MLKL-knockout (KO) mice (8-10 weeks old) were randomly divided into eight groups. To establish ALD model of different durations, ethanol (EtOH) was fed to WT and MLKL KO for 10 days, 4 weeks, and 8 weeks. The control group was fed with Lieber-DeCarli control diet for 8 weeks. Mortality, degree of hepatic inflammation, and steatosis were compared among the groups. Bulk mRNA transcriptome analysis was performed. Abundance of transcript and gene expressions were calculated based on read count or Transcript by Million (TPM) value. RESULTS: Survival rate of MLKL KO mice compared to WT was similar until 4 weeks, but the survival of MLKL KO mice significantly decreased after 8 weeks in ALD model. There was no difference in degree of inflammation, steatosis, and NAS scores between EtOH-fed MLKL KO and EtOH-fed WT mice at 10 days. However, at 4 weeks and 8 weeks, the degree of hepatic steatosis, NAS, and inflammation were increased in MLKL KO mice. RNA transcriptome data showed that fatty acid synthesis, and lipogenesis, mitochondria, and apoptosis-related pathways were upregulated in EtOH-fed MLKL KO mice compared to EtOH-fed WT mice. Although hepatocyte apoptosis (BAX/BCL2 ratio, caspase-3, and TUNEL staining) increased after EtOH intake; however, apoptosis was more significantly increased in EtOH-fed MLKL KO mice compared to the WT group. At the same time, hepatic cFLIP was decreased in EtOH-fed MLKL KO mice compared to the WT group. CONCLUSION: MLKL deletion did not prevent chronic alcohol-induced liver damage independently of necroptosis and exacerbated hepatic steatosis by increasing hepatocyte apoptosis.


Apoptosis , Liver Diseases, Alcoholic , Mice, Inbred C57BL , Mice, Knockout , Protein Kinases , Animals , Protein Kinases/genetics , Protein Kinases/metabolism , Liver Diseases, Alcoholic/genetics , Liver Diseases, Alcoholic/pathology , Liver Diseases, Alcoholic/metabolism , Mice , Ethanol/toxicity , Liver/pathology , Liver/metabolism , Male , Disease Models, Animal
16.
Int J Mol Sci ; 25(6)2024 Mar 20.
Article En | MEDLINE | ID: mdl-38542468

This study was performed to investigate the protective effects of Allium ochotense on fatty liver and hepatitis in chronic alcohol-induced hepatotoxicity. The physiological compounds of a mixture of aqueous and 60% ethanol (2:8, w/w) extracts of A. ochotense (EA) were identified as kestose, raffinose, kaempferol and quercetin glucoside, and kaempferol di-glucoside by UPLC Q-TOF MSE. The EA regulated the levels of lipid metabolism-related biomarkers such as total cholesterol, triglyceride, low-density lipoprotein (LDL), and high-density lipoprotein (HDL)-cholesterol in serum. Also, EA ameliorated the levels of liver toxicity-related biomarkers such as glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), and total bilirubin in serum. EA improved the antioxidant system by reducing malondialdehyde contents and increasing superoxide dismutase (SOD) levels and reduced glutathione content. EA improved the alcohol metabolizing enzymes such as alcohol dehydrogenase, acetaldehyde dehydrogenase, and cytochrome P450 2E1 (CYP2E1). Treatment with EA alleviated lipid accumulation-related protein expression by improving phosphorylation of AMP-activated protein kinase (p-AMPK) expression levels. Especially, EA reduced inflammatory response by regulating the toll-like receptor-4/nuclear factor kappa-light-chain-enhancer of activated B cells (TLR-4/NF-κB) signaling pathway. EA showed an anti-apoptotic effect by regulating the expression levels of B-cell lymphoma 2 (BCl-2), BCl-2-associated X protein (BAX), and caspase 3. Treatment with EA also ameliorated liver fibrosis via inhibition of transforming growth factor-beta 1/suppressor of mothers against decapentaplegic (TGF-ß1/Smad) pathway and alpha-smooth muscle actin (α-SMA). Therefore, these results suggest that EA might be a potential prophylactic agent for the treatment of alcoholic liver disease.


