Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 8.135
1.
BMC Plant Biol ; 24(1): 418, 2024 May 18.
Article En | MEDLINE | ID: mdl-38760720

BACKGROUND: Blueberry fruit exhibit atypical climacteric ripening with a non-auto-catalytic increase in ethylene coincident with initiation of ripening. Further, application of ethephon, an ethylene-releasing plant growth regulator, accelerates ripening by increasing the proportion of ripe (blue) fruit as compared to the control treatment. To investigate the mechanistic role of ethylene in regulating blueberry ripening, we performed transcriptome analysis on fruit treated with ethephon, an ethylene-releasing plant growth regulator. RESULTS: RNA-Sequencing was performed on two sets of rabbiteye blueberry ('Powderblue') fruit: (1) fruit from divergent developmental stages; and (2) fruit treated with ethephon, an ethylene-releasing compound. Differentially expressed genes (DEGs) from divergent developmental stages clustered into nine groups, among which cluster 1 displayed reduction in expression during ripening initiation and was enriched with photosynthesis related genes, while cluster 7 displayed increased expression during ripening and was enriched with aromatic-amino acid family catabolism genes, suggesting stimulation of anthocyanin biosynthesis. More DEGs were apparent at 1 day after ethephon treatment suggesting its early influence during ripening initiation. Overall, a higher number of genes were downregulated in response to ethylene. Many of these overlapped with cluster 1 genes, indicating that ethylene-mediated downregulation of photosynthesis is an important developmental event during the ripening transition. Analyses of DEGs in response to ethylene also indicated interplay among phytohormones. Ethylene positively regulated abscisic acid (ABA), negatively regulated jasmonates (JAs), and influenced auxin (IAA) metabolism and signaling genes. Phytohormone quantification supported these effects of ethylene, indicating coordination of blueberry fruit ripening by ethylene. CONCLUSION: This study provides insights into the role of ethylene in blueberry fruit ripening. Ethylene initiates blueberry ripening by downregulating photosynthesis-related genes. Also, ethylene regulates phytohormone-metabolism and signaling related genes, increases ABA, and decreases JA concentrations. Together, these results indicate that interplay among multiple phytohormones regulates the progression of ripening, and that ethylene is an important coordinator of such interactions during blueberry fruit ripening.


Abscisic Acid , Blueberry Plants , Cyclopentanes , Ethylenes , Fruit , Gene Expression Regulation, Plant , Oxylipins , Photosynthesis , Plant Growth Regulators , Ethylenes/metabolism , Abscisic Acid/metabolism , Cyclopentanes/metabolism , Cyclopentanes/pharmacology , Plant Growth Regulators/metabolism , Blueberry Plants/genetics , Blueberry Plants/growth & development , Blueberry Plants/metabolism , Blueberry Plants/physiology , Fruit/growth & development , Fruit/genetics , Fruit/drug effects , Oxylipins/metabolism , Down-Regulation , Organophosphorus Compounds/pharmacology , Gene Expression Profiling
2.
Int J Food Microbiol ; 418: 110729, 2024 Jun 16.
Article En | MEDLINE | ID: mdl-38696986

Ethylene produced by plants generally induces ripening and promotes decay, whereas the effect of ethylene produced by pathogens on plant diseases remains unclear. In this study, four ethylene-producing fungi including Alternaria alternata (A. alternata, Aa), Fusarium verticilliodes (F. verticillioides, Fv), Fusarium fujikuroi 1 (F. fujikuroi 1, Ff-1) and Fusarium fujikuroi 2 (F. fujikuroi 2, Ff-2) were severally inoculated in potato dextrose broth (PDB) media and postharvest green peppers, the ethylene production rates, disease indexes and chlorophyll fluorescence parameters were determined. The results showed that Ff-2 and Fv in the PDB media had the highest and almost the same ethylene production rates. After inoculation with green peppers, Ff-2 treated group still exhibited the highest ethylene production rate, whereas Aa treated group had a weak promotion effect on ethylene production. Moreover, the ethylene production rate of green peppers with mechanical injury was twice that without mechanical injury, and the ethylene production rates of green peppers treated with Aa, Ff-1, Ff-2 and Fv were 1.2, 2.6, 3.8 and 2.8 folds than those of green peppers without treatment, respectively. These results indicated that pathogen infection stimulated the synthesis of ethylene in green peppers. Correlation analysis indicated that the degreening of Fusarium-infected green pepper was significantly positively correlated with the ethylene production rate of green pepper, whereas the disease spot of Aa-infected green pepper had a significant positive correlations with the ethylene production rate of green peppers. Chlorophyll fluorescence results showed that the green peppers already suffered from severe disease after being infected with fungi for 4 days, and Fusarium infection caused early and serious stress, while the harm caused by A. alternata was relatively mild at the early stage. Our results clearly showed that α-keto-γ-methylthiobutyric acid (KMBA)-mediated ethylene synthesis was the major ethylene synthesis pathway in the four postharvest pathogenic fungi. All the results obtained suggested that ethylene might be the main infection factor of Fusarium spp. in green peppers. For pathogenic fungi, stimulating green peppers to produce high level of ethylene played a key role in the degreening of green peppers.


