Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.455
Filter
1.
J Agric Food Chem ; 72(31): 17200-17209, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39075938

ABSTRACT

Photosynthesis system II (PS II) is an important target for the development of bioherbicides. In this study, a series of natural naphthoquinone derivatives containing diaryl ether were designed and synthesized based on the binding model of lawsone and PS II D1. Bioassays exhibited that most compounds had more than 80% inhibition of Portulaca oleracea and Echinochloa crusgalli roots at a dose of 100 µg/mL and compounds B4, B5, and C3 exhibited superior herbicidal activities against dicotyledonous and monocotyledon weeds to commercial atrazine. In particular, compound B5 exhibited excellent herbicidal activity at a dosage of 150 g a.i./ha. In addition, compared with atrazine, compound B5 causes less damage to crops. Molecular docking studies revealed that compound B5 effectively interacted with Pisum sativum PS II D1 via diverse interaction models, such as π-π stacking and hydrogen bonds. Molecular dynamics simulation studies and chlorophyll fluorescence measurements revealed that compound B5 acted on PS II. This is the first report of natural naphthoquinone derivatives targeting PS II and compound B5 may be a candidate molecule for the development of new herbicides targeting PS II.


Subject(s)
Drug Design , Echinochloa , Herbicides , Molecular Docking Simulation , Naphthoquinones , Plant Weeds , Herbicides/chemistry , Herbicides/pharmacology , Herbicides/chemical synthesis , Naphthoquinones/chemistry , Naphthoquinones/pharmacology , Echinochloa/drug effects , Echinochloa/growth & development , Plant Weeds/drug effects , Plant Weeds/growth & development , Structure-Activity Relationship , Ethers/chemistry , Ethers/pharmacology , Photosystem II Protein Complex/chemistry , Photosystem II Protein Complex/antagonists & inhibitors , Photosystem II Protein Complex/metabolism , Molecular Structure , Plant Proteins/chemistry , Plant Roots/chemistry , Plant Roots/drug effects
2.
Int J Mol Sci ; 25(12)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38928506

ABSTRACT

In the presented study, the effectiveness of a siloxane polyether (HOL7) coating on glass against microbiological colonization was assessed using microalgae as a key component of widespread aerial biofilms. The siloxane polyether was successfully synthesized by a hydrosilylation reaction in the presence of Karstedt's catalyst. The product structure was confirmed by NMR spectroscopy and GPC analysis. In addition, the thermal stability of HOL7 was studied by thermogravimetric measurement. Subsequently, the surfaces of glass plates were modified with the obtained organosilicon derivative. In the next step, a microalgal experiment was conducted. A mixture of four strains of algal taxa isolated from building materials was used for the experiment-Chlorodium saccharophilum PNK010, Klebsormidium flaccidum PNK013, Pseudostichococcus monallantoides PNK037, and Trebouxia aggregata PNK080. The choice of these algae followed from their wide occurrence in terrestrial environments. Application of an organofunctional siloxane compound on the glass reduced, more or less effectively, the photosynthetic activity of algal cells, depending on the concentration of the compound. Since the structure of the compound was not based on biocide-active agents, its effectiveness was associated with a reduction in water content in the cells.


Subject(s)
Microalgae , Siloxanes , Siloxanes/chemistry , Microalgae/chemistry , Biofilms/drug effects , Biofilms/growth & development , Ethers/chemistry , Ethers/pharmacology , Glass/chemistry , Photosynthesis
3.
Molecules ; 29(12)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38930832