Fatty Liver, Alcoholic , Fatty Liver , Mice , Animals , Kaempferols/pharmacology , Liver/metabolism , Mice, Inbred C57BL , Fatty Liver, Alcoholic/metabolism , Ethanol/toxicity , Ethanol/metabolism , Fatty Liver/metabolism , Inflammation/metabolism , Cholesterol/metabolism , Glucosides/pharmacology , Biomarkers/metabolism , Oxidative Stress
17.
Environ Toxicol Chem ; 43(5): 1075-1089, 2024 May.
Article En | MEDLINE | ID: mdl-38477677

The amount of Sargassum spp. arriving in the Caribbean Sea has increased steadily in the last few years, producing a profound environmental impact on the ecological dynamics of the coasts of the Yucatan Peninsula. We characterized the toxicological effects of an ethanolic extract of Sargassum spp. on zebrafish (Danio rerio) embryos (ZFEs) in a 96-h static bioassay using T1 (0.01 mg/L), T2 (0.1 mg/L), T3 (1 mg/L), T4 (10 mg/L), T5 (25 mg/L), T6 (50 mg/L), T7 (75 mg/L), T8 (100 mg/L), T9 (200 mg/L), and T10 (400 mg/L). In this extract, we detected 74 compounds by gas chromatography-mass spectrometry (GC-MS), of which hexadecanoic acid methyl ester, and 2-pentanone 4-hydroxy-4-methyl, were the most abundant. In ZFEs, a median lethal concentration of 251 mg/L was estimated. Exposed embryos exhibited extensive morphological changes, including edema in the yolk sac, scoliosis, and loss of pigmentation, as well as malformations of the head, tail, and eyes. By integrating these abnormalities using the Integrated Biological Response (IBRv2) and General Morphological Score (GMS) indices, we were able to determine that ZFEs exposed to 200 mg/L (T9) exhibited the most pronounced biological response in comparison with the other groups. In the comparative transcriptomic analysis, 66 genes were upregulated, and 246 genes were downregulated in the group exposed to 200 mg/L compared with the control group. In the upregulated genes, we identified several gene ontology-enriched terms, such as response to xenobiotic stimuli, cellular response to chemical stimulus, transcriptional regulation, pigment metabolic process, erythrocyte differentiation and embryonic hemopoiesis, extracellular matrix organization, and chondrocyte differentiation involved in endochondral bone morphogenesis, among others. In the down-regulated genes, we found many genes associated with nervous system processes, sensory and visual perception, response to abiotic stimulus, and the nucleoside phosphate biosynthetic process. The probable connections among the morphological changes observed in the transcriptome are thoroughly discussed. Our findings suggest that Sargassum spp. exposure can induce a wide negative impact on zebrafish embryos. Environ Toxicol Chem 2024;43:1075-1089. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Embryo, Nonmammalian , Ethanol , Sargassum , Zebrafish , Animals , Sargassum/chemistry , Embryo, Nonmammalian/drug effects , Ethanol/toxicity , Water Pollutants, Chemical/toxicity , Gas Chromatography-Mass Spectrometry
18.
Environ Toxicol Chem ; 43(5): 1112-1125, 2024 May.
Article En | MEDLINE | ID: mdl-38517160

Freshwater mussels provide invaluable ecological services but are threatened by habitat alteration, poor water quality, invasive species, climate change, and contaminants, including contaminants of emerging concern (CECs). Contaminants of emerging concerns are well documented in aquatic environments, including the Great Lakes Basin, but limited information is available on how environmentally relevant mixtures affect freshwater mussel biology throughout their varied life stages. Our main goal was to assess mussels' reproductive output in response to exposure to agricultural and urban CEC mixtures during glochidial development through juvenile transformation and excystment focusing on how exposure duration and treatment affect: (1) the number of glochidia prematurely released by brooding females, (2) glochidial transformation through host-fish excystment, and (3) the number of fully metamorphosed juveniles able to continue the lifecycle. Mussels and host fish were exposed to either a control water (CW), control ethanol (CE), agriculture CEC mixture (AM), or urban CEC mixture (UM) for 40 and 100 days. We found no effect from treatment or exposure duration on the number of glochidia prematurely released. Fewer partially and fully metamorphosed AM juveniles were observed during the 100-day exposure, compared with the 40-day. During the 40-day exposure, CW produced more fully metamorphosed individuals compared with CE and UM, but during the 100-day exposure AM produced more fully metamorphosed individuals compared with the CW. There was reduction in fully metamorphosed juveniles compared with partially metamorphosed for CE and UM during the 40-day exposure, as well as in the CW during the 100-day exposure. These results will be important for understanding how mussel populations are affected by CEC exposure. The experiments also yielded many insights for laboratory toxicology exposure studies. Environ Toxicol Chem 2024;43:1112-1125. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/toxicity , Fresh Water , Agriculture , Bivalvia/drug effects , Bivalvia/growth & development , Reproduction/drug effects , Ethanol/toxicity , Cities , Female
19.
Alcohol ; 117: 55-63, 2024 Jun.
Article En | MEDLINE | ID: mdl-38531501

