Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.441
Filter
1.
J Clin Invest ; 134(12)2024 May 07.
Article in English | MEDLINE | ID: mdl-38950286

ABSTRACT

BackgroundRetinal vasculopathy with cerebral leukoencephalopathy and systemic manifestations (RVCL-S) is a rare, autosomal dominant, universally fatal disease without effective treatment options. This study explores the safety and preliminary efficacy of crizanlizumab, a humanized monoclonal antibody against P-selectin approved for the prevention of sickle cell crises, in slowing retinal nonperfusion and preserving vision in patients with RVCL-S.METHODSEleven patients with RVCL-S with confirmed exonuclease 3 prime repair exonuclease 1 (TREX1) mutations received monthly crizanlizumab infusions over 2 years. The study measured the nonperfusion index within 3 retinal zones and the total retina with fluorescein angiography, visual acuity, intraocular pressure (IOP), and optical coherence tomography central subfield thickness (CST) at baseline, 1 year, and 2 years. A mixed repeated-measures analysis was performed to assess the progression rates and changes from baseline.RESULTSEleven participants received crizanlizumab infusions. All of the participants tolerated crizanlizumab well, with 8 of 11 (72.7%) reporting mild adverse effects such as nausea, fatigue, and gastrointestinal symptoms. The change in total retinal nonperfusion was 7.22% [4.47, 9.97] in year 1 and -0.69% [-4.06, 2.68] in year 2 (P < 0.001). In the mid periphery, the change in nonperfusion was 10.6% [5.1, 16.1] in year 1 and -0.68% [-3.98, 5.35] in year 2 (P < 0.01), demonstrating a reduction in progression of nonperfusion in the second year of treatment. Visual acuity, IOP, and CST remained stable.CONCLUSIONCrizanlizumab has an acceptable safety profile. These results show promising potential for examining crizanlizumab in larger studies of RVCL-S and similar small-vessel diseases and for using the retina as a biomarker for systemic disease.Trial registrationClinicalTrials.gov NCT04611880.FUNDINGThe Clayco Foundation; DeNardo Education and Research Foundation Grant; Jeffrey T. Fort Innovation Fund; Siteman Retina Research Fund; unrestricted grant from Research to Prevent Blindness Inc.; National Heart,Lung, and Blood Institute (NHLBI), NIH (R01HL129241); National Institute of Neurological Disorders and Stroke (NINDS), NIH (RF1NS116565).


Subject(s)
Antibodies, Monoclonal, Humanized , Humans , Male , Female , Adult , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/administration & dosage , Middle Aged , Leukoencephalopathies/drug therapy , Exodeoxyribonucleases/genetics , Retinal Diseases/drug therapy , Phosphoproteins
2.
Elife ; 132024 Jul 03.
Article in English | MEDLINE | ID: mdl-38959062

ABSTRACT

Bacterial exonuclease III (ExoIII), widely acknowledged for specifically targeting double-stranded DNA (dsDNA), has been documented as a DNA repair-associated nuclease with apurinic/apyrimidinic (AP)-endonuclease and 3'→5' exonuclease activities. Due to these enzymatic properties, ExoIII has been broadly applied in molecular biosensors. Here, we demonstrate that ExoIII (Escherichia coli) possesses highly active enzymatic activities on ssDNA. By using a range of ssDNA fluorescence-quenching reporters and fluorophore-labeled probes coupled with mass spectrometry analysis, we found ExoIII cleaved the ssDNA at 5'-bond of phosphodiester from 3' to 5' end by both exonuclease and endonuclease activities. Additional point mutation analysis identified the critical residues for the ssDNase action of ExoIII and suggested the activity shared the same active center with the dsDNA-targeted activities of ExoIII. Notably, ExoIII could also digest the dsDNA structures containing 3'-end ssDNA. Considering most ExoIII-assisted molecular biosensors require the involvement of single-stranded DNA (ssDNA) or nucleic acid aptamer containing ssDNA, the activity will lead to low efficiency or false positive outcome. Our study revealed the multi-enzymatic activity and the underlying molecular mechanism of ExoIII on ssDNA, illuminating novel insights for understanding its biological roles in DNA repair and the rational design of ExoIII-ssDNA involved diagnostics.