ABSTRACT

In this research, with an aim to develop novel pyrazole oxime ether derivatives possessing potential biological activity, thirty-two pyrazole oxime ethers, including a substituted pyridine ring, have been synthesized and structurally identified through 1H NMR, 13C NMR, and HRMS. Bioassay data indicated that most of these compounds owned strong insecticidal properties against Mythimna separata, Tetranychus cinnabarinus, Plutella xylostella, and Aphis medicaginis at a dosage of 500 µg/mL, and some title compounds were active towards Nilaparvata lugens at 500 µg/mL. Furthermore, some of the designed compounds had potent insecticidal effects against M. separata, T. cinnabarinus, or A. medicaginis at 100 µg/mL, with the mortalities of compounds 8a, 8c, 8d, 8e, 8f, 8g, 8o, 8s, 8v, 8x, and 8z against A. medicaginis, in particular, all reaching 100%. Even when the dosage was lowered to 20 µg/mL, compound 8s also expressed 50% insecticidal activity against M. separata, and compounds 8a, 8e, 8f, 8o, 8v, and 8x displayed more than 60% inhibition rates against A. medicaginis. The current results provided a significant basis for the rational design of biologically active pyrazole oxime ethers in future.


Subject(s)
Drug Design , Insecticides , Oximes , Pyrazoles , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyrazoles/chemical synthesis , Oximes/chemistry , Oximes/pharmacology , Oximes/chemical synthesis , Insecticides/chemistry , Insecticides/chemical synthesis , Insecticides/pharmacology , Animals , Structure-Activity Relationship , Ethers/chemistry , Molecular Structure , Pyridines/chemistry , Pyridines/pharmacology , Pyridines/chemical synthesis , Moths/drug effects
4.
J Am Chem Soc ; 146(20): 13836-13845, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38717976

ABSTRACT

Hydrogels hold significant promise as drug delivery systems due to their distinct advantage of sustained localized drug release. However, the challenge of regulating the initial burst release while achieving precise control over degradation and drug-release kinetics persists. Herein, we present an ABA-type triblock copolymer-based hydrogel system with precisely programmable degradation and release kinetics. The resulting hydrogels were designed with a hydrophilic poly(ethylene oxide) midblock and a hydrophobic end-block composed of polyethers with varying ratios of ethoxyethyl glycidyl ether and tetrahydropyranyl glycidyl ether acetal pendant possessing different hydrolysis kinetics. This unique side-chain strategy enabled us to achieve a broad spectrum of precise degradation and drug-release profiles under mildly acidic conditions while maintaining the cross-linking density and viscoelastic modulus, which is unlike the conventional polyester-based backbone degradation system. Furthermore, programmable degradation of the hydrogels and release of active therapeutic agent paclitaxel loaded therein are demonstrated in an in vivo mouse model by suppressing tumor recurrence following surgical resection. Tuning of the fraction of two acetal pendants in the end-block provided delicate tailoring of hydrogel degradation and the drug release capability to achieve the desired therapeutic efficacy. This study not only affords a facile means to design hydrogels with precisely programmable degradation and release profiles but also highlights the critical importance of aligning the drug release profile with the target disease.


Subject(s)
Drug Liberation , Hydrogels , Hydrogels/chemistry , Hydrogels/chemical synthesis , Animals , Mice , Acetals/chemistry , Paclitaxel/chemistry , Paclitaxel/pharmacokinetics , Ethers/chemistry , Polyethylene Glycols/chemistry , Polymers/chemistry , Polymers/chemical synthesis , Drug Carriers/chemistry
5.
J Agric Food Chem ; 72(20): 11308-11320, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38720452

ABSTRACT

The dearomatization at the hydrophobic tail of the boscalid was carried out to construct a series of novel pyrazole-4-carboxamide derivatives containing an oxime ether fragment. By using fungicide-likeness analyses and virtual screening, 24 target compounds with theoretical strong inhibitory effects against fungal succinate dehydrogenase (SDH) were designed and synthesized. Antifungal bioassays showed that the target compound E1 could selectively inhibit the in vitro growth of R. solani, with the EC50 value of 1.1 µg/mL that was superior to that of the agricultural fungicide boscalid (2.2 µg/mL). The observations by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) demonstrated that E1 could reduce mycelial density and significantly increase the mitochondrial number in mycelia cytoplasm, which was similar to the phenomenon treated with boscalid. Enzyme activity assay showed that the E1 had the significant inhibitory effect against the SDH from R. solani, with the IC50 value of 3.3 µM that was superior to that of boscalid (7.9 µM). The mode of action of the target compound E1 with SDH was further analyzed by molecular docking and molecular dynamics simulation studies. Among them, the number of hydrogen bonds was significantly more in the SDH-E1 complex than that in the SDH-boscalid complex. This research on the dearomatization strategy of the benzene ring for constructing pyrazole-4-carboxamides containing an oxime ether fragment provides a unique thought to design new antifungal drugs targeting SDH.