Alternaria , Capsicum , Ethylenes , Fusarium , Plant Diseases , Ethylenes/metabolism , Ethylenes/biosynthesis , Capsicum/microbiology , Fusarium/metabolism , Plant Diseases/microbiology , Alternaria/metabolism , Chlorophyll/metabolism , Chlorophyll/biosynthesis
3.
Plant Mol Biol ; 114(3): 63, 2024 May 28.
Article En | MEDLINE | ID: mdl-38805152

Senescence is a multifaceted and dynamic developmental phase pivotal in the plant's lifecycle, exerting significant influence and involving intricate regulatory mechanisms marked by a variety of structural, biochemical and molecular alterations. Biochemical changes, including reactive oxygen species (ROS) generation, membrane deterioration, nucleic acid degradation and protein degradation, characterize flower senescence. The progression of senescence entails a meticulously orchestrated network of interconnected molecular mechanisms and signalling pathways, ensuring its synchronized and efficient execution. Within flowering plants, petal senescence emerges as a crucial aspect significantly impacting flower longevity and postharvest quality, emphasizing the pressing necessity of unravelling the underlying signalling cascades orchestrating this process. Understanding the complex signalling pathways regulating petal senescence holds paramount importance, not only shedding light on the broader phenomenon of plant senescence but also paving the way for the development of targeted strategies to enhance the postharvest longevity of cut flowers. Various signalling pathways participate in petal senescence, encompassing hormone signalling, calcium signalling, protein kinase signalling and ROS signalling. Among these, the ethylene signalling pathway is extensively studied, and the manipulation of genes associated with ethylene biosynthesis or signal transduction has demonstrated the potential to enhance flower longevity. A thorough understanding of these complex pathways is critical for effectively delaying flower senescence, thereby enhancing postharvest quality and ornamental value. Therefore, this review adopts a viewpoint that combines fundamental research into the molecular intricacies of senescence with a practical orientation towards developing strategies for improving the postharvest quality of cut flowers. The innovation of this review is to shed light on the pivotal signalling cascades underpinning flower senescence and offer insights into potential approaches for modulating these pathways to postpone petal senescence in ornamental plants.


Cell Death , Flowers , Reactive Oxygen Species , Signal Transduction , Flowers/genetics , Flowers/physiology , Flowers/growth & development , Reactive Oxygen Species/metabolism , Ethylenes/metabolism , Plant Senescence/genetics , Gene Expression Regulation, Plant , Plant Growth Regulators/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics
4.
Nat Commun ; 15(1): 3875, 2024 May 08.
Article En | MEDLINE | ID: mdl-38719800

The genomes of charophyte green algae, close relatives of land plants, typically do not show signs of developmental regulation by phytohormones. However, scattered reports of endogenous phytohormone production in these organisms exist. We performed a comprehensive analysis of multiple phytohormones in Viridiplantae, focusing mainly on charophytes. We show that auxin, salicylic acid, ethylene and tRNA-derived cytokinins including cis-zeatin are found ubiquitously in Viridiplantae. By contrast, land plants but not green algae contain the trans-zeatin type cytokinins as well as auxin and cytokinin conjugates. Charophytes occasionally produce jasmonates and abscisic acid, whereas the latter is detected consistently in land plants. Several phytohormones are excreted into the culture medium, including auxin by charophytes and cytokinins and salicylic acid by Viridiplantae in general. We note that the conservation of phytohormone biosynthesis and signaling pathways known from angiosperms does not match the capacity for phytohormone biosynthesis in Viridiplantae. Our phylogenetically guided analysis of established algal cultures provides an important insight into phytohormone biosynthesis and metabolism across Streptophyta.


Cytokinins , Indoleacetic Acids , Phylogeny , Plant Growth Regulators , Plant Growth Regulators/metabolism , Indoleacetic Acids/metabolism , Cytokinins/metabolism , Viridiplantae/metabolism , Viridiplantae/genetics , Ethylenes/metabolism , Oxylipins/metabolism , Salicylic Acid/metabolism , Abscisic Acid/metabolism , Gene Expression Regulation, Plant , Cyclopentanes/metabolism , Biological Evolution , Chlorophyta/metabolism , Chlorophyta/genetics , Signal Transduction
5.
Int J Mol Sci ; 25(9)2024 Apr 27.
Article En | MEDLINE | ID: mdl-38731994