Subject(s)
DNA, Single-Stranded , Escherichia coli , Exodeoxyribonucleases , Exodeoxyribonucleases/metabolism , Exodeoxyribonucleases/genetics , DNA, Single-Stranded/metabolism , DNA, Single-Stranded/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli/enzymology , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics
3.
Nat Commun ; 15(1): 5392, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918391

ABSTRACT

DNA double-strand breaks (DSBs), such as those produced by radiation and radiomimetics, are amongst the most toxic forms of cellular damage, in part because they involve extensive oxidative modifications at the break termini. Prior to completion of DSB repair, the chemically modified termini must be removed. Various DNA processing enzymes have been implicated in the processing of these dirty ends, but molecular knowledge of this process is limited. Here, we demonstrate a role for the metallo-ß-lactamase fold 5'-3' exonuclease SNM1A in this vital process. Cells disrupted for SNM1A manifest increased sensitivity to radiation and radiomimetic agents and show defects in DSB damage repair. SNM1A is recruited and is retained at the sites of DSB damage via the concerted action of its three highly conserved PBZ, PIP box and UBZ interaction domains, which mediate interactions with poly-ADP-ribose chains, PCNA and the ubiquitinated form of PCNA, respectively. SNM1A can resect DNA containing oxidative lesions induced by radiation damage at break termini. The combined results reveal a crucial role for SNM1A to digest chemically modified DNA during the repair of DSBs and imply that the catalytic domain of SNM1A is an attractive target for potentiation of radiotherapy.


Subject(s)
DNA Breaks, Double-Stranded , DNA Repair Enzymes , DNA Repair , Exodeoxyribonucleases , Humans , DNA Breaks, Double-Stranded/radiation effects , Exodeoxyribonucleases/metabolism , Exodeoxyribonucleases/genetics , DNA Repair Enzymes/metabolism , DNA Repair Enzymes/genetics , Proliferating Cell Nuclear Antigen/metabolism , Proliferating Cell Nuclear Antigen/genetics , DNA/metabolism , DNA/genetics , Ubiquitination , Cell Cycle Proteins
4.
Mol Cell ; 84(12): 2223-2237.e4, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38870937

ABSTRACT

In Saccharomyces cerevisiae (S. cerevisiae), Mre11-Rad50-Xrs2 (MRX)-Sae2 nuclease activity is required for the resection of DNA breaks with secondary structures or protein blocks, while in humans, the MRE11-RAD50-NBS1 (MRN) homolog with CtIP is needed to initiate DNA end resection of all breaks. Phosphorylated Sae2/CtIP stimulates the endonuclease activity of MRX/N. Structural insights into the activation of the Mre11 nuclease are available only for organisms lacking Sae2/CtIP, so little is known about how Sae2/CtIP activates the nuclease ensemble. Here, we uncover the mechanism of Mre11 activation by Sae2 using a combination of AlphaFold2 structural modeling of biochemical and genetic assays. We show that Sae2 stabilizes the Mre11 nuclease in a conformation poised to cleave substrate DNA. Several designs of compensatory mutations establish how Sae2 activates MRX in vitro and in vivo, supporting the structural model. Finally, our study uncovers how human CtIP, despite considerable sequence divergence, employs a similar mechanism to activate MRN.


Subject(s)
DNA-Binding Proteins , Endodeoxyribonucleases , Endonucleases , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/metabolism , Endonucleases/metabolism , Endonucleases/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Endodeoxyribonucleases/metabolism , Endodeoxyribonucleases/genetics , Endodeoxyribonucleases/chemistry , Humans , Exodeoxyribonucleases/metabolism , Exodeoxyribonucleases/genetics , Models, Molecular , Phosphorylation , DNA Repair Enzymes/metabolism , DNA Repair Enzymes/genetics , DNA Breaks, Double-Stranded , Acid Anhydride Hydrolases/metabolism , Acid Anhydride Hydrolases/genetics , Mutation , MRE11 Homologue Protein/metabolism , MRE11 Homologue Protein/genetics , DNA Repair , Enzyme Activation
5.
Nat Commun ; 15(1): 4696, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824133

ABSTRACT

Age-related microangiopathy, also known as small vessel disease (SVD), causes damage to the brain, retina, liver, and kidney. Based on the DNA damage theory of aging, we reasoned that genomic instability may underlie an SVD caused by dominant C-terminal variants in TREX1, the most abundant 3'-5' DNA exonuclease in mammals. C-terminal TREX1 variants cause an adult-onset SVD known as retinal vasculopathy with cerebral leukoencephalopathy (RVCL or RVCL-S). In RVCL, an aberrant, C-terminally truncated TREX1 mislocalizes to the nucleus due to deletion of its ER-anchoring domain. Since RVCL pathology mimics that of radiation injury, we reasoned that nuclear TREX1 would cause DNA damage. Here, we show that RVCL-associated TREX1 variants trigger DNA damage in humans, mice, and Drosophila, and that cells expressing RVCL mutant TREX1 are more vulnerable to DNA damage induced by chemotherapy and cytokines that up-regulate TREX1, leading to depletion of TREX1-high cells in RVCL mice. RVCL-associated TREX1 mutants inhibit homology-directed repair (HDR), causing DNA deletions and vulnerablility to PARP inhibitors. In women with RVCL, we observe early-onset breast cancer, similar to patients with BRCA1/2 variants. Our results provide a mechanistic basis linking aberrant TREX1 activity to the DNA damage theory of aging, premature senescence, and microvascular disease.