Subject(s)
Drug Design , Enzyme Inhibitors , Fungicides, Industrial , Oximes , Pyrazoles , Succinate Dehydrogenase , Succinate Dehydrogenase/antagonists & inhibitors , Succinate Dehydrogenase/chemistry , Succinate Dehydrogenase/metabolism , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyrazoles/chemical synthesis , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Fungicides, Industrial/chemical synthesis , Structure-Activity Relationship , Oximes/chemistry , Oximes/pharmacology , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Fungal Proteins/chemistry , Fungal Proteins/antagonists & inhibitors , Fungal Proteins/metabolism , Molecular Docking Simulation , Rhizoctonia/drug effects , Ethers/chemistry , Ethers/pharmacology , Molecular Structure
6.
Bioorg Med Chem Lett ; 108: 129813, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38788964

ABSTRACT

Succinate dehydrogenase inhibitors are essential fungicides used in agriculture. To explore new pyrazole-carboxamides with high fungicidal activity, a series of N-substitutedphenyl-3-di/trifluoromethyl-1-methyl-1H-pyrazole-4-carboxamides bearing a branched alkyl ether moiety were designed and synthesized. The in vitro bioassay indicated that some target compounds displayed appreciable fungicidal activity. For example, compounds 5d and 5e showed high efficacy against S. sclerotiorum with EC50 values of 3.26 and 1.52 µg/mL respectively, and also exhibited excellent efficacy against R. solani with EC50 values of 0.27 and 0.06 µg/mL respectively, which were comparable or superior to penflufen. The further in vivo bioassay on cucumber leaves demonstrated that 5e provided strong protective activity of 94.3 % against S. sclerotiorum at 100 µg/mL, comparable to penflufen (99.1 %). Cytotoxicity assessment against human renal cell lines (239A cell) revealed that 5e had low cytotoxicity within the median effective concentrations. Docking study of 5e with succinate dehydrogenase illustrated that R-5e formed one hydrogen bond and two π-π stacking interactions with amino acid residues of target enzyme, while S-5e formed only one π-π stacking interaction with amino acid residue. This study provides a valuable reference for the design of new succinate dehydrogenase inhibitor.


Subject(s)
Fungicides, Industrial , Molecular Docking Simulation , Pyrazoles , Succinate Dehydrogenase , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyrazoles/chemical synthesis , Humans , Structure-Activity Relationship , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemical synthesis , Fungicides, Industrial/chemistry , Succinate Dehydrogenase/antagonists & inhibitors , Succinate Dehydrogenase/metabolism , Microbial Sensitivity Tests , Molecular Structure , Ascomycota/drug effects , Amides/chemistry , Amides/pharmacology , Amides/chemical synthesis , Dose-Response Relationship, Drug , Ethers/chemistry , Ethers/pharmacology , Ethers/chemical synthesis , Rhizoctonia
7.
J Agric Food Chem ; 72(23): 12946-12955, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38809794