The mechanism of ethylene (ET)-regulated salinity stress response remains largely unexplained, especially for semi-halophytes and halophytes. Here, we present the results of the multifaceted analysis of the model semi-halophyte Mesembryanthemum crystallinum L. (common ice plant) ET biosynthesis pathway key components' response to prolonged (14 days) salinity stress. Transcriptomic analysis revealed that the expression of 3280 ice plant genes was altered during 14-day long salinity (0.4 M NaCl) stress. A thorough analysis of differentially expressed genes (DEGs) showed that the expression of genes involved in ET biosynthesis and perception (ET receptors), the abscisic acid (ABA) catabolic process, and photosynthetic apparatus was significantly modified with prolonged stressor presence. To some point this result was supported with the expression analysis of the transcript amount (qPCR) of key ET biosynthesis pathway genes, namely ACS6 (1-aminocyclopropane-1-carboxylate synthase) and ACO1 (1-aminocyclopropane-1-carboxylate oxidase) orthologs. However, the pronounced circadian rhythm observed in the expression of both genes in unaffected (control) plants was distorted and an evident downregulation of both orthologs' was induced with prolonged salinity stress. The UPLC-MS analysis of the ET biosynthesis pathway rate-limiting semi-product, namely of 1-aminocyclopropane-1-carboxylic acid (ACC) content, confirmed the results assessed with molecular tools. The circadian rhythm of the ACC production of NaCl-treated semi-halophytes remained largely unaffected by the prolonged salinity stress episode. We speculate that the obtained results represent an image of the steady state established over the past 14 days, while during the first hours of the salinity stress response, the view could be completely different.


Ethylenes , Gene Expression Regulation, Plant , Salt Stress , Salt-Tolerant Plants , Ethylenes/biosynthesis , Ethylenes/metabolism , Salt-Tolerant Plants/genetics , Salt-Tolerant Plants/metabolism , Mesembryanthemum/metabolism , Mesembryanthemum/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Biosynthetic Pathways , Gene Expression Profiling/methods , Abscisic Acid/metabolism , Salinity , Transcriptome
6.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article En | MEDLINE | ID: mdl-38732059

Anthocyanin accumulation is regulated by specific genes during fruit ripening. Currently, peel coloration of mango fruit in response to exogenous ethylene and the underlying molecular mechanism remain largely unknown. The role of MiMYB8 on suppressing peel coloration in postharvest 'Guifei' mango was investigated by physiology detection, RNA-seq, qRT-PCR, bioinformatics analysis, yeast one-hybrid, dual-luciferase reporter assay, and transient overexpression. Results showed that compared with the control, low concentration of exogenous ethylene (ETH, 500 mg·L-1) significantly promoted peel coloration of mango fruit (cv. Guifei). However, a higher concentration of ETH (1000 mg·L-1) suppressed color transformation, which is associated with higher chlorophyll content, lower a* value, anthocyanin content, and phenylalanine ammonia-lyase (PAL) activity of mango fruit. M. indica myeloblastosis8 MiMYB8 and MiPAL1 were differentially expressed during storage. MiMYB8 was highly similar to those found in other plant species related to anthocyanin biosynthesis and was located in the nucleus. MiMYB8 suppressed the transcription of MiPAL1 by binding directly to its promoter. Transient overexpression of MiMYB8 in tobacco leaves and mango fruit inhibited anthocyanin accumulation by decreasing PAL activity and down-regulating the gene expression. Our observations suggest that MiMYB8 may act as repressor of anthocyanin synthesis by negatively modulating the MiPAL gene during ripening of mango fruit, which provides us with a theoretical basis for the scientific use of exogenous ethylene in practice.


Anthocyanins , Ethylenes , Fruit , Gene Expression Regulation, Plant , Mangifera , Plant Proteins , Transcription Factors , Mangifera/metabolism , Mangifera/genetics , Ethylenes/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Fruit/metabolism , Fruit/genetics , Anthocyanins/metabolism , Phenylalanine Ammonia-Lyase/metabolism , Phenylalanine Ammonia-Lyase/genetics , Pigmentation/genetics , Chlorophyll/metabolism
7.
Food Res Int ; 186: 114340, 2024 Jun.
Article En | MEDLINE | ID: mdl-38729695

Fruits are essential sources of nutrients in our daily diet; however, their spoilage is often intensified by mechanical damage and the ethylene phytohormone, resulting in significant economic losses and exacerbating hunger issues. To address these challenges, this study presented a straightforward in situ synthesis protocol for producing Z/SOPPU foam, a 3D porous-structured fruit packaging. This innovative packaging material offered advanced ethylene-adsorbing and cushioning capabilities achieved through stirring, heating, and standing treatments. The results demonstrated that the Z/SOPPU foam, with its porous structure, served as an excellent packaging material for fruits, maintaining the intact appearance of tomatoes even after being thrown 72 times from a height of 1.5 m. Additionally, it exhibited desirable hydrophobicity (contact angle of 114.31 ± 0.82°), degradability (2.73 ± 0.88 % per 4 weeks), and efficient ethylene adsorption (adsorption rate of 13.2 ± 1.7 mg/m3/h). These remarkable characteristics could be attributed to the unique 3D micron-porous configuration, consisting of soybean oil polyol polyurethane foam for mechanical strain cushioning and zein for enhanced ethylene adsorption efficiency. Overall, this research offers an effective and original approach to the rational design and fabrication of advanced bio-based fruit packaging.