While past studies have provided evidence linking excessive alcohol consumption to increased risk for cardiovascular diseases (CVDs) and colorectal cancer (CRC), existing data on the effects of moderate alcohol use on these conditions have produced mixed results. The purpose of this study was to investigate the effects of moderate alcohol consumption on risk factors associated with the development of CVDs and CRC in adult rats. Twenty-four, 14-month-old, non-deprived male Wistar rats were randomly assigned to either an ethanol group, which consisted of voluntary access to a 20% (v/v) ethanol solution on alternate days, or a water control group (n = 12/group) for 13 weeks. Blood samples were collected to analyze levels of albumin, glucose, adiponectin, lipids, oxidized low-density lipoprotein cholesterol, high-density lipoprotein cholesterol (HDL-C), apolipoprotein A1 (apoA1), C-reactive protein (CRP), high-mobility group box 1 protein (HMGB-1), tumor necrosis factor-alpha (TNF-α), thyroxine, thyroid-stimulating hormone, 8-oxo-2'-deoxyguanosine (8-oxo-dG), liver function enzymes, and antioxidant capacity. Colonic gene expression related to colon carcinogenesis was also assessed. Ethanol-treated rats were found to have significantly higher HDL-C and apoA1 levels compared to controls. Moderate alcohol consumption led to significantly lower CRP levels and a trend for decrease in HMGB-1, TNF-α, and 8-oxo-dG levels. In the ethanol-exposed group, colonic gene expression of superoxide dismutase was upregulated while aldehyde dehydrogenase 2 showed a trend for increase compared to the control group. These results indicate that adopting a moderate approach to alcohol consumption could potentially improve health biomarkers related to CVD and CRC by increasing HDL-C levels and antioxidant activity and reducing DNA damage and inflammatory activity.


Cardiovascular Diseases , Colorectal Neoplasms , Ethanol , Rats, Wistar , Animals , Colorectal Neoplasms/chemically induced , Male , Ethanol/toxicity , Cardiovascular Diseases/etiology , Rats , Risk Factors , Alcohol Drinking/adverse effects , Cholesterol, HDL/blood , Apolipoprotein A-I/blood , Oxidative Stress/drug effects , C-Reactive Protein/analysis , C-Reactive Protein/metabolism
20.
Mol Nutr Food Res ; 68(7): e2300343, 2024 Apr.
Article En | MEDLINE | ID: mdl-38501770

SCOPE: Iron deposition is frequently observed in alcoholic liver disease (ALD), which indicates a potential role of ferroptosis in its development. This study aims to explore the effects of quercetin on ferroptosis in ALD and elucidates the underlying mechanism involving the formation of mitochondria-associated endoplasmic reticulum membranes (MAMs) mediated by protein kinase RNA-like endoplasmic reticulum kinase (PERK). METHODS AND RESULTS: C57BL/6J mice are fed either a regular or an ethanol-containing liquid diet (with 28% energy form ethanol) with or without quercetin supplementation (100 mg kg-1 BW) for 12 weeks. Ethanol feeding or treatment induced ferroptosis in mice and AML12 cells, which is associated with increased MAMs formation and PERK expression within MAMs. Quercetin attenuates these changes and protects against ethanol-induced liver injury. The antiferroptotic effect of quercetin is abolished by ferroptosis inducers, but mimicked by ferroptosis inhibitors and PERK knockdown. The study demonstrates that PERK structure, rather than its kinase activity (transfected with the K618A site mutation that inhibits kinase activity-ΔK plasmid or protein C terminal knockout-ΔC plasmid of PERK), mediates the enhanced MAMs formation and ferroptosis during the ethanol exposure. CONCLUSION: Quercetin ameliorates ethanol-induced liver injury by inhibiting ferroptosis via modulating PERK-dependent MAMs formation.


Chemical and Drug Induced Liver Injury, Chronic , Ferroptosis , Mice , Animals , Ethanol/toxicity , Quercetin/pharmacology , Quercetin/metabolism , Protein Kinases , Chemical and Drug Induced Liver Injury, Chronic/metabolism , Mice, Inbred C57BL , Endoplasmic Reticulum/metabolism
...