Subject(s)
DNA Damage , Exodeoxyribonucleases , Phosphoproteins , Animals , Exodeoxyribonucleases/genetics , Exodeoxyribonucleases/metabolism , Humans , Phosphoproteins/genetics , Phosphoproteins/metabolism , Mice , Recombinational DNA Repair , Phenotype , Mutation , Drosophila/genetics , Aging/genetics , Aging/metabolism , Female , Drosophila melanogaster/genetics , Male , Retinal Diseases , Vascular Diseases , Hereditary Central Nervous System Demyelinating Diseases
6.
Int J Mol Sci ; 25(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38892095

ABSTRACT

Pathogenic variants in the FAN1 gene lead to a systemic disease with karyomegalic interstitial nephritis (KIN) at the forefront clinically. The phenotypic-genotypic features of a FAN1 mutation-related disease involving five members of a Hungarian Caucasian family are presented. Each had adult-onset chronic kidney disease of unknown cause treated with renal replacement therapy and elevated liver enzymes. Short stature, emaciation, latte-colored skin, freckles, and a hawk-like nose in four patients, a limited intellect in two patients, and chronic restrictive lung disease in one patient completed the phenotype. Severe infections occurred in four patients. All five patients had ceased. Four patients underwent autopsy. KIN and extrarenal karyomegaly were observed histologically; the livers showed no specific abnormality. The genotyping using formalin-fixed tissue samples detected a hitherto undescribed homozygous FAN1 mutation (c.1673_1674insT/p.Met558lfs*4; exon 5) in three of these patients and a heterozygous FAN1 mutation in one patient. The reason for the heterozygosity is discussed. In addition, 56 family members consented to the screening for FAN1 mutation from which 17 individuals proved to be heterozygous carriers; a blood chemistry evaluation of their kidney and liver function did not find any abnormality. The clinical presentation of FAN1-related disease was multifaceted, and not yet described manifestations were observed besides kidney and liver disease. Mutation in this gene should be suspected in adults with small kidneys of unknown cause, elevated liver enzymes, and recurrent infections, even without a family history.


Subject(s)
Endodeoxyribonucleases , Exodeoxyribonucleases , Genotype , Multifunctional Enzymes , Mutation , Pedigree , Phenotype , Humans , Male , Female , Hungary , Adult , Middle Aged , Exodeoxyribonucleases/genetics , Multifunctional Enzymes/genetics , Endodeoxyribonucleases/genetics , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/pathology
7.
Bioelectrochemistry ; 159: 108749, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38823375

ABSTRACT

Carcinoembryonic antigen (CEA), a key colon biomarker, demands a precise detection method for cancer diagnosis and prognosis. This study introduces a novel electrochemical aptasensor using a triblock polyadenine probe for ultra-sensitive detection of CEA. The method leverages Exonuclease III (Exo III)-assisted target recycling and hybridization chain reaction. The triblock polyadenine probe self-assembles on the bare gold electrode through the strong affinity between adenine and gold electrode, blocking CEA diffusion and providing a large immobilization surface. CEA binding to hairpin probe 1 (HP1), followed by the hybridization between HP1 and hairpin probe 2 (HP2), triggers DNA cleavage by Exo III, amplifying the signal via a hybridization chain reaction and producing numerous dsDNA walkers that generates a dramatic electrochemical impedance signal. Under optimized conditions, the aptasensor achieved two ultra-low detection limits: 0.39 ag∙mL-1 within the concentration range of 5 ag∙mL-1 to 5 × 106 ag∙mL-1, and 1.5 ag∙mL-1 within the concentration range of 5 × 106 ag∙mL-1 to 1 × 1010 ag∙mL-1. Its performance in human serum samples meets the practical standards, offering a promising new tool for ultrasensitive tumor marker detection, potentially revolutionizing early cancer diagnosis.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Carcinoembryonic Antigen , Electrochemical Techniques , Exodeoxyribonucleases , Limit of Detection , Nucleic Acid Hybridization , Exodeoxyribonucleases/chemistry , Exodeoxyribonucleases/metabolism , Carcinoembryonic Antigen/blood , Humans , Biosensing Techniques/methods , Electrochemical Techniques/methods , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/metabolism , Poly A/chemistry , Gold/chemistry , Electrodes
8.
Mikrochim Acta ; 191(7): 397, 2024 06 14.
Article in English | MEDLINE | ID: mdl-38877314

ABSTRACT

A fluorescence biosensor for determination of aflatoxin B1 (AFB1) based on polydiacetylene (PDA) liposomes and exonuclease III (EXO III)-assisted recycling amplification was developed. The AFB1 aptamer partially hybridizes with complementary DNA (cDNA), which is released upon recognition of AFB1 by the aptamer. Subsequently, the cDNA hybridizes with hairpin H to form double-stranded DNA that undergoes digestion by EXO III, resulting in the cyclic release of cDNA and generation of capture DNA for further reaction. The capture DNA then hybridizes with probe modified on PDA liposomes, leading to aggregation of liposomes and subsequent fluorescence production. This strategy exhibited a limit of detection of 0.18 ng/mL within the linear range 1-100 ng/mL with a determination coefficient > 0.99. The recovery ranged from 92.81 to 106.45%, with relative standard deviations (RSD) between 1.73 and 4.26%, for corn, brown rice, peanut butter, and wheat samples. The stability, accuracy, and specificity of the method demonstrated the applicability for real sample analysis.