Ethylenes , Food Packaging , Fruit , Polyurethanes , Soybean Oil , Zein , Ethylenes/chemistry , Polyurethanes/chemistry , Food Packaging/methods , Porosity , Fruit/chemistry , Soybean Oil/chemistry , Zein/chemistry , Adsorption , Polymers/chemistry , Solanum lycopersicum/chemistry , Hydrophobic and Hydrophilic Interactions
8.
J Agric Food Chem ; 72(21): 12057-12071, 2024 May 29.
Article En | MEDLINE | ID: mdl-38753758

Plant growth-promoting endophytes (PGPE) can effectively regulate plant growth and metabolism. The regulation is modulated by metabolic signals, and the resulting metabolites can have considerable effects on the plant yield and quality. Here, tissue culture Houttuynia cordata Thunb., was inoculated with Rhizobium sp. (BH46) to determine the effect of BH46 on H. cordata growth and metabolism, and elucidate associated regulatory mechanisms. The results revealed that BH46 metabolized indole-3-acetic acid and induced 1-aminocyclopropane-1-carboxylate deaminase to decrease ethylene metabolism. Host peroxidase synthesis MPK3/MPK6 genes were significantly downregulated, whereas eight genes associated with auxins, cytokinins, abscisic acid, jasmonic acid, and antioxidant enzymes were significantly upregulated. Eight genes associated with flavonoid biosynthesis were significantly upregulated, with the CPY75B1 gene regulating the production of rutin and quercitrin and the HCT gene directly regulating the production of chlorogenic acid. Therefore, BH46 influences metabolic signals in H. cordata to modulate its growth and metabolism, in turn, enhancing yield and quality of H. cordata.


Endophytes , Houttuynia , Plant Proteins , Houttuynia/microbiology , Houttuynia/metabolism , Houttuynia/genetics , Endophytes/metabolism , Endophytes/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Indoleacetic Acids/metabolism , Rhizobium/genetics , Rhizobium/metabolism , Flavonoids/metabolism , Abscisic Acid/metabolism , Ethylenes/metabolism , Carbon-Carbon Lyases/metabolism , Carbon-Carbon Lyases/genetics
9.
Int J Mol Sci ; 25(10)2024 May 10.
Article En | MEDLINE | ID: mdl-38791245

The tomato fruit is a complex organ and is composed of various structures from the inside out, such as columella, septum, and placenta. However, our understanding of the development and function of these internal structures remains limited. In this study, we identified a plant-specific YABBY protein, SlYABBY2a, in the tomato (Solanum lycopersicum). SlYABBY2a exhibits relatively high expression levels among the nine YABBY genes in tomatoes and shows specific expression in the septum of the fruit. Through the use of a gene-editing technique performed by CRISPR/Cas9, we noticed defects in septum development in the Slyabby2a mutant fruits, leading to the inward concavity of the fruit pericarp and delayed septum ripening. Notably, the expression levels of key genes involved in auxin (SlFZY4, SlFZY5, and SlFZY6) and ethylene (SlACS2) biosynthesis were significantly downregulated in the septum of the Slalkbh10b mutants. Furthermore, the promoter activity of SlYABBY2a was regulated by the ripening regulator, SlTAGL1, in vivo. In summary, these discoveries provide insights into the positive regulation of SlYABBY2a on septum development and ripening and furnish evidence of the coordinated regulation of the auxin and ethylene signaling pathways in the ripening process, which expands our comprehension of septum development in the internal structure of the fruit.


Fruit , Gene Expression Regulation, Plant , Plant Proteins , Solanum lycopersicum , Transcription Factors , Solanum lycopersicum/genetics , Solanum lycopersicum/growth & development , Solanum lycopersicum/metabolism , Fruit/genetics , Fruit/growth & development , Fruit/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Indoleacetic Acids/metabolism , Mutation , CRISPR-Cas Systems , Ethylenes/metabolism
10.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38731930