ABSTRACT

Protoporphyrinogen IX oxidase (PPO, EC 1.3.3.4) is one of the most important targets for the discovery of green herbicides. In order to find novel PPO inhibitors with a higher herbicidal activity, a series of novel N-phenyltriazinone derivatives containing oxime ether and oxime ester groups were designed and synthesized based on the strategy of pharmacophore and scaffold hopping. Bioassay results revealed that some compounds showed herbicidal activities; especially, compound B16 exhibited broad-spectrum and excellent 100% herbicidal effects to Echinochloa crusgalli, Digitaria sanguinalis, Setaria faberii, Abutilon juncea, Amaranthus retroflexus, and Portulaca oleracea at a concentration of 37.5 g a.i./ha, which were comparable to trifludimoxazin. Nicotiana tabacum PPO (NtPPO) enzyme inhibitory assay indicated that B16 showed an excellent enzyme inhibitory activity with a value of 32.14 nM, which was similar to that of trifludimoxazin (31.33 nM). Meanwhile, compound B16 revealed more safety for crops (rice, maize, wheat, peanut, soybean, and cotton) than trifludimoxazin at a dose of 150 g a.i./ha. Moreover, molecular docking and molecular dynamics simulation further showed that B16 has a very strong and stable binding to NtPPO. It indicated that B16 can be used as a potential PPO inhibitor and herbicide candidate for application in the field.


Subject(s)
Enzyme Inhibitors , Herbicides , Molecular Docking Simulation , Oximes , Plant Proteins , Plant Weeds , Protoporphyrinogen Oxidase , Protoporphyrinogen Oxidase/antagonists & inhibitors , Protoporphyrinogen Oxidase/chemistry , Protoporphyrinogen Oxidase/metabolism , Herbicides/pharmacology , Herbicides/chemistry , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Oximes/chemistry , Oximes/pharmacology , Structure-Activity Relationship , Plant Weeds/drug effects , Plant Weeds/enzymology , Plant Proteins/chemistry , Plant Proteins/antagonists & inhibitors , Plant Proteins/metabolism , Triazines/chemistry , Triazines/pharmacology , Esters/chemistry , Esters/pharmacology , Molecular Structure , Ethers/chemistry , Ethers/pharmacology , Drug Discovery
8.
Eur J Med Chem ; 272: 116459, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38704942

ABSTRACT

Activation of the aminopeptidase (AP) activity of leukotriene A4 hydrolase (LTA4H) presents a potential therapeutic strategy for resolving chronic inflammation. Previously, ARM1 and derivatives were found to activate the AP activity using the alanine-p-nitroanilide (Ala-pNA) as a reporter group in an enzyme kinetics assay. As an extension of this previous work, novel ARM1 derivatives were synthesized using a palladium-catalyzed Ullmann coupling reaction and screened using the same assay. Analogue 5, an aminopyrazole (AMP) analogue of ARM1, was found to be a potent AP activator with an AC50 of 0.12 µM. An X-ray crystal structure of LTA4H in complex with AMP was refined at 2.7 Å. Despite its AP activity with Ala-pNA substrate, AMP did not affect hydrolysis of the previously proposed natural ligand of LTA4H, Pro-Gly-Pro (PGP). This result highlights a discrepancy between the hydrolysis of more conveniently monitored chromogenic synthetic peptides typically employed in assays and endogenous peptides. The epoxide hydrolase (EH) activity of AMP was measured in vivo and the compound significantly reduced leukotriene B4 (LTB4) levels in a murine bacterial pneumonia model. However, AMP did not enhance survival in the murine pneumonia model over a 14-day period. A liver microsome stability assay showed metabolic stability of AMP. The results suggested that accelerated Ala-pNA cleavage is not sufficient for predicting therapeutic potential, even when the full mechanism of activation is known.