Subject(s)
Aflatoxin B1 , Biosensing Techniques , Exodeoxyribonucleases , Limit of Detection , Liposomes , Polyacetylene Polymer , Polyacetylene Polymer/chemistry , Liposomes/chemistry , Exodeoxyribonucleases/chemistry , Exodeoxyribonucleases/metabolism , Biosensing Techniques/methods , Aflatoxin B1/analysis , Aptamers, Nucleotide/chemistry , Nucleic Acid Amplification Techniques/methods , Polyynes/chemistry , Spectrometry, Fluorescence/methods , Zea mays/chemistry , Triticum/chemistry , Oryza/chemistry , Polymers/chemistry , Food Contamination/analysis
9.
Mikrochim Acta ; 191(7): 395, 2024 06 14.
Article in English | MEDLINE | ID: mdl-38877347

ABSTRACT

With their regulated Boolean logic operations in vitro and in vivo, DNA logic circuits have shown great promise for target recognition and disease diagnosis. However, significant obstacles must be overcome to improve their operational efficiency and broaden their range of applications. In this study, we propose an Exo III-powered closed-loop DNA circuit (ECDC) architecture that integrates four highly efficient AND logic gates. The ECDC utilizes Exo III as the sole enzyme-activated actuator, simplifying the circuit design and ensuring optimal performance. Moreover, the use of Exo III enables a self-feedback (autocatalytic) mechanism in the dynamic switching between AND logic gates within this circulating logic circuit. After validating the signal flow and examining the impact of each AND logic gate on the regulation of the circuit, we demonstrate the intelligent determination of miR-21 using the carefully designed ECDC architecture in vitro. The proposed ECDC exhibits a linear detection range for miR-21 from 0 to 300 nM, with a limit of detection (LOD) of approximately 0.01 nM, surpassing most reported methods. It also shows excellent selectivity for miR-21 detection and holds potential for identifying and imaging live cancer cells. This study presents a practical and efficient strategy for monitoring various nucleic acid-based biomarkers in vitro and in vivo through specific sequence modifications, offering significant potential for early cancer diagnosis, bioanalysis, and prognostic clinical applications.


Subject(s)
Biosensing Techniques , Exodeoxyribonucleases , Limit of Detection , MicroRNAs , Humans , MicroRNAs/analysis , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Exodeoxyribonucleases/chemistry , Exodeoxyribonucleases/metabolism , DNA/chemistry
10.
Nat Commun ; 15(1): 5423, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926338

ABSTRACT

Oncogene-induced senescence (OIS) arrests cell proliferation in response to replication stress (RS) induced by oncogenes. OIS depends on the DNA damage response (DDR), but also on the cGAS-STING pathway, which detects cytosolic DNA and induces type I interferons (IFNs). Whether and how RS and IFN responses cooperate to promote OIS remains unknown. Here, we show that the induction of OIS by the H-RASV12 oncogene in immortalized human fibroblasts depends on the MRE11 nuclease. Indeed, treatment with the MRE11 inhibitor Mirin prevented RS, micronuclei formation and IFN response induced by RASV12. Overexpression of the cytosolic nuclease TREX1 also prevented OIS. Conversely, overexpression of a dominant negative mutant of TREX1 or treatment with IFN-ß was sufficient to induce RS and DNA damage, independent of RASV12 induction. These data suggest that the IFN response acts as a positive feedback loop to amplify DDR in OIS through a process regulated by MRE11 and TREX1.


Subject(s)
Cellular Senescence , DNA Damage , DNA Replication , Exodeoxyribonucleases , MRE11 Homologue Protein , Phosphoproteins , Signal Transduction , Humans , Exodeoxyribonucleases/metabolism , Exodeoxyribonucleases/genetics , Phosphoproteins/metabolism , Phosphoproteins/genetics , MRE11 Homologue Protein/metabolism , MRE11 Homologue Protein/genetics , Cellular Senescence/genetics , Fibroblasts/metabolism , Interferon-beta/metabolism , Interferon-beta/genetics
11.
Anal Chem ; 96(25): 10451-10458, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38860917