Soluble starch synthases (SSs) play important roles in the synthesis of cassava starch. However, the expression characteristics of the cassava SSs genes have not been elucidated. In this study, the MeSSIII-1 gene and its promoter, from SC8 cassava cultivars, were respectively isolated by PCR amplification. MeSSIII-1 protein was localized to the chloroplasts. qRT-PCR analysis revealed that the MeSSIII-1 gene was expressed in almost all tissues tested, and the expression in mature leaves was 18.9 times more than that in tuber roots. MeSSIII-1 expression was induced by methyljasmonate (MeJA), abscisic acid (ABA), and ethylene (ET) hormones in cassava. MeSSIII-1 expression patterns were further confirmed in proMeSSIII-1 transgenic cassava. The promoter deletion analysis showed that the -264 bp to -1 bp MeSSIII-1 promoter has basal activity. The range from -1228 bp to -987 bp and -488 bp to -264 bp significantly enhance promoter activity. The regions from -987 bp to -747 bp and -747 bp to -488 bp have repressive activity. These findings will provide an important reference for research on the potential function and transcriptional regulation mechanisms of the MeSSIII-1 gene and for further in-depth exploration of the regulatory network of its internal functional elements.


Gene Expression Regulation, Plant , Manihot , Plant Proteins , Plants, Genetically Modified , Promoter Regions, Genetic , Manihot/genetics , Manihot/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Starch Synthase/genetics , Starch Synthase/metabolism , Abscisic Acid/pharmacology , Abscisic Acid/metabolism , Ethylenes/metabolism
11.
Food Chem ; 451: 139476, 2024 Sep 01.
Article En | MEDLINE | ID: mdl-38677131

Hydrogen gas (H2), a gaseous signaling molecule, is involved in plant growth and development. This review collates emerging evidence to show that H2 regulates the postharvest senescence of horticultural products through critical biochemical processes, including the improvement of antioxidant systems, the activation of cell wall metabolism, the promotion of energy metabolism, the inhibition of ethylene biosynthesis and the regulation of bacterial communities. Additionally, the interactions between H2 and other signaling molecules are also discussed. This paper presents the current status of H2 research in terms of its biological effects and safety in postharvest products by combining the research results on the molecular mechanisms of biological effects and H2 signaling. The action mechanism of H2 for postharvest preservation is also proposed, and it reflects the complexity and diversity of the pathways involved. Furthermore, a growing body of evidence has found a large number of downstream pathways or targets for the medical effects of H2. Therefore, the scientific and practical aspects of H2 biology are proposed for the postharvest preservation of horticultural products.


Food Preservation , Hydrogen , Hydrogen/metabolism , Food Preservation/methods , Ethylenes/metabolism , Horticulture , Plant Development/drug effects
12.
Cell Mol Biol Lett ; 29(1): 57, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38649857

In tomato (Solanum lycopersicum), the ripening of fruit is regulated by the selective expression of ripening-related genes, and this procedure is controlled by transcription factors (TFs). In the various plant-specific TF families, the no apical meristem (NAM), Arabidopsis thaliana activating factor 1/2 (ATAF1/2), and cup-shaped cotyledon 2 (CUC2; NAC) TF family stands out and plays a significant function in plant physiological activities, such as fruit ripening (FR). Despite the numerous genes of NAC found in the tomato genome, limited information is available on the effects of NAC members on FR, and there is also a lack of studies on their target genes. In this research, we focus on SlNAP1, which is a NAC TF that positively influences the FR of tomato. By employing CRISPR/Cas9 technology, compared with the wild type (WT), we generated slnap1 mutants and observed a delay in the ethylene production and color change of fruits. We employed the yeast one-hybrid (Y1H) and dual-luciferase reporter (DLR) assays to confirm that SlNAP1 directly binds to the promoters of two crucial genes involved in gibberellin (GA) degradation, namely SlGA2ox1 and SlGA2ox5, thus activating their expression. Furthermore, through a yeast two-hybrid (Y2H), bimolecular fluorescence complementation (BIFC) and luciferase (LUC) assays, we established an interaction between SlNAP1 and SlGID1. Hence, our findings suggest that SlNAP1 regulates FR positively by activating the GA degradation genes directly. Additionally, the interaction between SlNAP1 and SlGID1 may play a role in SlNAP1-induced FR. Overall, our study provides important insights into the molecular mechanisms through which NAC TFs regulate tomato FR via the GA pathway.


Fruit , Gene Expression Regulation, Plant , Gibberellins , Plant Proteins , Solanum lycopersicum , Transcription Factors , Solanum lycopersicum/genetics , Solanum lycopersicum/growth & development , Solanum lycopersicum/metabolism , Fruit/genetics , Fruit/growth & development , Fruit/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Gibberellins/metabolism , Promoter Regions, Genetic/genetics , Ethylenes/metabolism
13.
Sci Rep ; 14(1): 8485, 2024 04 11.
Article En | MEDLINE | ID: mdl-38605100