Subject(s)
Epoxide Hydrolases , Epoxide Hydrolases/antagonists & inhibitors , Epoxide Hydrolases/metabolism , Animals , Mice , Structure-Activity Relationship , Humans , Molecular Structure , Aminopeptidases/metabolism , Aminopeptidases/antagonists & inhibitors , Ethers/pharmacology , Ethers/chemistry , Ethers/chemical synthesis , Dose-Response Relationship, Drug , Models, Molecular , Crystallography, X-Ray
9.
Angew Chem Int Ed Engl ; 63(25): e202404105, 2024 06 17.
Article in English | MEDLINE | ID: mdl-38630059

ABSTRACT

Silyl ethers fulfil a fundamental role in synthetic organic chemistry as protecting groups and their selective cleavage is an important factor in their application. We present here for the first time two enzymes, SilE-R and SilE-S, which are able to hydrolyse silyl ethers. They belong to the stress-response dimeric A/B barrel domain (DABB) family and are able to cleave the Si-O bond with opposite enantiopreference. Silyl ethers containing aromatic, cyclic or aliphatic alcohols and, depending on the alcohol moiety, silyl functions as large as TBDMS are accepted. The X-ray crystal structure of SilE-R, determined to a resolution of 1.98 Å, in combination with mutational studies, revealed an active site featuring two histidine residues, H8 and H79, which likely act synergistically as nucleophile and Brønsted base in the hydrolytic mechanism, which has not previously been described for enzymes. Although the natural function of SilE-R and SilE-S is unknown, we propose that these 'silyl etherases' may have significant potential for synthetic applications.


Subject(s)
Ethers , Hydrolysis , Ethers/chemistry , Stereoisomerism , Models, Molecular , Crystallography, X-Ray , Organosilicon Compounds/chemistry , Organosilicon Compounds/chemical synthesis , Molecular Structure , Catalytic Domain
10.
Nat Commun ; 15(1): 3439, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38653759

ABSTRACT

Oxygen in marine sediments regulates many key biogeochemical processes, playing a crucial role in shaping Earth's climate and benthic ecosystems. In this context, branched glycerol dialkyl glycerol tetraethers (brGDGTs), essential biomarkers in paleoenvironmental research, exhibit an as-yet-unresolved association with sediment oxygen conditions. Here, we investigated brGDGTs in sediments from three deep-sea regions (4045 to 10,100 m water depth) dominated by three respective trench systems and integrated the results with in situ oxygen microprofile data. Our results demonstrate robust correlations between diffusive oxygen uptake (DOU) obtained from microprofiles and brGDGT methylation and isomerization degrees, indicating their primary production within sediments and their strong linkage with microbial diagenetic activity. We establish a quantitative relationship between the Isomerization and Methylation index of Branched Tetraethers (IMBT) and DOU, suggesting its potential validity across deep-sea environments. Increased brGDGT methylation and isomerization likely enhance the fitness of source organisms in deep-sea habitats. Our study positions brGDGTs as a promising tool for quantifying benthic DOU in deep-sea settings, where DOU is a key metric for assessing sedimentary organic carbon degradation and microbial activity.


Subject(s)
Bacteria , Geologic Sediments , Oxygen , Geologic Sediments/microbiology , Geologic Sediments/chemistry , Oxygen/metabolism , Oxygen/chemistry , Bacteria/metabolism , Bacteria/genetics , Ecosystem , Ethers/metabolism , Ethers/chemistry , Lipids/chemistry , Methylation , Seawater/microbiology , Seawater/chemistry
11.
Biomolecules ; 14(4)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38672508

ABSTRACT

Reported herein is the development of assays for the spectrophotometric quantification of biocatalytic silicon-oxygen bond hydrolysis. Central to these assays are a series of chromogenic substrates that release highly absorbing phenoxy anions upon cleavage of the sessile bond. These substrates were tested with silicatein, an enzyme from a marine sponge that is known to catalyse the hydrolysis and condensation of silyl ethers. It was found that, of the substrates tested, tert-butyldimethyl(2-methyl-4-nitrophenoxy)silane provided the best assay performance, as evidenced by the highest ratio of enzyme catalysed reaction rate compared with the background (uncatalysed) reaction. These substrates were also found to be suitable for detailed enzyme kinetics measurements, as demonstrated by their use to determine the Michaelis-Menten kinetic parameters for silicatein.