ABSTRACT

Rapid and sensitive RNA detection is of great value in diverse areas, ranging from biomedical research to clinical diagnostics. Existing methods for RNA detection often rely on reverse transcription (RT) and DNA amplification or involve a time-consuming procedure and poor sensitivity. Herein, we proposed a CRISPR/Cas12a-enabled amplification-free assay for rapid, specific, and sensitive RNA diagnostics. This assay, which we termed T7/G4-CRISPR, involved the use of a T7-powered nucleic acid circuit to convert a single RNA target into numerous DNA activators via toehold-mediated strand displacement reaction and T7 exonuclease-mediated target recycling amplification, followed by activating Cas12a trans-cleavage of the linker strands inhibiting split G-Quadruplex (G4) assembly, thereby inducing fluorescence attenuation proportion to the input RNA target. We first performed step-by-step validation of the entire assay process and optimized the reaction parameters. Using the optimal conditions, T7/G4-CRISPR was capable of detecting as low as 3.6 pM target RNA, obtaining ∼100-fold improvement in sensitivity compared with the most direct Cas12a assays. Meanwhile, its excellent specificity could discriminate single nucleotide variants adjacent to the toehold region and allow species-specific pathogen identification. Furthermore, we applied it for analyzing bacterial 16S rRNA in 40 clinical urine samples, exhibiting a sensitivity of 90% and a specificity of 100% when validated by RT-quantitative PCR. Therefore, we envision that T7/G4-CRISPR will serve as a promising RNA sensing approach to expand the toolbox of CRISPR-based diagnostics.


Subject(s)
CRISPR-Cas Systems , G-Quadruplexes , CRISPR-Cas Systems/genetics , Humans , Exodeoxyribonucleases/metabolism , Exodeoxyribonucleases/chemistry , RNA/analysis , RNA/metabolism , Nucleic Acid Amplification Techniques , CRISPR-Associated Proteins/metabolism , Bacterial Proteins , Endodeoxyribonucleases
12.
Int J Biol Macromol ; 272(Pt 1): 132654, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38810854

ABSTRACT

Mre11 is one of important proteins that are involved in DNA repair and recombination by processing DNA ends to produce 3'-single stranded DNA, thus providing a platform for other DNA repair and recombination proteins. In this work, we characterized the Mre11 protein from the hyperthermophilic euryarchaeon Thermococcus barophilus Ch5 (Tba-Mre11) biochemically and dissected the roles of its four conserved residues, which is the first report on Mre11 proteins from Thermococcus. Tba-Mre11 possesses exonuclease activity for degrading ssDNA and dsDNA in the 5'-3' direction, which contrasts with other reported Mre11 homologs. Maximum degradation efficiency was observed with Mn2+ at 80 °C and at pH 7.5-9.5. In addition to possessing 5'-3' exonuclease activity, Tba-Mre11 has endonuclease activity that nicks plasmid DNA and circular ssDNA. Mutational data show that residues D10, D51 and N86 in Tba-Mre11 are essential for DNA degradation since almost no activity was observed for the D10A, D51A and N86A mutants. By comparison, residue D44 in Tba-Mre11 is not responsible for DNA degradation since the D44A mutant possessed the similar WT protein activity. Notably, the D44A mutant almost completely abolished the ability to bind DNA, suggesting that residue D44 is essential for binding DNA.


Subject(s)
Archaeal Proteins , DNA, Single-Stranded , Thermococcus , Thermococcus/enzymology , Thermococcus/genetics , Archaeal Proteins/metabolism , Archaeal Proteins/chemistry , Archaeal Proteins/genetics , DNA, Single-Stranded/metabolism , Exodeoxyribonucleases/metabolism , Exodeoxyribonucleases/genetics , Exodeoxyribonucleases/chemistry , Amino Acid Sequence , Endonucleases/metabolism , Endonucleases/chemistry , Endonucleases/genetics , Mutation , Endodeoxyribonucleases
13.
Nucleic Acids Res ; 52(11): 6376-6391, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38721777

ABSTRACT

DNA replication faces challenges from DNA lesions originated from endogenous or exogenous sources of stress, leading to the accumulation of single-stranded DNA (ssDNA) that triggers the activation of the ATR checkpoint response. To complete genome replication in the presence of damaged DNA, cells employ DNA damage tolerance mechanisms that operate not only at stalled replication forks but also at ssDNA gaps originated by repriming of DNA synthesis downstream of lesions. Here, we demonstrate that human cells accumulate post-replicative ssDNA gaps following replicative stress induction. These gaps, initiated by PrimPol repriming and expanded by the long-range resection factors EXO1 and DNA2, constitute the principal origin of the ssDNA signal responsible for ATR activation upon replication stress, in contrast to stalled forks. Strikingly, the loss of EXO1 or DNA2 results in synthetic lethality when combined with BRCA1 deficiency, but not BRCA2. This phenomenon aligns with the observation that BRCA1 alone contributes to the expansion of ssDNA gaps. Remarkably, BRCA1-deficient cells become addicted to the overexpression of EXO1, DNA2 or BLM. This dependence on long-range resection unveils a new vulnerability of BRCA1-mutant tumors, shedding light on potential therapeutic targets for these cancers.