This research investigates the impact of storage conditions on the quality and preservation of 'Shalimar' apples, a relatively new cultivar known for its resistance to apple scab and powdery mildew. The study explores the efficacy of different storage techniques such as regular atmosphere (RA), controlled atmosphere (CA), and dynamic controlled atmosphere with CO2 Monitoring (DCA-CD), as well as the integration of 1-methylcyclopropene (1-MCP) at different storage temperatures (1 °C and 3 °C). Various fruit quality parameters were monitored under different storage conditions, including firmness, titratable acidity, total soluble solids, background color, respiration, ethylene production, and volatile compounds. The results indicate that the controlled atmosphere (CA) at 1 °C emerges as an efficient method for long-term storage. However, it is noted that CA storage may impact the apple aroma, emphasizing the need for a balance between preservation and consumer acceptability. On the other hand, DCA-CD at variable temperatures (approximately 2.5 °C) offers a promising approach for maintaining fruit quality and a higher concentration of volatile compounds. Integrating 1-MCP enhances firmness, but its impact varies across storage conditions. Principal component analysis (PCA) provides insights into the relationships between storage conditions, fruit quality, and volatile compounds. This study contributes valuable insights into optimizing storage strategies for 'Shalimar' apples, addressing sustainability and quality preservation in apple production.


Malus , Fruit , Cyclopropanes/pharmacology , Ethylenes
14.
BMC Genomics ; 25(1): 362, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38609856

BACKGROUND: Rose is recognized as an important ornamental plant worldwide, and it is also one of the most widely used flowers in gardens. At present, the improvement of rose traits is still difficult and uncertain, and molecular breeding can provide new ideas for the improvement of modern rose varieties. Somatic embryos are quite good receptors for genetic transformation. However, little is known about the molecular mechanisms underlying during the regeneration process of rose somatic embryos. To elucidate the molecular regulation mechanism of somatic embryo plantlet regeneration, the relationship between the differences in traits of the two different regenerated materials and the significantly differentially expressed genes (DEGs) related to phytohormone pathways in the process of regeneration were be investigated. RESULTS: These representative two regenerated samples from single-piece cotyledonary somatic embryo (SPC) culture of Rosa hybrida 'John F. Kennedy', were harvested for transcriptome analysis, with the SPC explants at the initial culture (Day 0) as the control. The differentially expressed genes (DEGs) in the materials from two different types for regeneration approach (SBF type: the regeneration approach type of single bud formed from SPC explants; MBF type: the regeneration approach type of multiple buds formed from SPC explants) were be screened by means of the transcriptome sequencing technology. In this study, a total of about 396.24 million clean reads were obtained, of which 78.95-82.92% were localized to the reference genome, compared with the initial material (CK sample), there were 5594 specific genes in the material of SBF type and 6142 specific genes in the MBF type. The DEGs from the SBF type material were mainly concentrated in the biological processes of GO terms such as phytohormones, substance transport, cell differentiation, and redox reaction. The KEGG enrichment analysis revealed these DEGs were more active in ubiquinone and other terpenoid-quinone biosynthesis, fatty acid elongation, steroid biosynthesis, and glycosphingolipid biosynthesis-globo and isoglobo series. In contrast, the DEGs induced by the MBF type material were mainly associated with the biological processes such as phytohormones, phosphorylation, photosynthesis and signal transduction. According to KEGG analysis, these DEGs of MBF type were significantly enriched in the porphyrin and chlorophyll metabolism, brassinosteroid biosynthesis, carotenoid biosynthesis, and peroxisome. Furthermore, the results from the phytohormone pathways analysis showed that the auxin-responsive factor SAUR and the cell wall modifying enzyme gene XTH were upregulated for expression but the protein phosphatase gene PP2C was downregulated for expression in SBF type; the higher expression of the ethylene receptor ETR, the ethylene transduction genes EBF1/2, the transcription factor EIN3, and the ethylene-responsive transcription factor ERF1/2 were induced by MBF type. CONCLUSIONS: According to the GO and KEGG analysis, it indicated the DEGs between two different regenerated materials from somatic embryos were significantly different which might be causing morphological differences. That was somatic embryos from Rosa hybrida 'John F. Kennedy' could regenerate plantlet via both classic somatic embryogenesis (seed-like germination) and organogenesis, cotyledonary somatic embryos should be considered as one kind of intermediate materials similiar to callus, rather than the indicator materials for somatic embryogenesis.