Subject(s)
Biocatalysis , Ethers , Silanes , Spectrophotometry , Hydrolysis , Spectrophotometry/methods , Silanes/chemistry , Kinetics , Ethers/chemistry , Ethers/metabolism , Animals , Cathepsins/metabolism , Cathepsins/chemistry
12.
J Nat Prod ; 87(4): 849-854, 2024 04 26.
Article in English | MEDLINE | ID: mdl-38416027

ABSTRACT

Microthecaline A (1), the known antiplasmodial quinoline serrulatane alkaloid from the roots of Eremophila microtheca F. Muell. ex Benth. (Scrophulariaceae), was targeted for isolation and subsequent use in the generation of a semisynthetic ether library. A large-scale extraction and isolation yielded the previously undescribed quinoline serrulatane microthecaline B (2), along with crystalline 1 that enabled the first X-ray crystallographic analysis to be undertaken on this rare alkaloid structure class. The X-ray diffraction analysis of 1 supported the absolute configuration assignment of microthecaline A, which was originally assigned by ECD data analysis. Microthecaline A (1) was converted into 10 new semisynthetic ether derivatives (3-12) using a diverse series of commercially available alkyl halides. Chemical structures of the new serrulatane alkaloid and semisynthetic ether analogues were assigned by spectroscopic and spectrometric analyses. Antiplasmodial evaluations of 1-12 showed that the semisynthetic derivative 5 elicited the most potent activity with an IC50 value of 7.2 µM against Plasmodium falciparum 3D7 (drug-sensitive) strain.


Subject(s)
Alkaloids , Antimalarials , Plasmodium falciparum , Antimalarials/pharmacology , Antimalarials/chemistry , Antimalarials/isolation & purification , Alkaloids/pharmacology , Alkaloids/chemistry , Alkaloids/isolation & purification , Plasmodium falciparum/drug effects , Molecular Structure , Eremophila Plant/chemistry , Crystallography, X-Ray , Quinolines/pharmacology , Quinolines/chemistry , Plant Roots/chemistry , Ethers/pharmacology , Ethers/chemistry
13.
Chembiochem ; 25(8): e202400132, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38416537

ABSTRACT

A LigE-type beta-etherase enzyme from lignin-degrading Agrobacterium sp. has been identified, which assists degradation of polymeric lignins. Testing against lignin dimer model compounds revealed that it does not catalyse the previously reported reaction of Sphingobium SYK-6 LigE, but instead shows activity for a ß-5 phenylcoumaran lignin dimer. The reaction products did not contain glutathione, indicating a catalytic role for reduced glutathione in this enzyme. Three reaction products were identified: the major product was a cis-stilbene arising from C-C fragmentation involving loss of formaldehyde; two minor products were an alkene arising from elimination of glutathione, and an oxidised ketone, proposed to arise from reaction of an intermediate with molecular oxygen. Testing of the recombinant enzyme against a soda lignin revealed the formation of new signals by two-dimensional NMR analysis, whose chemical shifts are consistent with the formation of a stilbene unit in polymeric lignin.


Subject(s)
Lignin , Stilbenes , Lignin/metabolism , Ether , Agrobacterium/metabolism , Ethers/chemistry , Ethyl Ethers , Glutathione/metabolism
14.
Carbohydr Res ; 536: 109032, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38219634

ABSTRACT

Hex-3-enuloses constitute a vital carbohydrate synthetic intermediate that provide access to wide range of chiral molecules through diverse derivatizations. Herein we report synthesis of these fascinating scaffolds by oxidation of C3-ether protections on glycals in presence of N-fluorobenzenesulfonimide (NFSI) under Cu(I) catalysed conditions. Benzyl, methyl and silyl ethers have been efficiently oxidized to the carbonyl group. The oxidation has been found to be highly regioselective where an array of protecting groups were tolerant to the reaction conditions. Pyranosyl glycals from various commercially available sugars have been studied in this work to evaluate the broad substrate scope.