Subject(s)
Ataxia Telangiectasia Mutated Proteins , BRCA1 Protein , DNA Helicases , DNA Replication , DNA, Single-Stranded , Exodeoxyribonucleases , Humans , Ataxia Telangiectasia Mutated Proteins/metabolism , Ataxia Telangiectasia Mutated Proteins/genetics , DNA, Single-Stranded/metabolism , DNA, Single-Stranded/genetics , Exodeoxyribonucleases/metabolism , Exodeoxyribonucleases/genetics , DNA Replication/genetics , BRCA1 Protein/metabolism , BRCA1 Protein/genetics , DNA Helicases/metabolism , DNA Helicases/genetics , Cell Survival/genetics , DNA Repair Enzymes/metabolism , DNA Repair Enzymes/genetics , DNA Damage
14.
BMC Biol ; 22(1): 119, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769511

ABSTRACT

BACKGROUND: Many efforts have been made to improve the precision of Cas9-mediated gene editing through increasing knock-in efficiency and decreasing byproducts, which proved to be challenging. RESULTS: Here, we have developed a human exonuclease 1-based genome-editing tool, referred to as exonuclease editor. When compared to Cas9, the exonuclease editor gave rise to increased HDR efficiency, reduced NHEJ repair frequency, and significantly elevated HDR/indel ratio. Robust gene editing precision of exonuclease editor was even superior to the fusion of Cas9 with E1B or DN1S, two previously reported precision-enhancing domains. Notably, exonuclease editor inhibited NHEJ at double strand breaks locally rather than globally, reducing indel frequency without compromising genome integrity. The replacement of Cas9 with single-strand DNA break-creating Cas9 nickase further increased the HDR/indel ratio by 453-fold than the original Cas9. In addition, exonuclease editor resulted in high microhomology-mediated end joining efficiency, allowing accurate and flexible deletion of targeted sequences with extended lengths with the aid of paired sgRNAs. Exonuclease editor was further used for correction of DMD patient-derived induced pluripotent stem cells, where 30.0% of colonies were repaired by HDR versus 11.1% in the control. CONCLUSIONS: Therefore, the exonuclease editor system provides a versatile and safe genome editing tool with high precision and holds promise for therapeutic gene correction.


Subject(s)
Exodeoxyribonucleases , Gene Editing , Gene Editing/methods , Humans , Exodeoxyribonucleases/genetics , Exodeoxyribonucleases/metabolism , CRISPR-Cas Systems , HEK293 Cells , DNA Repair Enzymes
15.
Talanta ; 276: 126260, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38759364

ABSTRACT

Lead ion pollution has become a serious public health concern worldwide. Therefore, sensitive detection of Pb2+ is critical to control lead pollution, assess risks, and safeguard the health of vulnerable populations. This study reports a highly sensitive labelling-free electrochemical aptasensor for Pb2+ detection. The aptasensor employs silver-platinum nanoparticles/graphene oxide (AgPt/GO) and Exonuclease III (Exo III) for signal amplification. GO provides high surface area and conductivity for immobilizing AgPt NPs, facilitating the immobilization of aptamer (Apt) probes on the electrode surface. Exo III enzymatically cleaves DNA strands on the electrode surface, releasing DNA segments to amplify the signal further. The synergistic amplification by AgPt/GO and ExoIII enables an extremely wide linear detection range of 0.05 pM-5 nM for Pb2+, with a low detection limit of 0.019 pM. Additionally, the G-quadruplex structure ensures excellent selectivity for Pb2+ detection, resulting in high reproducibility and stability of the aptasensor. The aptasensor was successfully applied to detect spiked Pb2+ in tap water samples, achieving recovery rates ranging from 96 to 108.4 %. By integrating nanomaterials, aptamers and enzymatic amplification, the aptasensor facilitates highly sensitive and selective detection of Pb2+, demonstrating potential for practical applications in environmental monitoring.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Electrochemical Techniques , Exodeoxyribonucleases , Graphite , Lead , Nanocomposites , Platinum , Silver , Graphite/chemistry , Lead/analysis , Lead/chemistry , Aptamers, Nucleotide/chemistry , Exodeoxyribonucleases/chemistry , Electrochemical Techniques/methods , Platinum/chemistry , Nanocomposites/chemistry , Silver/chemistry , Biosensing Techniques/methods , Metal Nanoparticles/chemistry , Limit of Detection , Water Pollutants, Chemical/analysis , Drinking Water/analysis , Electrodes , G-Quadruplexes
16.
Biosens Bioelectron ; 260: 116434, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38810414