Plant Growth Regulators , Rosa , Rosa/genetics , Ethylenes , Regeneration , Embryonic Development , Transcription Factors
15.
Int J Mol Sci ; 25(7)2024 Apr 08.
Article En | MEDLINE | ID: mdl-38612925

Ethylene (ET) is an important phytohormone that regulates plant growth, development and stress responses. The ethylene-insensitive3/ethylene-insensitive3-like (EIN3/EIL) transcription factor family, as a key regulator of the ET signal transduction pathway, plays an important role in regulating the expression of ET-responsive genes. Although studies of EIN3/EIL family members have been completed in many species, their role in doubled haploid (DH) poplar derived from another culture of diploid Populus simonii × P. nigra (donor tree, DT) remains ambiguous. In this study, a total of seven EIN3/EIL gene family members in the DH poplar genome were identified. Basic physical and chemical property analyses of these genes were performed, and these proteins were predicted to be localized to the nucleus. According to the phylogenetic relationship, EIN3/EIL genes were divided into two groups, and the genes in the same group had a similar gene structure and conserved motifs. The expression patterns of EIN3/EIL genes in the apical buds of different DH poplar plants were analyzed based on transcriptome data. At the same time, the expression patterns of PsnEIL1, PsnEIN3, PsnEIL4 and PsnEIL5 genes in different tissues of different DH plants were detected via RT-qPCR, including the apical buds, young leaves, functional leaves, xylem, cambium and roots. The findings presented above indicate notable variations in the expression levels of PsnEIL genes across various tissues of distinct DH plants. Finally, the PsnEIL1 gene was overexpressed in DT, and the transgenic plants showed a dwarf phenotype, indicating that the PsnEIL1 gene was involved in regulating the growth and development of poplar. In this study, the EIN3/EIL gene family of DH poplar was analyzed and functionally characterized, which provides a theoretical basis for the future exploration of the EIN3/EIL gene function.


Populus , Haploidy , Phylogeny , Populus/genetics , Ethylenes
16.
Mol Plant Pathol ; 25(4): e13452, 2024 Apr.
Article En | MEDLINE | ID: mdl-38619823

Phytophthora root and stem rot of soybean (Glycine max), caused by the oomycete Phytophthora sojae, is an extremely destructive disease worldwide. In this study, we identified GmEIL1, which encodes an ethylene-insensitive3 (EIN3) transcription factor. GmEIL1 was significantly induced following P. sojae infection of soybean plants. Compared to wild-type soybean plants, transgenic soybean plants overexpressing GmEIL1 showed enhanced resistance to P. sojae and GmEIL1-silenced RNA-interference lines showed more severe symptoms when infected with P. sojae. We screened for target genes of GmEIL1 and confirmed that GmEIL1 bound directly to the GmERF113 promoter and regulated GmERF113 expression. Moreover, GmEIL1 positively regulated the expression of the pathogenesis-related gene GmPR1. The GmEIL1-regulated defence response to P. sojae involved both ethylene biosynthesis and the ethylene signalling pathway. These findings suggest that the GmEIL1-GmERF113 module plays an important role in P. sojae resistance via the ethylene signalling pathway.


Fabaceae , Phytophthora , Transcription Factors/genetics , Glycine max/genetics , Ethylenes , Plants, Genetically Modified
17.
BMC Genomics ; 25(1): 370, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38627628

BACKGROUND: Quinoa (Chenopodium quinoa Willd.) is valued for its nutritional richness. However, pre-harvest sprouting poses a significant threat to yield and grain quality. This study aims to enhance our understanding of pre-harvest sprouting mitigation strategies, specifically through delayed sowing and avoiding rainy seasons during quinoa maturation. The overarching goal is to identify cold-resistant varieties and unravel the molecular mechanisms behind the low-temperature response of quinoa. We employed bioinformatics and genomics tools for a comprehensive genome-wide analysis of polyamines (PAs) and ethylene synthesis gene families in quinoa under low-temperature stress. RESULTS: This involved the identification of 37 PA biosynthesis and 30 PA catabolism genes, alongside 227 ethylene synthesis. Structural and phylogenetic analyses showcased conserved patterns, and subcellular localization predictions indicated diverse cellular distributions. The results indicate that the PA metabolism of quinoa is closely linked to ethylene synthesis, with multiple genes showing an upregulation in response to cold stress. However, differential expression within gene families suggests a nuanced regulatory network. CONCLUSIONS: Overall, this study contributes valuable insights for the functional characterization of the PA metabolism and ethylene synthesis of quinoa, which emphasize their roles in plant low-temperature tolerance and providing a foundation for future research in this domain.


Chenopodium quinoa , Chenopodium quinoa/genetics , Chenopodium quinoa/metabolism , Phylogeny , Temperature , Polyamines/metabolism , Ethylenes/metabolism
18.
BMC Plant Biol ; 24(1): 290, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38627629