Subject(s)
Benzenesulfonamides , Ether , Ethers , Ethers/chemistry , Oxidation-Reduction , Lactulose , Sulfonamides
15.
Environ Microbiol Rep ; 16(1): e13210, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37950419

ABSTRACT

The MBES04 strain of Novosphingobium accumulates phenylpropanone monomers as end-products of the etherase system, which specifically and reductively cleaves the ß-O-4 ether bond (a major bond in lignin molecules). However, it does not utilise phenylpropanone monomers as an energy source. Here, we studied the response to the lignin-related perturbation to clarify the physiological significance of its etherase system. Transcriptome analysis revealed two gene clusters, each consisting of four tandemly linked genes, specifically induced by a lignin preparation extracted from hardwood (Eucalyptus globulus) and a ß-O-4-type lignin model biaryl compound, but not by vanillin. The most strongly induced gene was a 2,4'-dihydroxyacetophenone dioxygenase-like protein, which leads to energy production through oxidative degradation. The other cluster was related to multidrug resistance. The former cluster was transcriptionally regulated by a common promoter, where a phenylpropanone monomer acted as one of the effectors responsible for gene induction. These results indicate that the physiological significance of the etherase system of the strain lies in its function as a sensor for lignin fragments. This may be a survival strategy to detect nutrients and gain tolerance to recalcitrant toxic compounds, while the strain preferentially utilises easily degradable aromatic compounds with lower energy demands for catabolism.


Subject(s)
Hydrocarbons, Fluorinated , Lignin , Sphingomonadaceae , Lignin/chemistry , Bacterial Proteins/genetics , Oxidation-Reduction , Ethers/chemistry , Ethers/metabolism , Sphingomonadaceae/genetics , Sphingomonadaceae/metabolism
16.
Int J Mol Sci ; 24(23)2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38069175

ABSTRACT

The present review explores the critical role of oxime and oxime ether moieties in enhancing the physicochemical and anticancer properties of structurally diverse molecular frameworks. Specific examples are carefully selected to illustrate the distinct contributions of these functional groups to general strategies for molecular design, modulation of biological activities, computational modeling, and structure-activity relationship studies. An extensive literature search was conducted across three databases, including PubMed, Google Scholar, and Scifinder, enabling us to create one of the most comprehensive overviews of how oximes and oxime ethers impact antitumor activities within a wide range of structural frameworks. This search focused on various combinations of keywords or their synonyms, related to the anticancer activity of oximes and oxime ethers, structure-activity relationships, mechanism of action, as well as molecular dynamics and docking studies. Each article was evaluated based on its scientific merit and the depth of the study, resulting in 268 cited references and more than 336 illustrative chemical structures carefully selected to support this analysis. As many previous reviews focus on one subclass of this extensive family of compounds, this report represents one of the rare and fully comprehensive assessments of the anticancer potential of this group of molecules across diverse molecular scaffolds.


Subject(s)
Ether , Oximes , Oximes/pharmacology , Oximes/chemistry , Ethers/pharmacology , Ethers/chemistry , Structure-Activity Relationship , Ethyl Ethers
17.
Biochimie ; 215: 50-59, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37678745

ABSTRACT

Ether-lipids (EL) are specific lipids bearing a characteristic sn-1 ether bond. Depending on the ether or vinyl-ether nature of this bond, they are present as alkyl- or alkenyl-EL, respectively. Among EL, alkenyl-EL, also referred as plasmalogens in the literature, attract most of the scientific interest as they are the predominant EL species in eukaryotic cells, thus less is known about alkyl-EL. EL have been implicated in various signaling pathways and alterations in their quantity are frequently observed in pathologies such as neurodegenerative and cardiovascular diseases or cancer. However, it remains unknown whether both alkyl- and alkenyl-EL play the same roles in these processes. This review summarizes the roles and mechanisms of action of EL in cellular signaling and tries to discriminate between alkyl- and alkenyl-EL. We also focus on the involvement of EL-mediated alterations of cellular signaling in diseases and discuss the potential interest for EL in therapy.