ABSTRACT

Aptamer-based electrochemical sensors are frequently used as independent, surface-functionalized, passive electrodes. However, their sensitivity and detection limits become limited, particularly when the electrode area is reduced to facilitate miniaturization. A mobile phone-based microfluidic electrochemical aptamer sensing platform for 3,3',4,4'-tetrachlorobiphenyl (PCB77) detection was developed in this work. This aptamer sensor utilized Exonuclease I (Exo I) and DNA/AuNPs/horseradish peroxidase (DNA/AuNPs/HRP) nanoprobes as a merged signal amplification method, which resulted in an increase in the electrochemical sensing performance. Sensitive detection of PCB77 was accomplished by functionalizing the hierarchically structured Au@MoS2/CNTs/GO modified working/sensing electrode with the specific aptamer. The aptamer sensor was tested with different concentrations of PCB77 within the microfluidic platform. Afterward, the differential pulse voltammograms were recorded using a wireless integrated circuit device. Subsequently, the collected data was transmitted to a smartphone using Bluetooth communication. A detection limit of 0.0085 ng/L was obtained for PCB77 detection, with a detection range from 0.1 to 1000 ng/L. In addition, the detection of PCB77 in spiked water samples validated the possibility of using this aptamer sensor in a real environment, and the aptamer sensor demonstrated high selectivity in distinguishing PCB77 from other potential interfering species. The merging of electrochemical aptamer sensors with purposefully engineered microfluidic and integrated devices in this study is a novel and promising method that provides a dependable platform for on-site applications.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Electrochemical Techniques , Gold , Limit of Detection , Metal Nanoparticles , Polychlorinated Biphenyls , Aptamers, Nucleotide/chemistry , Biosensing Techniques/instrumentation , Polychlorinated Biphenyls/analysis , Gold/chemistry , Metal Nanoparticles/chemistry , Exodeoxyribonucleases/chemistry , Horseradish Peroxidase/chemistry , Nanotubes, Carbon/chemistry , Molybdenum/chemistry , Equipment Design , Water Pollutants, Chemical/analysis , DNA/chemistry , Smartphone
17.
Cell ; 187(13): 3390-3408.e19, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38754421

ABSTRACT

Clinical trials have identified ARID1A mutations as enriched among patients who respond favorably to immune checkpoint blockade (ICB) in several solid tumor types independent of microsatellite instability. We show that ARID1A loss in murine models is sufficient to induce anti-tumor immune phenotypes observed in ARID1A mutant human cancers, including increased CD8+ T cell infiltration and cytolytic activity. ARID1A-deficient cancers upregulated an interferon (IFN) gene expression signature, the ARID1A-IFN signature, associated with increased R-loops and cytosolic single-stranded DNA (ssDNA). Overexpression of the R-loop resolving enzyme, RNASEH2B, or cytosolic DNase, TREX1, in ARID1A-deficient cells prevented cytosolic ssDNA accumulation and ARID1A-IFN gene upregulation. Further, the ARID1A-IFN signature and anti-tumor immunity were driven by STING-dependent type I IFN signaling, which was required for improved responsiveness of ARID1A mutant tumors to ICB treatment. These findings define a molecular mechanism underlying anti-tumor immunity in ARID1A mutant cancers.


Subject(s)
CD8-Positive T-Lymphocytes , DNA-Binding Proteins , Interferon Type I , Membrane Proteins , Neoplasms , Signal Transduction , Transcription Factors , Animals , Humans , Mice , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , DNA-Binding Proteins/metabolism , Exodeoxyribonucleases/metabolism , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Interferon Type I/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Mice, Inbred C57BL , Mutation , Neoplasms/immunology , Neoplasms/genetics , Nuclear Proteins/metabolism , Phosphoproteins/metabolism , Transcription Factors/metabolism , Male , Chemokines/genetics , Chemokines/metabolism
18.
J Biol Chem ; 300(6): 107379, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38762184

ABSTRACT

Bacterial RecJ exhibits 5'→3' exonuclease activity that is specific to ssDNA; however, archaeal RecJs show 5' or 3' exonuclease activity. The hyperthermophilic archaea Methanocaldococcus jannaschii encodes the 5'-exonuclease MjRecJ1 and the 3'-exonuclease MjRecJ2. In addition to nuclease activity, archaeal RecJ interacts with GINS, a structural subcomplex of the replicative DNA helicase complex. However, MjRecJ1 and MjRecJ2 do not interact with MjGINS. Here, we report the structural basis for the inability of the MjRecJ2 homologous dimer to interact with MjGINS and its efficient 3' hydrolysis polarity for short dinucleotides. Based on the crystal structure of MjRecJ2, we propose that the interaction surface of the MjRecJ2 dimer overlaps the potential interaction surface for MjGINS and blocks the formation of the MjRecJ2-GINS complex. Exposing the interaction surface of the MjRecJ2 dimer restores its interaction with MjGINS. The cocrystal structures of MjRecJ2 with substrate dideoxynucleotides or product dCMP/CMP show that MjRecJ2 has a short substrate binding patch, which is perpendicular to the longer patch of bacterial RecJ. Our results provide new insights into the function and diversification of archaeal RecJ/Cdc45 proteins.


Subject(s)
Archaeal Proteins , Archaeal Proteins/chemistry , Archaeal Proteins/metabolism , Archaeal Proteins/genetics , Crystallography, X-Ray , Methanocaldococcus/enzymology , Methanocaldococcus/metabolism , Protein Binding , Protein Multimerization , DNA Helicases/metabolism , DNA Helicases/chemistry , DNA Helicases/genetics , Models, Molecular , Exodeoxyribonucleases/metabolism , Exodeoxyribonucleases/chemistry , Exodeoxyribonucleases/genetics
19.
Cell Rep ; 43(6): 114248, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38795350

ABSTRACT

Cyclic GMP-AMP synthase (cGAS) undergoes liquid-liquid phase separation (LLPS) to trigger downstream signaling upon double-stranded DNA (dsDNA) stimulation, and the condensed cGAS colocalizes with stress granules (SGs). However, the molecular mechanism underlying the modulation of cGAS activation by SGs remains elusive. In this study, we show that USP8 is localized to SGs upon dsDNA stimulation and potentiates cGAS-stimulator of interferon genes (STING) signaling. A USP8 inhibitor ameliorates pathological inflammation in Trex1-/- mice. Systemic lupus erythematosus (SLE) databases indicate a positive correlation between USP8 expression and SLE. Mechanistic study shows that the SG protein DDX3X promotes cGAS phase separation and activation in a manner dependent on its intrinsic LLPS. USP8 cleaves K27-linked ubiquitin chains from the intrinsically disordered region (IDR) of DDX3X to enhance its condensation. In conclusion, we demonstrate that USP8 catalyzes the deubiquitination of DDX3X to facilitate cGAS condensation and activation and that inhibiting USP8 is a promising strategy for alleviating cGAS-mediated autoimmune diseases.


Subject(s)
DEAD-box RNA Helicases , Interferon Type I , Nucleotidyltransferases , Stress Granules , Ubiquitin Thiolesterase , Ubiquitination , Humans , Animals , Nucleotidyltransferases/metabolism , Ubiquitin Thiolesterase/metabolism , Mice , DEAD-box RNA Helicases/metabolism , Interferon Type I/metabolism , Stress Granules/metabolism , Lupus Erythematosus, Systemic/metabolism , Lupus Erythematosus, Systemic/pathology , Signal Transduction , Mice, Inbred C57BL , HEK293 Cells , Membrane Proteins/metabolism , Mice, Knockout , Exodeoxyribonucleases/metabolism , Endopeptidases , Phosphoproteins , Endosomal Sorting Complexes Required for Transport
20.
Int J Mol Sci ; 25(10)2024 May 12.
Article in English | MEDLINE | ID: mdl-38791317

ABSTRACT

The myostatin (MSTN) gene also regulates the developmental balance of skeletal muscle after birth, and has long been linked to age-related muscle wasting. Many rodent studies have shown a correlation between MSTN and age-related diseases. It is unclear how MSTN and age-associated muscle loss in other animals are related. In this study, we utilized MSTN gene-edited bovine skeletal muscle cells to investigate the mechanisms relating to MSTN and muscle cell senescence. The expression of MSTN was higher in older individuals than in younger individuals. We obtained consecutively passaged senescent cells and performed senescence index assays and transcriptome sequencing. We found that senescence hallmarks and the senescence-associated secretory phenotype (SASP) were decreased in long-term-cultured myostatin inactivated (MT-KO) bovine skeletal muscle cells (bSMCs). Using cell signaling profiling, MSTN was shown to regulate the SASP, predominantly through the cycle GMP-AMP synthase-stimulator of antiviral genes (cGAS-STING) pathway. An in-depth investigation by chromatin immunoprecipitation (ChIP) analysis revealed that MSTN influenced three prime repair exonuclease 1 (TREX1) expression through the SMAD2/3 complex. The downregulation of MSTN contributed to the activation of the MSTN-SMAD2/3-TREX1 signaling axis, influencing the secretion of SASP, and consequently delaying the senescence of bSMCs. This study provided valuable new insight into the role of MSTN in cell senescence in large animals.


Subject(s)
Cellular Senescence , Myostatin , Animals , Myostatin/genetics , Myostatin/metabolism , Cattle , Cellular Senescence/genetics , Exodeoxyribonucleases/metabolism , Exodeoxyribonucleases/genetics , Signal Transduction , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Phosphoproteins/metabolism , Phosphoproteins/genetics , Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...