BACKGROUND: Flesh firmness is a critical factor that influences fruit storability, shelf-life and consumer's preference as well. However, less is known about the key genetic factors that are associated with flesh firmness in fresh fruits like watermelon. RESULTS: In this study, through bulk segregant analysis (BSA-seq), we identified a quantitative trait locus (QTL) that influenced variations in flesh firmness among recombinant inbred lines (RIL) developed from cross between the Citrullus mucosospermus accession ZJU152 with hard-flesh and Citrullus lanatus accession ZJU163 with soft-flesh. Fine mapping and sequence variations analyses revealed that ethylene-responsive factor 1 (ClERF1) was the most likely candidate gene for watermelon flesh firmness. Furthermore, several variations existed in the promoter region between ClERF1 of two parents, and significantly higher expressions of ClERF1 were found in hard-flesh ZJU152 compared with soft-flesh ZJU163 at key developmental stages. DUAL-LUC and GUS assays suggested much stronger promoter activity in ZJU152 over ZJU163. In addition, the kompetitive allele-specific PCR (KASP) genotyping datasets of RIL populations and germplasm accessions further supported ClERF1 as a possible candidate gene for fruit flesh firmness variability and the hard-flesh genotype might only exist in wild species C. mucosospermus. Through yeast one-hybrid (Y1H) and dual luciferase assay, we found that ClERF1 could directly bind to the promoters of auxin-responsive protein (ClAux/IAA) and exostosin family protein (ClEXT) and positively regulated their expressions influencing fruit ripening and cell wall biosynthesis. CONCLUSIONS: Our results indicate that ClERF1 encoding an ethylene-responsive factor 1 is associated with flesh firmness in watermelon and provide mechanistic insight into the regulation of flesh firmness, and the ClERF1 gene is potentially applicable to the molecular improvement of fruit-flesh firmness by design breeding.


Citrullus , Citrullus/genetics , Citrullus/metabolism , Plant Breeding , Quantitative Trait Loci/genetics , Fruit/genetics , Ethylenes/metabolism , Promoter Regions, Genetic/genetics
19.
Plant Signal Behav ; 19(1): 2338985, 2024 Dec 31.
Article En | MEDLINE | ID: mdl-38597293

The TEOSINTE-BRANCHED1/CYCLOIDEA/PROLEFERATING-CELL-FACTORS (TCP) gene family is a plant-specific transcriptional factor family involved in leaf morphogenesis and senescence, lateral branching, hormone crosstalk, and stress responses. To date, a systematic study on the identification and characterization of the TCP gene family in kiwifruit has not been reported. Additionally, the function of kiwifruit TCPs in regulating kiwifruit responses to the ethylene treatment and bacterial canker disease pathogen (Pseudomonas syringae pv. actinidiae, Psa) has not been investigated. Here, we identified 40 and 26 TCP genes in Actinidia chinensis (Ac) and A. eriantha (Ae) genomes, respectively. The synteny analysis of AcTCPs illustrated that whole-genome duplication accounted for the expansion of the TCP family in Ac. Phylogenetic, conserved domain, and selection pressure analysis indicated that TCP family genes in Ac and Ae had undergone different evolutionary patterns after whole-genome duplication (WGD) events, causing differences in TCP gene number and distribution. Our results also suggested that protein structure and cis-element architecture in promoter regions of TCP genes have driven the function divergence of duplicated gene pairs. Three and four AcTCP genes significantly affected kiwifruit responses to the ethylene treatment and Psa invasion, respectively. Our results provided insight into general characters, evolutionary patterns, and functional diversity of kiwifruit TCPs.


Actinidia , Phylogeny , Actinidia/genetics , Transcription Factors/genetics , Ethylenes , Pseudomonas syringae/physiology , Plant Diseases/microbiology
20.
Planta ; 259(5): 109, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38558186

MAIN CONCLUSION: Six methyltransferase genes affecting tomato fruit ripening were identified through genome-wide screening, VIGS assay, and expression pattern analysis. The data provide the basis for understanding new mechanisms of methyltransferases. Fruit ripening is a critical stage for the formation of edible quality and seed maturation, which is finely modulated by kinds of factors, including genetic regulators, hormones, external signals, etc. Methyltransferases (MTases), important genetic regulators, play vital roles in plant development through epigenetic regulation, post-translational modification, or other mechanisms. However, the regulatory functions of numerous MTases except DNA methylation in fruit ripening remain limited so far. Here, six MTases, which act on different types of substrates, were identified to affect tomato fruit ripening. First, 35 MTase genes with relatively high expression at breaker (Br) stage of tomato fruit were screened from the tomato MTase gene database encompassing 421 genes totally. Thereafter, six MTase genes were identified as potential regulators of fruit ripening via virus-induced gene silencing (VIGS), including four genes with a positive regulatory role and two genes with a negative regulatory role, respectively. The expression of these six MTase genes exhibited diverse patterns during the fruit ripening process, and responded to various external ripening-related factors, including ethylene, 1-methylcyclopropene (1-MCP), temperature, and light exposure. These results help to further elaborate the biological mechanisms of MTase genes in tomato fruit ripening and enrich the understanding of the regulatory mechanisms of fruit ripening involving MTases, despite of DNA MTases.


Fruit , Solanum lycopersicum , Fruit/metabolism , Solanum lycopersicum/genetics , Methyltransferases/genetics , Methyltransferases/metabolism , Epigenesis, Genetic , Ethylenes/metabolism , Gene Silencing , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
...