Subject(s)
Ether , Ethers , Ethers/chemistry , Plasmalogens/metabolism
18.
Molecules ; 28(13)2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37446703

ABSTRACT

Oxime ethers are a class of compounds containing the >C=N-O-R moiety. The presence of this moiety affects the biological activity of the compounds. In this review, the structures of oxime ethers with specific biological activity have been collected and presented, and bactericidal, fungicidal, antidepressant, anticancer and herbicidal activities, among others, are described. The review includes both those substances that are currently used as drugs (e.g., fluvoxamine, mayzent, ridogrel, oxiconazole), as well as non-drug structures for which various biological activity studies have been conducted. To the best of our knowledge, this is the first review of the biological activity of compounds containing such a moiety. The authors hope that this review will inspire scientists to take a greater interest in this group of compounds, as it constitutes an interesting research area.


Subject(s)
Anesthetics, General , Fungicides, Industrial , Ethers/chemistry , Structure-Activity Relationship , Oximes/pharmacology , Oximes/chemistry , Fungicides, Industrial/pharmacology , Anti-Bacterial Agents/pharmacology
19.
Molecules ; 28(11)2023 May 24.
Article in English | MEDLINE | ID: mdl-37298778

ABSTRACT

A simple and efficient hydroxide-mediated SNAr rearrangement was reported to synthesize new depside derivatives containing the diaryl ether skeleton from the natural product barbatic acid. The prepared compounds were determined using 1H NMR, 13C NMR, HRMS, and X-ray crystallographic analysis and were also screened in vitro for cytotoxicity against three cancer cell lines and one normal cell line. The evaluation results showed that compound 3b possessed the best antiproliferative activity against liver cancer HepG2 cell line and low toxicity, which made it worth further study.


Subject(s)
Antineoplastic Agents , Depsides , Depsides/pharmacology , Cell Line, Tumor , Ether/pharmacology , Antineoplastic Agents/chemistry , Ethers/chemistry , Ethyl Ethers , Skeleton , Drug Screening Assays, Antitumor , Structure-Activity Relationship , Cell Proliferation , Molecular Structure
20.
J Biol Chem ; 299(7): 104898, 2023 07.
Article in English | MEDLINE | ID: mdl-37295774

ABSTRACT

Vanillyl alcohol oxidases (VAOs) belong to the 4-phenol oxidases family and are found predominantly in lignin-degrading ascomycetes. Systematical investigation of the enzyme family at the sequence level resulted in discovery and characterization of the second recombinantly produced VAO member, DcVAO, from Diplodia corticola. Remarkably high activities for 2,6-substituted substrates like 4-allyl-2,6-dimethoxy-phenol (3.5 ± 0.02 U mg-1) or 4-(hydroxymethyl)-2,6-dimethoxyphenol (6.3 ± 0.5 U mg-1) were observed, which could be attributed to a Phe to Ala exchange in the catalytic center. In order to rationalize this rare substrate preference among VAOs, we resurrected and characterized three ancestral enzymes and performed mutagenesis analyses. The results indicate that a Cys/Glu exchange was required to retain activity for É£-hydroxylations and shifted the acceptance towards benzyl ethers (up to 4.0 ± 0.1 U mg-1). Our findings contribute to the understanding of the functionality of VAO enzyme group, and with DcVAO, we add a new enzyme to the repertoire of ether cleaving biocatalysts.


Subject(s)
Alcohol Oxidoreductases , Ascomycota , Biocatalysis , Alcohol Oxidoreductases/chemistry , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism , Ascomycota/enzymology , Phenols/chemistry , Phenols/metabolism , Substrate Specificity , Hydroxylation , Ethers/chemistry , Ethers/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL